
Efficient Throughput Cores for Asymmetric Manycore
Processors

A Thesis

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy

Computer Engineering

by

David Tarjan

August 2009

Approvals

This dissertation is submitted in partial fulfillment of therequirements for the degree of

Doctor of Philosophy

Computer Engineering

David Tarjan

Approved:

Kevin Skadron (Advisor)

Sudhanva Gurumurthi Mircea R. Stan (Chair)

John C. Lach Lloyd R. Harriot

Accepted by the School of Engineering and Applied Science:

James H. Aylor (Dean)

iii

August 2009

Abstract

The microprocessor industry has had to switch from developing ever more complex and

more deeply pipelined single-core processors to multicoreprocessors due to running into

power, thermal and complexity limits.

Future microprocessors will be asymmetric manycore chip multiprocessors, with a

small number of complex cores for serial programs and serialsections of parallel programs.

The majority of the cores will be small, power- and area-efficient cores to maximize overall

throughput in a limited power budget.

The main contributions of this dissertation are techniquesfor improving the perfor-

mance and area-efficiency of these throughput-oriented cores. This work shows how the

single-thread performance of small, scalar cores can be increased or dynamically combined

to speed up programs with only a limited number of parallel threads. It also shows how

to improve both the cores and the cache subsystem of multicore processor using SIMD

cores.

iv

Acknowledgments

I would like to thank my advisor Kevin Skadron for his patience, advice and encouragement

throughout my graduate career. Kevin kept me on track and gave me the impetus to move

forward when I was stuck in a rut.

I also want to express my gratitude to the members of the Lava Lab group, Michael

Boyer, Shuai Che, Jiayuan Meng, Lukasz Szafaryn and Jeremy Sheaffer for their work on

all of our joint projects and for generally putting up with all of my questions on a myriad

of subjects. I would like to thank Sudhanva Gurumurthi, Mircea Stan, Lloyd Harriott and

John Lach for serving on my committee and for on enlighteningme about their areas of

expertise.

Finally, I have to thank my parents for their continuing support and understanding.

The research in this dissertation was made possible by support from the National Sci-

ence Foundation under grant numbers CCR-0306404, CNS-0509245, CCR-0133634 (CA-

REER), CCF-0429765, EIA-0224434 and IIS-0612049; from theSemiconductor Research

Corporation under grant 1607.001, an NVIDIA research grantand a research grant from

Intel MTL. I was also supported by a William A. Ballard Fellowship and an Award for Ex-

cellence in Scholarship in the Sciences and Engineering from the University of Virginia.

v

Contents

1 Introduction 1

1.1 CMOS Scaling and its Implications for Processor Architecture 2

1.2 Motivation for Chip Multi-Processors (CMPs) 5

1.3 Why Asymmetric Manycore CMPs? . 5

1.4 A Short Primer on SIMD . 8

1.5 GPUs as an Example of Modern SIMD Architectures 10

1.6 Tradeoffs between Multithreading and Cache Size 11

1.7 Contributions of this Dissertation 13

2 Related Work 17

2.1 Power-Efficient Out-of-Order Structures 17

2.2 Combining Cores . 18

2.3 SIMD Hardware . 23

2.4 Diverge on Miss . 23

2.5 Sharing Tracker . 26

3 Lightweight Out-of-Order Execution 30

3.1 CMP Architecture Tradeoffs .30

3.2 Minimal Branch Prediction .31

3.3 Consumer-Based Issue Queue . 32

vi

Contents vii

3.4 Replacing the Load/Store Queue with the Memory Alias Table 34

3.5 Simulation Setup . 37

3.6 Results . 39

3.7 Conclusion . 45

4 Federation 46

4.1 Background . 48

4.2 Out-of-Order Pipeline .50

4.3 Simulation Setup . 57

4.4 Results . 58

4.5 Federating 2-way Cores . 64

4.6 Conclusions and Future Work .69

5 Diverge on Miss 71

5.1 Introduction . 71

5.2 Background on SIMD Divergence Handling 74

5.3 Diverge on Miss . 76

5.4 Limiting Thread Divergence .80

5.5 Hardware Overhead . 81

5.6 Experimental Setup . 83

5.7 Evaluation . 88

5.8 Conclusion . 94

6 Sharing Tracker 96

6.1 Introduction . 96

6.2 GPU Cache Architecture and Memory Model 98

6.3 Adapting Coherency Hardware .100

Contents viii

6.4 Simulator . 103

6.5 Evaluation . 107

6.6 Conclusions and Future Work .111

7 Conclusions 115

7.1 Challenges for Manycore Architecture Research 120

Bibliography 122

List of Figures

1.1 A SIMD core broadcasts a single instruction to many threads, which exe-

cute the instruction in lockstep. .. 8

1.2 An illustration of current GPU architectures. GPUs contain many small

cores, each with its own private caches (only one is shown forsimplicity).

Each core has multiple ALU lanes, which execute instructions in lockstep.

The register file of each core is large enough to hold the register state of

many threads. When a SIMD group (called a warp) stalls on a long latency

operation, a hardware scheduler can mask this latency by continuing to

execute other warps. 10

1.3 Tradeoffs in choosing core types .. . 12

3.1 Increase in arithmetic mean IPC for different IQ designsas the sizes of the

IQ and the AL are increased. By default, designs use oldest-first schedul-

ing and a CAM-based IQ. Designs labeled “Pseudorandom” instead use

pseudo-random scheduling and designs labeled “Subscription” instead use

a subscription-based IQ. The percent improvement in IPC is in comparison

to the “Traditional” configuration with a 4-entry IQ and an 8-entry AL. . . 40

3.2 Scaling of arithmetic mean IPC for LSQ, SVW, and MAT as thenumber

of entries is increased. The lines for the SVW and MAT are almost indis-

tinguishable. 41

ix

List of Figures x

3.3 Arithmetic mean IPC to the lightweight scalar in-order core, the 2-way

OOO core and traditional 2-way and 4-way OOO cores. 42

3.4 Arithmetic mean power consumption normalized to the 2-way OOO core

for all four cores. 43

3.5 Arithmetic meanBIPS3

Watt normalized to the lightweight 2-way OOO core. . 44

3.6 Arithmetic mean energy and area efficiency (BIPS3

Watt·mm2) normalized to the

lightweight 2-way OOO core. 45

4.1 The pipeline of a federated core, with the new pipeline stages in shaded

boxes. 50

4.2 A simplified floorplan showing the arrangement of two in-order cores with

the new structures necessary for Federation in the area between the cores. 50

4.3 I show the performance impact of each individual featureby turning them

OFF individually. The average IPC gain for a specific featurerepresents

the performance improvement I would expect if I replaced that feature with

the equivalent traditional, more complex design. The dedicated OOO data

point shows the improvement in performance achieved by the dedicated

OOO over the federated OOO core. 59

4.4 Arithmetic mean IPC. 62

4.5 Arithmetic mean power dissipation, normalized to Federated OOO. 62

4.6 Arithmetic meanBIPS3

Watt , normalized to Federated OOO. 63

4.7 Arithmetic mean BIPS3

Watt·mm2 , normalized to Federated OOO. 63

4.8 Arithmetic mean IPC andBIPS3

Watt , normalized to Federated 4-way OOO. . . 68

5.1 Warps can be forced to wait on memory by a single miss from asingle

thread. Even cores with multiple warps are forced to stall bya single cache

miss per warp. 75

List of Figures xi

5.2 The Memory Divergence Table tracks which lanes of a warp are waiting

on which memory op and which ones are ready to be merged back into the

active warp. 77

5.3 Increase in performance of 2 to 16 warps per core relativeto a single warp

per core. 89

5.4 Bandwidth usage of all kernels with 1 to 16 warps per core.The total

available bandwidth is 256 GB/sec. .90

5.5 Relative speedup with 1 to 16 warps per core with a divergeon miss and

a fixed maximum slip across all kernels for one particular config and com-

bining the best fixed slip for each kernel. 90

5.6 Speedup for 1 to 16 warps per core of adaptive slipping warps versus de-

fault blocking warps at the same number of warps per core. 93

5.7 Comparing the speedup of both normal execution and slipping warps from

1 to 16 warps. The baseline is 1 warp per core with normal execution.

Adaptive slip can provide a higher peak performance of 5.38 times the

base performance versus 4.14 for normal execution, which needs 4 times

more warps. 93

5.8 Speedup with adaptive slipping warps versus default blocking warps with

each core having a private 256KB L2 cache.95

6.1 A cache coherence directory entry consists of a full tag,a bitmask indicat-

ing which cores have copies of a particular cache line and a small bitfield

to track the current coherency state. In contrast, a sharingtracker entry

consists of a smaller partial tag and a pointer to the cache that contains a

particular cache line. 100

List of Figures xii

6.2 On an L2 miss, the request is sent to the sharing tracker (1). The sharing

tracker is queried like a shared L3 cache. On a hit in the sharing tracker, it

reads out the pointer in its entry and forwards the request tothe appropriate

L2 cache (2). If there is an L2 hit, a copy of the cache line is then forwarded

to the original L2 and core (3). 102

6.3 The geometric mean performance across all kernels usingdifferent sized

sharing trackers(ST) (covering 0 to 8 MB of L2 cache entries)normalized

to no sharing tracker. The number of warps per core is varied from 1 to 16. 108

6.4 The geometric mean off-chip bandwidth across all kernels using different

sized sharing trackers(ST) (covering 0 to 8 MB of L2 cache entries) nor-

malized to no sharing tracker. The number of warps per core isvaried from

1 to 16. 109

6.5 The geometric mean performance across all kernels usingdifferent sized

sharing trackers(ST) (covering 0 to 1 MB of L1 cache entries)normalized

to no sharing tracker. The number of warps per core is varied from 1 to 16. 110

6.6 The geometric mean off-chip bandwidth across all kernels using different

sized sharing trackers(ST) (covering 0 to 1 MB of L1 cache entries) nor-

malized to no sharing tracker. The number of warps per core isvaried from

1 to 16. 111

6.7 Performance comparison of cores with L2s and without. Performance is

the geometry mean across all kernels normalized to the performance of 1

warp per core and no L2 cache or sharing tracker. The former 5 bars per

configuration are without L2 and the latter 5 bars are with. The first bar of

each group is with sharing tracker turned off and the rest show performance

with sharing trackers of various coverage. 112

List of Figures xiii

6.8 Performance permm2 for cores with and without L2 caches as the number

of warps per core and the sharing tracker are scaled up. 112

6.9 The ratio of the performance per unit area of configurations with and with-

out per core L2 cache. 113

List of Tables

1.1 Dennard scaling rules for the main variables affecting MOSFET transistors. 3

3.1 Simulator parameters for the different core types. The lightweight core

has the same sized resources as the dedicated 2-way core. Note that the

lightweight core use an MAT instead of an LSQ, and thus the number of

loads and stores is limited by the size of the Active List rather than the size

of the LSQ. 38

3.2 Estimated sizes for core types in 45nm technology. 39

3.3 Impact on arithmetic mean IPC of the number of subscriberslots in the

subscription-based IQ. The change in IPC is computed relative to a tradi-

tional IQ. 39

3.4 Impact on arithmetic mean IPC of sharing the higher orderbits of each

counter in the MAT. 42

xiv

List of Tables xv

4.1 Area estimates for the new structures added to the baseline in-order pro-

cessor. Type differentiates between 6T SRAM cells as are used for caches

and large tables and registers used for building the smallerstructures inside

the pipeline, which have full swing bitlines and are potentially multiported.

The last column indicates whether I assume the structure canbe built us-

ing only reused register file entries if the baseline core is multi-threaded.

The worst case total is calculated under the assumption thatnone of the

structure can reuse the register file. 52

4.2 The size of wires that must be added to the baseline core inorder to support

Federation. 52

4.3 Simulator parameters for the different core types. The federated and

lightweight cores have the same sized resources as the dedicated 2-way

core. Note that the federated and lightweight cores use an MAT instead of

an LSQ, and thus the number of loads and stores is limited by the size of

the Active List rather than the size of the LSQ. 58

4.4 Estimated sizes of extra structures for Federation in 45nm technology. . . 61

4.5 Estimated sizes for core types in 45nm technology. 61

4.6 Simulator parameters for the 2-way in-order and 4-way out-of-order cores. 67

5.1 New structures needed to support diverge on miss. N is thenumber of

warps per core, which range from 1 to 16. 82

5.2 Area estimates for different core configurations 83

5.3 Number of instructions per memory operation, bandwidthusage and in-

structions per second for each kernel 89

6.1 Details of the simulated systems .. . 105

6.2 Comparison of a coherence directory to the sharing tracker 106

List of Tables xvi

6.3 Area estimates for a different variants of a 32-wide SIMDcore. 106

6.4 Area estimates cache-like structures and un-core. 106

Chapter 1

Introduction

Until recently the main goal for processor designers was to improve single-thread latency

with each successive processor generation. Each processorcontained a single-core, and

architects took advantage of Moore’s Law [76] to increase both the sophistication and

the frequency of this core with each generation. By improving the sophistication of the

core, the core was capable of executing more instructions per cycle (through extracting

higher levels of instruction-level-parallelism (ILP)) and the higher frequency allowed the

core to execute more cycles per second. These two trends together allowed mainstream

processors to execute instructions at an ever higher rate. Between 1986 and 2002 single-

thread performance improved at a 52% annual rate [9].

The great benefit of this trend was that software written for old processors could always

take advantage of the higher performance offered by new processors without having to

change any of their core algorithms.

The cost of this trend was that both the complexity of processors and their power con-

sumption grew rapidly along with their performance. The sheer size of these complex

processors posed limitations to their further success, as it was getting harder and harder for

different parts of a processor to communicate with each other inside a single cycle [37].

1

Chapter 1. Introduction 2

In addition, the techniques used to extract higher per-cycle performance were running into

diminishing returns [2], with small performance increasesrequiring very large increases in

core area. But the real limiting factor turned out to be a combination of the growing com-

plexity of processors and fundamental changes in how the underlying CMOS technology

was scaling.

1.1 CMOS Scaling and its Implications for Processor Ar-

chitecture

Even though the term Moore’s Law [76] is used colloquially torefer to all the improve-

ments in semiconductor technology over time, a much more prescriptive explanation of the

continuing improvements in CMOS technology, which has beenthe mainstream technol-

ogy for semiconductor devices for approximately 30 years now, is Dennard scaling.

Dennard scaling [33] describes scaling rules for CMOS transistors which improve den-

sity, frequency and power at the same time. These scaling rules (shown in Table 1.1)

require that all the important physical dimensions of a transistor are scaled by the same

factor (κ). To maintain a constant electrical field strength and a constant power density as

the size of the transistors is scaled down, the supply voltage Vdd is also scaled down by

κ. The threshold voltageVth also needs to be scaled down byκ to have the current I scale

down byκ [92].

Since the advent of CMOS technology, the semiconductor industry has roughly suc-

ceeded in following Dennard scaling. As a consequence, microprocessors built in CMOS

technology enjoyed ever higher frequencies and transistorcounts, increasing the perfor-

mance of microprocessors over time independently of improvements in the design of mi-

croprocessors. The power consumption and power density of microprocessors did not stay

Chapter 1. Introduction 3

Variable Scaling Factor
Oxide Thicknesstox, Gate Width and Length W & L 1/κ

Doping ConcentrationNa κ
Supply and threshold voltageVdd & Vth 1/κ

Current I 1/κ
CapacitanceεA/tox 1/κ

Delay time/circuitVC/I 1/κ
Power dissipation/circuitVI 1/κ2

Power densityVC/A 1

Table 1.1: Dennard scaling rules for the main variables affecting MOSFET transistors.

constant, as would be expected from simple Dennard scaling,because designers opted for

larger dies and more aggressive pipelining (leading to higher frequencies) [52] to achieve

even higher performance levels.

This trend was greatly worsened in recent years as the reduction in supply voltage

has slowed down significantly compared to the continued scaling in feature size. With

supply voltage scaling more slowly than transistor density, power density and total power

dissipation became the primary limiting factors for microprocessors.

The primary reason that supply voltage scaling has slowed down is that a certain ratio

of supply voltage to threshold voltage needs to be maintained to run a transistor at optimal

speed. The problem is that scaling of the threshold voltageVth has almost stopped. The

scaling of threshold voltage in turn is primarily limited bysubthreshold leakage, that is the

amount of current flowing through a CMOS transistor even whenit is turned off. Since

subthreshold leakage is exponentially dependent on the subthreshold voltage,

Isub∝ e−Vth (1.1)

as shown in equation 1.1, there comes a point where further lowering of the threshold

voltage leads to unacceptable increases in subthreshold leakage. For a given generation of

CMOS technology the amount of subthreshold leakage can be modified in several ways.

Chapter 1. Introduction 4

The most obvious is to produce transistors with higher threshold voltages, but these have

slower switching speeds than those with regular threshold voltages. There are many other

possibilities, but all of them either increase the cost of production or negatively effect the

speed of the transistors. Overall, no currently available technology can decrease leakage

fast enough for the normal scaling of threshold voltage to continue at anywhere close to its

historical rate.

Designers responded these trends by designing the current generation of microproces-

sors to be more power efficient. They did this in several ways:

• They backed off the very aggressive pipelining that had beenused in the last gener-

ation of microprocessors (such as the Pentium 4 [50,14]) to decrease power-density.

• They slowed down frequency scaling drastically for even these less aggressively

pipelined cores, such that today only a single commercial product (the IBM Power

6 [109]) exceeds 4 GHz in clock speed, even though a 3.8 GHz Pentium 4 [14] was

introduced in 2004. Thanks to much less aggressive frequency targets, it was pos-

sible to be much more aggressive in replacing regular threshold and low threshold

transistors with high threshold transistors throughout large parts of the core logic of

many recent processors.

• The size of new core designs was either scaled back or old design were just shrunk

with technology. For example, two Intel Core 2 Duo [91] cores, which is the succes-

sor to the Pentium 4, occupy a similar area as a single Pentium4 Prescott [14] when

compared at the same technology node. core)

• Single-thread performance was de-emphasized in several designs [3, 56], which

meant that the size and complexity of the cores could be scaled back to the level

of the early 1990’s.

Chapter 1. Introduction 5

1.2 Motivation for Chip Multi-Processors (CMPs)

The pull-back from ever larger and ever faster single cores left the designers with the ques-

tion of how to best use the continuing increase in transistornumbers. One option was to

just dedicate an ever larger portion of the die area to caches, but since caches have dimin-

ishing returns with increasing size, the end user would see only a very small increase in

performance. Another option was to integrate more system functionality on the CPU die

itself. This strategy is being followed by many companies, but the number of system com-

ponents which show a big benefit from having a very high-speed, low latency connection

to the CPU core is limited.

The option which the industry as a whole adopted was to integrate multiple cores on

a single die, hoping that there were enough parallel programs which could take advantage

of multiple cores per chip, even if single-thread latency was not decreased. The name chip

multi-processor (CMP) has become popular for such designs.

The first and second generation of CMPs has used core designs from the last generation

of single-core processors or new designs of similar complexity. This limited the number

of cores per die to two initially, and four cores with the nextprocess generation, while

single-thread performance stayed constant or increased marginally over the last generation

of single-core processors.

1.3 Why Asymmetric Manycore CMPs?

With the transition from single-core processors to CMPs, programs have to be parallel to

take advantage of the increasing throughput offered by CMPs. As the number of cores per

die increases over time and the performance of a single core increases only slowly or even

stagnates, the gap between serial and parallel programs will grow wider and wider.

Chapter 1. Introduction 6

But even if all programs are parallelized, the maximum number of threads that each

program will be able to take advantage of at any given point intime will vary widely.

Another problem is that even programs which can take advantage of a virtually unlimited

number of threads will have some portion of their execution time be serial. As Hill and

Marty point out [49], the overall speedup for such programs is quickly limited by the serial

portion of the program.

Computer architects are faced with a number of questions when deciding the high-level

design of future processors.

How many cores should be on the die, and what is their individual single-thread per-

formance? There is a clear tradeoff between more and less performant cores, as many

structures of high performance cores increase super-linearly in complexity with increas-

ing performance [75]. This relationship holds true not justfor area, but also for power-

efficiency, as higher performance cores are typically also less power efficient [46]. For

applications with sufficient parallelism, Daviset al.[32] and Carmean [25] show that max-

imum aggregate throughput is achieved by using a large number of highly multithreaded

scalar cores. Designs which sacrifice single-thread performance and have a large number

of small, simple cores have been calledmanycoreprocessors, to distinguish such designs

from the current multicore designs, which have fewer, larger cores.

How far should changes in the cores go to maximize power- and area-efficiency? Since

the workload of a manycore CMP consists of parallel programs, the question becomes if

a different, more parallel ISA could be used to make further gains in efficiency. Single

Instruction Multiple Data (SIMD) organization are such an option. A SIMD core the same

instruction for multiple threads in lockstep. See Section 1.4 for a more detailed discussion

of SIMD architectures.

Once a program has been expressed in a parallel fashion and can execute using multiple

threads, the changes to execute the same program on SIMD are relatively minor. This

Chapter 1. Introduction 7

is especially true for array type SIMD ISAs since they present the programmer with the

abstraction of a number of normal, sequential programs, which just execute faster if all

threads follow the same control-flow path. SIMD ISAs are an attractive choice compared

to scalar ISAs for the small, throughput-oriented cores , since cores implementing these

ISAs can amortize both the area and power of a core’s frontendover multiple backends.

The power and area benefits of SIMD ISAs have been shown in shown in recent graphics

processing units(GPUs) [68, 74], the Imagine [60] and Merrimac [31] architectures, and

the Cell processor’s [51] Synergistic Processing Elements[38]. Note that SIMD cores are

not well suited for programs where each thread has very different control-flow, as this type

of program will underutilize the SIMD hardware. The recently announced Intel Larrabee

architecture [97] tries to deal with this problem by combining wide SIMD units with small

scalar cores, allowing such a processor to have high performance on a wider variety of

workloads.

Should there be only a single type of core for the whole chip, or a mix of large and

small cores? Work by Hill and Marty [49], Kumaret al. [67] and Sulemanet al. [112]

shows that having at least a single high performance core is very beneficial for overall

throughput, even if the high performance core uses the area and power of multiple smaller

cores. CMPs with a mix of large and small cores are calledasymmetricor heterogeneous

CMPs.

My extrapolation from the above mentioned body of work is that a future CMP will

have a combination of core types. It will have a small number of large, high-performance

cores and a large number of small, throughput cores. The throughput cores will themselves

be divided between scalar and SIMD cores, to provide a maximum of flexibility and power-

and area-efficiency.

Chapter 1. Introduction 8

add r2, r5, r7

Figure 1.1: A SIMD core broadcasts a single instruction to many threads, which execute
the instruction in lockstep.

1.4 A Short Primer on SIMD

As shown in Figure 1.1 SIMD architectures execute a single instruction on multiple pieces

of data, but the way this capability is expressed to the programmer divides the architectures

into two classes: vector and array architectures.

Vector computers expose to the programmer vector registers, which hold multiple data

words. Instructions operate on these large registers, accomplishing more work per instruc-

tion than to scalar machines. Each scalar word in a vector register has a specific position in

the vector, and this position along with the associated execution resources are often called

vector lanes. The programmer has to specify explicitly how to load values into these large

registers, either from a contiguous chunk of memory or usingarbitrary per vector lane ad-

dresses. The later operation is often called a gather (if theoperation is a load) or a scatter

(if the operation is a store). If there are branches which depend on per vector lane values,

the programmer has to manually make sure that only the vectorlanes taking a particular

branch receive updated values. This is often accomplished using a bitmask called the active

mask.

Chapter 1. Introduction 9

Array computers in the tradition of the Illiac IV [15] present the abstraction that each

core is made up of a number of separate processing elements (PE), each of which is scalar.

Instructions are fetched through a separate unit and broadcast to each individual PE. If a

PE does not follow a conditional branch it simply does not execute instructions which are

broadcast while the rest of the PEs execute the branch. Similarly, scatter/gather operations

are simply normal stores and loads.

The advantage of vector processors is that direct register to register communication

in different lanes is expressed more naturally (so called vector permutations), while ar-

ray processors are more natural in dealing with divergent control flow and scatter/gather

operations.

SIMD architectures have a built in advantage in how they scale performance with

Moore’s Law. In contrast to scalar architectures, which require techniques like increased

pipelining, larger caches or sophisticated ILP extractiontechniques to increase perfor-

mance, SIMD architectures can in theory increase performance linearly simply by increas-

ing their SIMD width. This means that the area-efficiency of SIMD architectures stays the

same or even increases as they increase their performance. Area-efficiency increases as the

constant area of a single frontend is amortized over a largernumber of backends. I say in

theory, because most applications have a limited number of data points they can operate

on in parallel. This number can range from the single digits to the millions, but unless a

SIMD architecture wants to limit the range of programs that it can usefully run, it cannot

increase its SIMD width arbitrarily.

This simple mechanism for increasing performance with eachnew technology node

meant that array and vector based SIMD architectures traditionally eschewed the use of

caches or other auxiliary structures which would have used up area which could have been

devoted to the SIMD data path.

While SIMD architectures have not been used by mainstream CPU manufacturers, they

Chapter 1. Introduction 10

Core L1

Core L1

Core L1

Core L1

Core L1

Core L1

Core L1

Core L1

Core L1

Core L1

Core

ALUALUALUALUALUALUALUALU

RF

Figure 1.2: An illustration of current GPU architectures. GPUs contain many small cores,
each with its own private caches (only one is shown for simplicity). Each core has multiple
ALU lanes, which execute instructions in lockstep. The register file of each core is large
enough to hold the register state of many threads. When a SIMDgroup (called a warp)
stalls on a long latency operation, a hardware scheduler canmask this latency by continuing
to execute other warps.

have been adopted by the manufacturers of graphics processing units (GPUs). I will use

the example of GPU architecture

1.5 GPUs as an Example of Modern SIMD Architectures

Graphics processing units (GPUs) were once fixed-function hardware for 3D render-

ing. Demand for increasing programmability for such applications have gradually driven

GPU architectures to become general-purpose manycore architectures (embedded within a

system-on-chip including various 3D-specific accelerators). The introduction of hardware

and software support for general-purpose programming languages on the GPU [19,77,80]

has allowed GPUs to become a viable platform for general-purpose computing.

GPUs are optimized to provide high-throughput and to tolerate frequent long-latency

Chapter 1. Introduction 11

accesses to graphics memory. This is due to the nature of the graphics workload that inher-

ently has a very large number of independent tasks (hundredsof thousands of triangles and

millions of pixels per rendered frame) and data access patterns with little temporal locality.

As a consequence, GPUs have adopted an architecture similarto the MTA Tera [5]. As

shown in Figure 1.2, each core is heavily multi-threaded andscheduling hardware decides

each cycle which of the many threads to execute. This is necessary since threads frequently

stall due to accesses to graphics memory, and many threads are needed to keep the ALU

unit of a core reasonably occupied. In addition, each core uses a SIMD execution model

and executes multiple threads in a single clock cycle. This organization is again a con-

sequence of the graphics workload, where nearby tasks execute the same program (called

shaders) and there is minimal control-flow divergence between tasks which execute the

same program. A SIMD organization amortizes the area and power overhead of a core’s

frontend over many backends, increasing the total computational power achievable within

a given power and area envelope. Note that SIMD lanes are referred to as threads and

SIMD groups as warps or wave fronts in GPU terminology. I willuse the terms thread and

warp throughout this chapter.

GPUs do have caches, although the are much smaller than the caches of CPUs. The

question might be asked why GPUs have any caches for data at all, since they are optimized

to tolerate latency. The answer is that GPU caches are mostlymeant as bandwidth savers

and not as a way to decrease latency of memory accesses.

1.6 Tradeoffs between Multithreading and Cache Size

As noted above, GPUs employ heavy multi-threading as a way totolerate memory latency.

When adding traditional caches, which in this context are defined as supporting both reads

and writes and having an access latency substantially lowerthan memory latency, there

Chapter 1. Introduction 12

high

single-thread

performance

Low single-

thread

performance

High overall

throughput

Low overall

throughput

Figure 1.3: Tradeoffs in choosing core types

is an interesting balance between number of warps per core and the size of the per-core

caches. More warps per core increase memory latency tolerance and performance, while

increasing cache size for a given warp count will increase hit rate, decrease average mem-

ory latency and increase performance. But there is the problem that for a given cache size

increasing the number of warps per core will put more pressure on the cache, sometimes

leading to cache thrashing and a sudden jump in the required off-chip bandwidth and a

decreasein performance.

While more warps per core increases performance, it also increases the size of the

register file to hold the larger number of threads, as well as potentially requiring an increase

in the size of caches to prevent “thrashing”. The best performance per unit of area is not

necessarily achieved with the maximum number of warps per and the largest cache as I

will show in Section 6.5.

Chapter 1. Introduction 13

1.7 Contributions of this Dissertation

To run the widest range of programs well, an asymmetric CMP must choose the right

balance between the different types of cores, as well as optimize each component. Another

issue is that, if there are large gaps between the different core types in terms of single-thread

performance or number of threads they are capable of running, programmers will have

a harder time getting the best performance form such a systemunder all circumstances.

This point was illustrated by Marty and Hill [49], who showedthat the ideal case for

future CMPs would be if the hardware could fluidly reconfigureitself from running as a

single, extremely capable single-threaded core to a very large number of simple processing

elementsand all configurations in between.

While such a system is clearly infeasible, it is clear that asymmetric CMPs will have

different core types distributed along a curve, as illustrated in Figure 1.3, with the left side

being the large and fast cores, the middle being made up of small throughput oriented scalar

cores and the right side of the curve being made up of SIMD cores with low single-thread

performance but maximum throughput and area efficiency.

This dissertation focuses on optimizing the architecture of throughput-oriented scalar

and SIMD cores, which are the middle and left side of the conceptual curve.

Chapter 2 gives an overview of related work in the areas I explore, and explains how

they relate to my own work.

I then focus on the gap in performance between the large, high-performance cores and

the throughput-oriented scalar cores. For optimal performance across the widest range of

programs possible, the gap should be as small as possible. But making the throughput-

oriented cores faster, by replacing them with small out-of-order cores, might use too much

area and sacrifice too much throughput. I show in Chapter 3 that out-of-order execution for

small cores can be much cheaper than previously imagined, sothat it might make sense to

Chapter 1. Introduction 14

have slightly large, but much more capable MIMD cores, reducing the gap in single-thread

performance between the large cores and the throughput MIMDcores. The fundamental

insight in this chapter is that the traditional circuit structures needed for speculative out-of-

order execution are overdesigned and not used efficiently during the common case.

In Chapter 4 I show another possible solution, by combining two multithreaded, in-

order, scalar cores dynamically at runtime into a larger andfaster out-of-order core. Both

of these solutions allow an asymmetric CMP to have robust performance for a wider range

of active threads. The key insight of my proposed solution isthat the large register files of

multithreaded cores can be repurposed to hold the re-order buffers of an out-of-order core

and that, by not aiming for a very high-performance core, theoverheads of a distributed

core can be kept within acceptable bounds.

After having focused on the middle part of the curve in the first two chapters, I then

investigate the memory performance bottlenecks of SIMD cores, which have turned out to

be the real limiters for SIMD cores.

In my proposal for this dissertation, I promised to investigate ways in which SIMD

cores could split SIMD groups at runtime, to increase their performance when the control-

flow of threads in a SIMD group diverged. In my work on this topic, it became obvious

that control-flow divergence was not the main limiting factor for many programs, but that

it was memory divergence. Memory divergence occurs when allthreads in a SIMD group

execute a load or store, and a subset of them miss in a given cache level. This forces all

threads in that SIMD group to wait until the all the threads which missed in the cache have

received their memory values. In the worst case, a single miss can force a whole SIMD

group to stall, slowing down execution of all threads. I thusfocused on on solving the

problem of memory divergence instead of control-flow divergence, since it had a much

higher potential impact on performance for a wide variety ofprograms.

In Chapter 5 I develop a mechanism called diverge on miss, which allows SIMD groups

Chapter 1. Introduction 15

to continue executing, even if a subset of their threads are waiting on memory. This mech-

anism greatly speeds up programs where memory accesses froma SIMD group are not

always to contiguous addresses and a subset of the warp may miss in the data cache, de-

creasing the number of thread contexts needed to support a given level of performance

or increasing the performance when holding the number constant. The key insight of di-

verge on miss is that SIMD cores which already support control-flow divergence and scat-

ter/gather loads and stores already have most of the hardware needed to support a form of

execution where threads can be at different points in their execution due to some having

missed in the cache while others did not.

I also promised to investigate smart cache replacement and insertion policies for SIMD

cores. My work on this topic showed that, contrary to my intuition, the performance bene-

fit of such techniques was minimal. This was due to the fact that programs for SIMD cores

that I investigated had inherently large working sets with either streaming behavior (no

temporal locality) or only reuse between close by threads. The cache of each SIMD core

was simply too small to capture any reasonable working set, even in the best case. Any

smarter insertion or replacement policy could only improvehit rates marginally. Motivated

by these insights, I investigated how a processor with many cores, each with relatively

small caches, could facilitate reuse of data between the cores. While one possible solu-

tion to this problem would be to have a large shared cache, such an organization would

have lower area-efficiency. While there have been prior proposals of how to use cache

coherency protocols to deal with similar problems (see Section 2.5), I focused on the case

without cache coherence. This case is particularly interesting because some manycore

architectures (such as GPUs [68, 74]) do not support cache coherency, and because cache

coherency can be particularly expensive for manycore architectures, which motivates look-

ing at alternative solutions.

In Chapter 6 I introduce a way for non-coherent caches of SIMDcores to achieve most

Chapter 1. Introduction 16

of the bandwidth and latency benefits available with a large shared last level cache, but at

a fraction of the area overhead. The key insight in this chapter is that for non-coherent

caches, tracking which caches contain which cache lines does not have to be precise or

up-to-date. The directory structure of a directory-based cache coherence protocol becomes

a predictor and a lookup a mere performance hint. Erroneous predictions may reduce

performance but do not violate memory semantics.

Together, the techniques described in this dissertation improve the performance, power-

and area-efficiency of small, throughput-oriented cores ofdifferent types. They increase

the set of workloads which can profit from SIMD cores and show how to build CMPs

which can dynamically adapt their throughput cores to workloads with fewer threads.

Chapter 2

Related Work

2.1 Power-Efficient Out-of-Order Structures

The power consumption of a modern speculative out-of-ordercore is dominated by the

power used by the large and complex buffer structures required for out-of-order execution.

Chief among these are the issue queue and load/store queue. Since modern processors are

primarily limited by their power consumption there has beensubstantial effort devoted to

finding lower power organizations for these structures.

Sethumadhavanet al. [98] explore the problem of scaling a traditional LSQ designto

larger sizes in terms of access delay, while Gandhiet al. [40] explore scalable and power-

efficient alternatives to traditional LSQs in the context ofa core which can speculatively

execute thousands of instructions. Both works found that only a small fraction of loads

have values forwarded to them by stores, and design their scalable LSQs around this fact.

The Memory Alias Table (MAT) I present in Chapter 3 builds on some of the ideas about

bloom filters presented in these papers.

Buyuktosunogluet al. [23] examined the power consumption of issue queues and the

scheduling logic in real high-performance processors and proposed an instruction schedul-

ing mechanism which did not rely on the instructions being strictly age-ordered inside the

17

Chapter 2. Related Work 18

issue queue. Sassoneet al. [94] also explored the scalability of traditional issue queues,

and proposed improvements on the alternative matrix scheduler [45] for lower power con-

sumption and better scalability. Huanget al. [53] looked at a hybrid issue logic, which

combined broadcast and direct lookup for lower power consumption.

The consumer-based issue queue I present in Chapter 3 draws its inspiration from

Huang, but completely abandons the need for broadcast and match logic. I also use the

findings about pseudo-random scheduling from Sassone and Buyuktosunoglu for a further

simplification of my design.

The Store Vulnerability Window (SVW) was introduced by Roth[89] as a verification

mechanism for load/store aliasing and ordering which couldbe used in conjunction with

several load speculation techniques. The Memory Alias Table is a similar structure to the

SVW, but uses much less hardware. More recent work [101, 111,100] has tried to largely

or completely eliminate the Load-Store Queue (LSQ) by usingthe SVW as the checking

mechanism for speculative forwarding, which we avoid due toits complexity. Our work

differs in that we do not try to replace a part of an OOO processor, but instead augment

a simple in-order processor so that it can detect memory order violations with minimal

hardware cost. We also do no speculative forwarding; indeed, we abandon forwarding

completely in our design.

2.2 Combining Cores

There has been much recent interest in how to combine multiple small cores to execute

a single-threaded program faster. The most influential workin this area is no doubt the

Multiscalar architecture from Wisconsin [106], which useda combination of hardware and

software to execute normal sequential programs on a number of in-order cores connected

by a ring.

Chapter 2. Related Work 19

More recently, work on combining several smaller cores intoa single larger and more

capable core was performed byİpek et al. [55]. We compare this work to Federation in

detail in Section 2.2.1.

The Voltron architecture from Zhonget al.[121] allows multiple in-order VLIW cores

of a chip multiprocessor (CMP) to combine into a larger VLIW core. It requires a special

compiler to transform programs into a form which can be exploited by this larger core. The

performance is heavily dependent on the quality of the code the compiler generates, as the

hardware cannot extract fine-grained instruction parallelism from the instruction stream by

itself. The work on Composable Lightweight Processor (CLP)[63] leverages the block-

level dataflow EDGE ISA [21] and associated compiler [105] toallow small cores to work

on a single instruction stream, without having to use traditional out-of-order structures such

as a rename table or issue queue. Our work does not assume an advanced compiler and is

applicable to RISC, CISC, and VLIW ISAs.

Federation, the technique I introduce in Chapter 4, differsfrom Voltron and CLP in

that it does not require a special ISA, but can instead use anyISA. Federation differs

from Core Fusion in that it does not assume that the underlying cores are already out-of-

order, but instead adds all the necessary out-of-order structures. The main takeaway from

Core Fusion is that constructing a very wide out-of-order core from small cores faces the

issue of steeply diminishing returns in terms of the amount of performance gained for extra

hardware added. This is chiefly due to the extra latency introduced by the extra interconnect

and the known performance limitations of very wide out-of-order cores when not paired

with almost perfect branch prediction and memory bypass prediction. In Federation I tried

to minimize any extra latency added to the pipeline and avoided building interconnects

which pass over multiple cores.

Salverda and Zilles [93] explore the performance limits of adesign that contains a num-

ber of in-order lanes or pipelines that can be fused at run-time to achieve out-of-order exe-

Chapter 2. Related Work 20

cution. Their work assumes a “slip-oriented out-of-order execution model,” in which out-

of-order execution only occurs when the individual lanes slip with respect to one another.

In other words, within each lane, instructions always execute in-order. The performance

constraints shown in their work are only valid for machines that utilize this execution

model. Federation isnot based on the slip-oriented out-of-order execution model. When

in-order pipelines are federated, instructions can be issued out-of-order to any pipeline and

thus instructions within the same pipeline can execute out-of-order with respect to one an-

other. This approach raises some scaling issues of its own but frees Federation from the

fundamental constraints of the slip-oriented model.

Work by Kumaret al.[67] on heterogeneous cores showed that the overall throughput

of a heterogeneous CMP can be higher than an area- equivalenthomogeneous CMP, if the

OS can schedule threads to different types of cores depending on their needs. However,

because the mix of large and small cores has to be set at design- time, the OS or hypervi-

sor cannot dynamically make a tradeoff at runtime between the number of cores (i.e., the

number of thread contexts) and single- thread latency. Grochowskiet al.[46] follow up on

this line of work and observe that the combination of performance- and throughput- ori-

ented cores with dynamic voltage scaling can provide a better combination of single-thread

latency and throughput than either technique can provide alone.

Adjoining cores which are federated have their caches merged when in federated mode,

similar to [66, 34]. However, we do not require two cores to beable to access the same

cache simultaneously, since only one core’s load and store ports are active when in feder-

ated mode.

Numerous groups have evaluated various combinations of clustered OOO processors

and multi-threading.̇Ipek et al. [55] provide a comprehensive overview of this body of

work. Another approach to improve the single-thread performance is to use runahead

execution [30, 78], which is orthogonal and even complementary to federating two simple

Chapter 2. Related Work 21

cores. Runahead reduces time spent waiting on cache misses,which would potentially

help the more powerful federated core relative to the underlying scalar core. Additionally,

federating two cores would help the runahead thread run faster and thus further ahead of

the main thread.

2.2.1 Comparison to Core Fusion

The work on Core Fusion [55] provides an interesting comparison point to Federation.

Core Fusion and Federation employ very different approaches to the problem of how to

aggregate smaller cores into a single, higher performance core. Core Fusion aims to build

an OOO core with a very deep execution window and lots of execution resources. To

achieve this goal, Core Fusion combines a larger number of cores (up to four cores) than

Federation (two cores). Due to the complexity of the extra structures needed for Core Fu-

sion and the latency required to communicate between several cores at multiple locations

in the pipeline, Core Fusion must increase the length of manyof the critical loops of the

processor pipeline. Federation employs almost exactly theopposite approach, focusing

on aggregating fewer, smaller cores and placing an emphasison NOT increasing any of

the critical loops of the pipeline unless absolutely necessary. The choice of a centralized

Issue Queue and centralized MAT stem directly from trying toavoid such overheads. We

believe that the large body of work on clustered architectures show convincingly that dis-

tributing the critical structures of an OOO core only makes sense if the workload exhibits

large amounts of ILP and few serializing conditions such as branch mispredictions and

memory aliasing events; conditions which are not true for many applications which are not

easily decomposed into multiple threads and thus need higher single-thread performance

the most.

In both [55] and in this paper, the performance of the aggregated core is compared to

Chapter 2. Related Work 22

that of a dedicated 4-way OOO core. Of course, directly comparing the results is diffi-

cult, since the dedicated cores in the two comparisons are configured differently and use

different simulation methodologies. Nevertheless, Core Fusion of four 2-way OOO cores

achieves about 102% and 115% of the performance of a dedicated 4-way core on SpecInt

and SpecFP, respectively. We show in Section 4.5.3 that Federation of two 2-way in-order

cores achieves 88% and 95%, respectively, of the performance of a dedicated 4-way OOO

core, with half the execution resources and much lower power. Thus, even with much sim-

pler baseline cores, Federation is able to achieve performance that is competitive with Core

Fusion.

Comparing the areas of the aggregated cores is not necessarily useful, since one can

assume that a manycore processor will have more than enough cores for any aggregation

technique. Comparing the area overhead of the aggregation techniques and the area ef-

ficiencies of the baseline cores is more instructive. The area overhead of Core Fusion

is estimated to be 8.64mm2 from a 200mm2 die with 100mm2 devoted to core area, or

about 8.6% of the core area. Using scalar in-order cores as a baseline, we estimate in Sec-

tion 4.4.2 that the area overhead of Federation is approximately 3.7% of each pair of cores,

and thus 3.7% of the total core area regardless of the number of cores. Using 2-way in-

order cores with branch prediction as a baseline, the area overhead is much smaller, since

the majority of the area overhead of federating scalar coreswas due to the addition of a

small branch predictor.

For phases of execution in which the thread count is high, a manycore processor imple-

menting either Core Fusion or Federation will be best off without any cores fused/federated

in order to provide as many hardware thread contexts as possible. In such a case, Federa-

tion’s multi-threaded in-order baseline cores will provide much higher aggregate through-

put than Core Fusion’s 2-way OOO baseline cores because of their significantly higher

area efficiency. Carmean [25] estimates that a multi-threaded in-order core takes up only

Chapter 2. Related Work 23

one-fifth the area of a traditional core while providing morethan 20 times the throughput

per unit area. Thus, Core Fusion will provide superior performance when the thread count

is extremely low. For medium to high thread counts, however,the higher throughput of the

underlying cores in Federation will provide significantly higher performance.

2.3 SIMD Hardware

The use of SIMD instruction sets and hardware was first proposed for early supercomputers

aimed at scientific applications, examples of which includethe Illiac IV [15], Cray-1 [90]

and Connection Machine [119]. SIMD instructions were used to replace a large number of

loop iterations with a small number of SIMD instructions working on a large sets of data.

Modern microprocessors adopted a very limited form of the SIMD model by adding

short vector extensions to existing ISAs [64,82,85,116]. These extensions were primarily

aimed at audio, video and graphics processing and are limited to vector length of four

32-bit elements.

GPUs have traditionally used SIMD execution, since their execution model was to

execute the same small program (called a shader) on a very large number of inputs [68,74].

2.4 Diverge on Miss

Early academic work [11, 83] on manycore processors explored the benefit of chips built

out of many simple cores for both commercial and scientific workloads. They showed

that for workloads with enough parallelism many simple cores could outperform large,

few high-performance cores. Recent commercial, general-purpose products that target

throughput-oriented workloads exemplify some of these lessons. For example, the Niagara

Chapter 2. Related Work 24

processor [3] from Sun implements 8 simple SPARC cores, eachof which has 4 execution

contexts.

GPU manufacturers have evolved their designs from being pure ASICs to manycore

processors, with each core having a number of logical warp width between 32 and 64 and

a large number of warps per core [68,7].

While all of this hardware was traditionally hidden behind complex graphics APIs,

recently both AMD and NVIDIA have made available APIs [43,19,6] which are meant for

general purpose computation and can take advantage of GPU hardware.

The recently announced Intel Larrabee architecture [97] has the capabilities of both

GPUs and multicore processors, supporting both the x86 ISA,cache coherency and mem-

ory ordering, as well as wide SIMD execution and multiple hardware execution contexts

per core. Both Niagara and Larrabee (will) support conventional cache architectures, where

caches are coherent, are addressed through a unified addressspace, obey a well-defined

memory ordering model and are large enough to hold the working set of many programs.

GPUs on the other hand, because they have been designed primarily to support graphics

APIs such as OpenGL and Direct3D [13], have very different cache architectures. One

primary difference is simply in the size of caches relative to number of ALUs. Another

difference is that caches are divided among different address spaces (so called texture and

constant caches) and optimized for specific access patternswhich go along with these

address spaces in graphics applications. Although a variety of CUDA applications have

taken advantage of these properties, Cheet al. [28] and Boyeret al. [16] in particular

discuss the importance of using these memory paths.

In general it can be said that GPUs have designed their cache architectures to help max-

imize aggregate throughput, but not necessarily to minimize the latency of any individual

thread. Slipping warps enable the combination of very wide SIMD execution of GPUs

with regular cache hierarchies and help greatly reduce single-thread latency and increase

Chapter 2. Related Work 25

throughput for workloads with irregular access patterns.

Warp divergence in SIMD processors as a result of control-flow divergence was ex-

plored by Funget al. [39], who proposed Dynamic Warp Formation as a way to lessen

the performance loss due to this particular problem. While the technique of dynamic warp

formation can also be applied to memory divergence, the hardware overhead of our tech-

nique is much smaller, requiring only small additions to existing structures. For example,

Dynamic Warp Formation requires that the register file have as many independent banks

as there are threads in a warp, substantially increasing thearea overhead due to addresses

having to be routed to each bank, each bank needing its own address decoders and also

having much shorter word lines. Our technique requires onlyone bank for the width of the

warp.

2.4.1 Comparison to Architectures with Scratchpad Memories

The software controlled approach to diverge on miss outlined in Section 5.3.2 can be com-

pared to the streaming approach of the Merrimac architecture [31] and the Cell chip’s

Synergistic Processing Units [38]. These architectures have explicit memory hierarchies

and independent DMA engines, which can fetch lists of memoryreferences into a large

software controlled on-chip buffer asynchronously, without having to block execution.

In contrast to these architectures, a software implementation of diverge on miss does

not force the programmer to explicitly organize data in a fixed size buffer, nor does it fix

the size of this buffer. Any program written for a von Neumannarchitecture will work

on such a processor. The extra instructions to snoop the memory hierarchy only provide

potentially higher performance.

Chapter 2. Related Work 26

2.4.2 Comparison to Warp Subdivision

In our prior work by Menget al. [72], on which I was a co-author, he proposed a hardware

technique called dynamic warp subdivision to deal with the problem of warps stalling due

to divergent memory accesses in a SIMD core. He proposed to move threads which have hit

the cache on a given access to a new warp (a so called warp split), which can be scheduled

and executed independently from the parent warp, while leaving the register contents of

the affected threads in place.

The main limitation of warp subdivision is that it allows only a very limited number

warp splits (due to the extra scheduler entry needed for every warp split) per warp, usually

1. The problem with this approach is that threads can miss andhit in the cache repeatedly

in an unpredictable pattern, and that a split warp will stillhave to stall just like a normal

warp would if any of its threads misses the cache.

The key insight behind diverge on miss is that slipping warpscan continue to execute

even if threads repeatedly miss the cache and is not affectedby the pattern of cache misses

between threads in the warp. On the hardware side, the drawback of warp subdivision is

that the warp scheduler needs to be doubled in size compared to the baseline architecture.

This can affect the critical path of the core, either decreasing frequency or making back-

to-back execution of the same warp impossible, decreasing single-warp performance.

2.5 Sharing Tracker

As an alternative to hardware cache coherence, which poses anumber of design challenges,

software-controlled coherence has been proposed as a more scalable and lower-cost solu-

tion for cc-NUMA and virtual distributed shared memory (VDSM) multicomputer organi-

zations. A simple version of software coherence is for the programmer to manually flush

Chapter 2. Related Work 27

caches when switching between reading and writing, or to double buffer, with separate

(cached) input and (uncached) output data structures. Thisdoes not present a great burden

when the sharing is infrequent and occurs in well-defined patterns. In order to support

finer-grained sharing, considerable work was done in the 80sand 90s to enable the com-

piler to automatically manage coherence in hardware shared-memory systems [29, 108]

and to reduce the cost of network transactions for VDSM. In the case of VDSM, the main

techniques were to reduce the frequency and size of updates (e.g. Munin [26]) and reduce

the latency of those updates (e.g. Shrimp [12]). These techniques generally required op-

erating system support (to manage shared pages) and potentially hardware support (new

network interfaces).

Chip multiprocessors have an advantage in this regard, because sharing can be managed

natively in hardware and all cores share a common pool of global memory. Other multi-

core organizations take advantage of this to eschew hardware coherence, e.g. RAW [120]

and Cell [58]. GPUs take advantage of shared global memory tooptimize the L1 caches

for data that is read-only or exhibits only coarse-grained sharing. Although details differ,

GPU architectures from NVIDIA [68] and AMD [74] both supportsimilar memory hier-

archies; for more details, see the next section. Briefly, fine-grained read-write sharing and

synchronization objects are expected to be localized into the PBSM (per-block scratchpad)

or accessed only through global memory. Deep multithreading allows other threads to hide

latency of threads stalled on global-memory access.

Bakhodaet al.[10] evaluate a multi-level, hardware-coherent cache hierarchy for GPUs

but results are inconclusive. Our work proposes an alternative that avoids the challenges of

hardware coherence.

A huge body of work has of course explored the more conventional alternative of sup-

porting hardware cache coherence in multicore organizations and various optimizations

that can be built on top of a coherent organization. We brieflymention work that we be-

Chapter 2. Related Work 28

lieve is most closely related to our line of investigation.

Changet al. [27] usecooperative cachingto share the resources of a number of private

caches on a single chip. They use acentral coherence enginewhich replicates the tags of

all private caches. Requests which miss in core’s private L2cache access the coherence

engine to check whether the requested cache line is in an L2 ofa different core. They also

add mechanisms for intelligently replicating cache lines and having evicted cache lines

spill to another on-chip cache. The drawback of their technique is that each request needs

to check a large number of tag arrays (as many as there are cores on the chip minus one),

which is a power-hungry process, and that a single cache linecan have copies in multiple

L2s, which wastes space in the coherence engine.

Herreroet al. [47] build on cooperative caching with their work ondistributed coop-

erative caching. They replace the replicated L2 tag arrays of the central coherence engine

with a distributed, address-indexed tag array, reducing the number of tag comparisons any

request has to make to determine whether a copy of its requested cache line exists some-

where on chip. Our work differs in that the sharing tracker isnot a full coherency directory,

substantially reducing the required hardware and eliminating the complexity of traditional

coherence hardware.

Destination Set Prediction [70] assumes a cache-coherent multi-processor where each

core has its own L2 cache, and each L2 has its own predictor, which predicts which other

core/L2 cache has current ownership of certain cache lines.Destination set prediction was

designed for workloads with low degrees of sharing between cores, such as commercial

workloads. Our sharing tracker differs from destination set prediction as it is useful for

workloads where there can be large degrees of sharing of cache lines with irregular patterns.

The sharing tracker tracks cache line information at the global level, while destination set

prediction keeps track of which other cores a given core previously has exchanged cache

lines with.

Chapter 2. Related Work 29

There has also been considerable work on caches with non-uniform access laten-

cies [62, 54] (so called NUCA caches). NUCA caches are built from a large number of

memory tiles, which are addressed by a smart controller, which can move around cache

lines based on recency of access or alter the degree to which amemory tile is shared be-

tween cores. NUCA caches take a fundamentally different approach from our own, since

they focus on intelligently mapping cache lines based on address or giving cores a fixed

and uniform amount of sharing with a given set of other cores.The sharing tracker is purely

demand driven only restricted by the capacity and associativity of the caches it covers and

does not restrict sharing between any core anywhere on the chip.

FormodelingGPUs, Bakhodaet al.[10]’s simulatorGPGPUSIMis an execution driven

simulator which can run kernels compiled to NVIDIA’s PTX assembly format and closely

models a current generation NVIDIA GPU. Our simulator takesa fundamentally different

approach, by instrumenting data-parallel applications and collecting only their data access

traces. Our simulation approach is discussed further in Section 6.4

Chapter 3

Lightweight Out-of-Order Execution

3.1 CMP Architecture Tradeoffs

CMP designers face the difficult task of what combination of single-thread performance

and overall chip throughput to target. Single-thread performance is improved by using

large, complex and power-hungry cores. Overall throughputis maximized by going with

a large number of simple cores, which are small and use littlepower. The current trend

is to choose design points which either have a small number oflarge cores [35, 59, 71, 91,

107, 109], or a large number of small cores [3, 56, 97]. Those designs that opted for small

cores have all forgone the use of out-of-order execution fortheir chosen cores, judging it

to not be area and power efficient enough compared to adding more thread contexts per

core. I think that out-of-order execution is judged as beingnot area- and power-efficient

primarily because it has been used in the past for cores whichhad performance as their

primary design goal, which meant that they were willing to use area less efficiently if it

meant higher performance.

I think that out-of-order execution can be a good design choice for designs which want

high throughput, but also want good single-thread performance. I achieve this by re-

engineering the major hardware structures required for out-of-order execution for much

30

Chapter 3. Lightweight Out-of-Order Execution 31

lower complexity and power by replacing content addressable memories (CAMs) and

broadcast networks with simple lookup tables. This makes itpossible for manycore pro-

cessors to offer competitive single-thread performance without incurring the major area

and power hit of a dedicated fast core.

3.2 Minimal Branch Prediction

Branch prediction is implemented using Next Line and Set prediction (NLS) [24, 61, 117]

instead of a branch target buffer. NLS maintains an untaggedtable indexed by the branch

address, with each entry pointing to a line in the instruction cache predicted as the next

cache line to be fetched. NLS predicts the location in the cache where the next line will be

fetched rather than the actual address to be fetched. This significantly reduces the overhead

of supporting NLS. For example, implementing a 512 entry NLSrequires only about 0.75

KB of extra state. A small return address stack (RAS) is also added, which requires only

256 bits of state. I have omitted the top 32 bits of the return addresses and assume they

do not change. No negative performance impact on our workload is noticeable from this

simplification.

An overhead of speculative OOO execution that is often overlooked is the fact that the

rename table of an OOO core has to have some way to recover frombranch mispredic-

tions [104]. The usual way is for the rename table to be checkpointed at each branch, and

the checkpoint of a branch restored when it is detected that that branch was mispredicted.

For the lightweight core branches are resolved at commit time, obviating the need to

maintain multiple snapshots of the speculative rename table or the need to walk the active

list (AL) in the case of a branch misprediction. The core simply needs to maintain two

copies of the rename table, a speculative version, updated in the rename stage, and a non-

speculative version updated in the commit stage. If a branchmisprediction is detected, the

Chapter 3. Lightweight Out-of-Order Execution 32

core waits for the branch to reach the commit stage and be the oldest instruction in the

active list. The non-speculative rename table is then simply swapped with the speculative

version and execution can continue. Note that swapping the contents can be accomplished

by keeping the speculative and non-speculative version in the same physical SRAM or

latch array structure, with one version occupying the upperhalf of the structure and the

other the lower half. A simple bitvector (one bit per architected register) can then indicate

whether the version to read out is in the upper or lower half. The bitvector is reset when

a mispredicted branch reaches the commit stage, and each bitis set when an instruction

flowing through the rename stage writes to the correspondingarchitected bit.

I have also explored the performance impact of limiting the number of branch check-

points. However, since my focus is on simplicity, my base case for the lightweight core

still uses commit time branch recovery, which reduces performance by approximately 5%.

Adding just two snapshots of the rename table would almost completely eliminate this

overhead, but I show results for the simplest case.

3.3 Consumer-Based Issue Queue

The area and power constraints of our design prevent the implementation of a traditional

CAM-based Issue Queue (IQ). To avoid tag broadcast or tag match logic, I use a simple

table in which consumers “subscribe” to their producers by writing their IQ position into

one of the producer’s IQ entry’s consumer fields, similar to aideas by Huanget al. [53]

, Brekelbaumet al. [17] and Sato [95]. Huanget al. add a subscription mechanism to a

traditional broadcast-based IQ, and limit the number of subscribers to one. Brekelbaum

et al. use a consumer-based IQ as a large L2 IQ, where producer selection and consumer

wakeup are decoupled, unlike my design, which uses no broadcast hardware and directly

wakes up consumers. Sassoneet al. [94] showed that, for a processor with a 96-entry

Chapter 3. Lightweight Out-of-Order Execution 33

instruction window, over 90% of all dynamic instructions have no more than one dependent

instruction in the instruction window when they execute. Thus, each IQ entry in our design

only has a small number of consumer fields. The exact number ofconsumer fields per entry

is a design choice; we found that limiting the number of fieldsper entry to two reduced

performance by only a fraction of percent compared to a traditional IQ. This performance

impact is evaluated in greater detail in Section 4.4.

Each entry in the IQ holds the usual opcode, register ids and immediates, but also

has several consumer id fields and two ready bits, which are set when the left and right

operands become available, respectively. On issue, each instruction checks its consumer

fields and sets the appropriate ready bits in the consumer’s entry. If both input operands

are ready, the ready signal for that entry is sent to the scheduler.1 Each entry in the issue

queue also requires two fields for the active list IDs of the producers of its input operands,

a field to store its opcode, and a field to store its immediate/displacement value. These

extra fields are not required for the critical wakeup and select loop and can thus be stored

in a table physically separate from the ready bits and the consumer IDs.

Since the number of consumer fields is small, an instruction can stall if its producer

is oversubscribed. This necessitates the addition of an extra bit to each producer entry in

the IQ which is set if the producer is oversubscribed. If thisbit is set when the instruction

executes, a signal is sent to the rename stage to unstall the dependent instruction(s).

The normal scheduling logic for an out-of-order processor tries to issue older instruc-

tions first. It is usually complex and power hungry. I insteadimplement a simpler pseudo-

random scheduler [94] which uses a static priority encoder and does not take into account

the age of different instructions. For a small out-of-orderwindow, this simplified scheduler

reduces performance by around 1%.

1Note that all loads can issue speculatively, without waiting on unresolved stores; see Section 3.4 for an
explanation.

Chapter 3. Lightweight Out-of-Order Execution 34

3.4 Replacing the Load/Store Queue with the Memory

Alias Table

Traditional Load-Store Queues (LSQs) are used for enforcing correct ordering between

loads and stores which can potentially execute out of program order, and to forward values

between aliasing loads and stores. They have large CAMs for address matching, circuitry

for age prioritization in case of multiple matches, and a forwarding network. All these

structures would add considerable power and complexity to our baseline processor. In-

stead, I propose the Memory Alias Table (MAT), which builds on ideas from the Store

Vulnerability Window (SVW) [89] and work by Garget al.[42]. Contrary to this previous

work, the MAT only detects memory order violations and does not provide a mechanism

for forwarding store results to younger loads, eliminatingthe need for a forwarding net-

work which can deal with multiple (partial) matches. Since previous work has shown that

store-to-load forwarding is rare even in large OOO cores [89,42], omitting the forwarding

network provides considerable area savings with minimal performance loss.

Memory order violations must be treated as branch mispredictions and re-executed.

Unlike in [101], I do not implement a load-store alias predictor, but statically predict

all loads and stores to not alias. A dynamic predictor is necessary for a large, high-

performance design, where accurate store-to-load forwarding is needed to exploit the avail-

able machine resources, but can be omitted from our small design.

3.4.1 Concept of the Memory Alias Table

Before explaining the operation of the MAT, I should clarifyour usage of certain terms.

When discussing program order, I refer to instructions as earlier or later; when discussing

actual execution order, I refer to instructions as younger or older.

Chapter 3. Lightweight Out-of-Order Execution 35

Conceptually, the MAT operates as follows: each load placesa token in an address-

indexed hash table, which is removed (becomes invalid) whenthe load commits. Each

store checks the hash table at commit for a token from a younger load which is still in

the pipeline. Any store finding a valid token when it is committing knows that the token

is from a later load and signals a memory order violation. Thestore does not need to

cause an immediate pipeline flush but instead leaves an exception token in the table when

it commits. The offending load will discover this exceptiontoken during commit when it

invalidates its token in the hash table. The load can then either replay or cause a pipeline

flush.

The hash table proposed by Garget al.[42] utilizes the same basic concept as the MAT,

while the SVW inverts the relationship between loads and stores, with stores leaving tokens

in a table and loads checking the table for valid aliasing entries. A critical distinction

between the MAT and these previous proposals is how instruction age is represented in

hardware. Previous proposals used a store sequence number (SSN) or a load sequence

number (LSN) to determine relative age. Since it is non-trivial to determine when the last

load vulnerable to a store committed, a counter representing dynamic instruction age was

used. This required relatively large entries and the comparison of 16-bit or larger values to

determine the relative ages of a load and a store. Other proposals [98] used simple counting

bloom filters, but could not determine the relative age of a load or store.

The MAT uses a simpler approach: each load increments a simple counter when it

executes and decrements the same counter when it commits. Stores check the MAT only

when they commit. Since any earlier load will have removed any sign of its presence from

the MAT before a store reaches commit, the store knows that ifits counter in the MAT

is non-zero, there must be at least one later load in the pipeline with which it potentially

aliases. (Previous proposals had the store check their equivalent of the MAT as soon as

the address generation for the store was complete. They thushad no way of telling if an

Chapter 3. Lightweight Out-of-Order Execution 36

aliasing load was later than the store or not; they could onlydetermine that it was older.)

Since our proposal relies on the precision of the counters inthe MAT for correctness,

the number of bits in each counter must equal the logarithm ofthe size of the AL. Note that

because our design does not have a separate LSQ structure, the whole AL can be filled with

loads and/or stores. Even for much larger instruction windows than I discuss here, the size

of the counters is still much smaller than the 16 bits required to store the SSN2 in [101].

Moreover, multiple counters can share a single set of higher-order bits (with only the LSB

private to each counter), further reducing the amount of storage required per entry. The

sharing of the upper bits can be considered the inverse of sharing the LSB in certain branch

predictor tables [99]. I show in Section 4.4 that sharing allbut the LSB between multiple

counters is a feasible approach, as it introduces very few extra false positive memory order

violations.

3.4.2 Dealing with Coherence and Consistency

To enforce a memory consistency model in the presence of cache coherence, the MAT must

ensure that no load gets the wrong value, even if it initiallyexecuted out of program order.

Two loads from the same location can be out of order with respect to each other as long as

no change to that location occurs between the two accesses. To ensure this property, any

cache coherence transaction indexes into the MAT and sets the exception bit for its entry

or entries. Any load to this location which is in the window when this occurs will force a

flush of the pipeline.

Any load committing in the same cycle as the cache coherency event can ignore it,

since it is assured to have received its value before the event. Any committing load which

decrements the counter to zero can reset the exception bit, since no loads which have

2The SSN can be smaller than 16 bits, but since overflowing the SSN requires a pipeline flush and a reset
of the hash table, a smaller SSN leads to lower performance.

Chapter 3. Lightweight Out-of-Order Execution 37

already received their values and have this location as their target are in the window any

longer. To ensure forward progress, the first load to see the exception bit at commit can

still commit, since it cannot have received the wrong value in any combination of events.

This load can set a second bit (shared across the whole table), to indicate that later stores

are not the first to have seen the exception bit. This bit is reset at all pipeline flushes.

The performance of the MAT, the SVW, and a traditional LSQ is compared in Sec-

tion 4.4.

3.5 Simulation Setup

I evaluate our design using a simulator based on the SimpleScalar 3.0 framework [20]

with Wattch extensions [18]. For the OOO cores, our simulator models separate integer

and floating point issue queues, load-store queues and active lists. The pipeline has been

expanded from the 5-stage pipeline of the baseline simulator to faithfully model the power

and performance effects of the longer frontend pipelines. When simulating the MAT, our

simulator allows loads to issue in the presence of unresolved stores. In the case that a

memory order violation occurs, the pipeline is flushed when the offending load attempts to

commit.

Wattch has been modified to model the correct power of the separately sized issue

queues, load-store queues and active lists. Additionally,I accurately model the power of

misspeculation in the active lists. Static power has been adjusted to be 25% of max power,

which is closer to recently reported data [73].

I use the full SPEC2000 suite with reference inputs compiledfor the Alpha instruction

set. The Simpoint [102] toolkit was used to select representative 100 million instruction

traces from the overall execution of all SPEC2000 benchmarks. For each run the simula-

tor was warmed up for 10 million instruction before statistics were kept to avoid startup

Chapter 3. Lightweight Out-of-Order Execution 38

Parameter 2-way 4-way
Active List 32 128
Issue Queue 16 32

Load-Store Queue 16 64
Data Cache 16KB 32KB

Instruction Cache 32KB 32KB
Unified L2 Cache 256KB 2MB

Branch Target Buffer 512 4K
Direction Predictor 2K bimodal 16K tour.

Memory 100 Cycles, 64-Bit

Table 3.1: Simulator parameters for the different core types. The lightweight core has the
same sized resources as the dedicated 2-way core. Note that the lightweight core use an
MAT instead of an LSQ, and thus the number of loads and stores is limited by the size of
the Active List rather than the size of the LSQ.

effects. When presenting averages across the entire benchmark suite, I weigh all bench-

marks equally by first taking the average across the multiplereference inputs for those

benchmarks that have them.

The lightweight core is compared against three other cores:a baseline scalar, in-order

core; and traditional, dedicated 2-way and 4-way OOO cores.The simulation parameters

for the different cores are listed in Table 3.1. Note that thesmaller L2 for the small cores

represents a single tile of a much larger L2, to simulate the fact that these cores will not be

the only cores active on the chip and thus do not have exclusive use of the whole L2.3

3.5.1 Area Estimation Methodology

To show the area benefit of the lightweight core I need a way to calculate area numbers for

different core types. Estimating the sizes of the differentcore types and the area overhead

of the lightweight core is a difficult task, and I can only provide approximate answers with-

out actually implementing most of the features of the different cores in a specific design

3I also simulated all cores with a 32MB L2 cache and verified that while absolute performance improves
by about 20%, this occurs across the board, so that the relative performance between the lightweight and the
dedicated OOO cores changes by less than 0.9%

Chapter 3. Lightweight Out-of-Order Execution 39

Core Type Size inmm2

1-way in-order 1.739
Lightweight 2-way OOO 3.945

2-way OOO 5.067
4-way OOO 11.189

Table 3.2: Estimated sizes for core types in 45nm technology.

Subscriber Slots Change in IPC
1 -0.71%
2 -0.34%
4 -0.04%
8 0.00%

Table 3.3: Impact on arithmetic mean IPC of the number of subscriber slots in the
subscription-based IQ. The change in IPC is computed relative to a traditional IQ.

flow. To estimate realistic sizes for the different units of acore, I measured the sizes of

the different functional units of an AMD Opteron processor in 130nm technology from a

publicly available die photo. I could only account for about70% of the total area, the rest

being x86-specific, system level circuits, or unidentifiable. I scaled the functional unit ar-

eas to 45nm, assuming a 0.7 scaling factor per generation. The sizes of the different cores

were then calculated from the areas of their constituent units, scaled with capacity and port

numbers. These final area estimates are shown in Table 4.5.

3.6 Results

I first present results from sensitivity studies of the changes to the major structures intro-

duced earlier. To isolate the performance impact of each feature and to avoid artifacts due

to clustering, I evaluate each feature separately in the traditional, dedicated 2-way OOO

core.

Table 3.3 shows that restricting the number of subscriptionslots in each IQ entry has

very little impact on overall performance. I attribute thisto the fact that the majority of

Chapter 3. Lightweight Out-of-Order Execution 40

-5%

0%

5%

10%

15%

20%

25%

30%

35%

4/8 4/16 8/16 8/32 16/32 16/64 32/64 32/128 64/128 64/256

AL size / IQ size

IP
C

 Im
p

ro
ve

m
en

t

Traditional Pseudorandom Subscription Pseudorandom + Subscription

Figure 3.1: Increase in arithmetic mean IPC for different IQdesigns as the sizes of the IQ
and the AL are increased. By default, designs use oldest-first scheduling and a CAM-based
IQ. Designs labeled “Pseudorandom” instead use pseudo-random scheduling and designs
labeled “Subscription” instead use a subscription-based IQ. The percent improvement in
IPC is in comparison to the “Traditional” configuration witha 4-entry IQ and an 8-entry
AL.

dynamic instructions have only a single consumer [22], and that only a fraction of those

consumers are in the IQ at the same time as their producers. Based on these results, each

entry in the lightweight core has two subscription slots. Figure 3.1 shows the scaling behav-

ior of the subscription-based IQ compared to a traditional IQ, as well as the impact of using

pseudo-random scheduling instead of oldest-first scheduling. The impact of both changes

is very small for all configurations, which is in agreement with previous work [94]. The

largest combination of IQ and AL shows only a 1.1% differencein absolute performance

between the best and worst configurations.

The use of the MAT allows most loads to execute earlier than they would have with a

traditional LSQ, but at the cost of additional pipeline flushes due to both true memory order

violations and false positives from the limited size of the hash table. Figure 3.2 shows the

performance of the baseline core using either a MAT, SVW, or LSQ. As the sizes of of

the hash tables are increased, the false positives are reduced and essentially only the true

memory order violations remain. Note that since both the SVWand the MAT place no

Chapter 3. Lightweight Out-of-Order Execution 41

0.45

0.5

0.55

0.6

0.65

0.7

0.75

1 2 4 8 16 32 64 128

Number of Entries

A
ri

th
m

et
ic

 M
ea

n
 IP

C

LSQ
SVW
MAT

Figure 3.2: Scaling of arithmetic mean IPC for LSQ, SVW, and MAT as the number of
entries is increased. The lines for the SVW and MAT are almostindistinguishable.

restrictions on the number of loads and stores in the pipeline, even a 1-entry SVW or MAT

can have as many loads simultaneously in flight as there are ALentries. The MAT and

SVW have almost exactly the same performance and both use much less hardware than the

LSQ. As each entry of the SVW is 16 bits and each entry in the MATis only 6 bits, the

MAT provides the best performance for a given amount of hardware. Since I would need

an 8-entry LSQ to outperform even the smallest MAT, the tradeoff of hardware overhead

versus performance is a very favorable one.

As discussed in Section 3.4.1, the MAT can save even more hardware by sharing most

bits of each counter among neighboring entries in the hash table. Table 3.4 shows the im-

pact on performance as I increase the number of counters sharing one set of upper bits.

While the performance impact is minimal, the numbers are noisy, since intuitively more

sharing should produce more false positives in the hash table and therefore lower perfor-

mance. For the lightweight core, I share one set of upper bitsbetween eight entries, so each

entry only uses 1 +48 bits for the counter and an additional1
8 bit for the shared exception

bit.

The overall performance of the lightweight core compared toscalar, traditional 2-way

Chapter 3. Lightweight Out-of-Order Execution 42

Sharing Degree Change in IPC
2 -0.46%
4 +0.02%
8 -0.05%
16 -0.18%

Table 3.4: Impact on arithmetic mean IPC of sharing the higher order bits of each counter
in the MAT.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Scalar IO Lightweight OO 2-way OO 4-way OO

A
ve

ra
g

e
IP

C

spec specint specfp

Figure 3.3: Arithmetic mean IPC to the lightweight scalar in-order core, the 2-way OOO
core and traditional 2-way and 4-way OOO cores.

Chapter 3. Lightweight Out-of-Order Execution 43

0

0.5

1

1.5

2

2.5

3

3.5

4

scalar IO lightweight 2-way
OOO

2-way OOO 4-way OOO

N
o

rm
al

iz
ed

 P
o

w
er

spec
specint
specfp

Figure 3.4: Arithmetic mean power consumption normalized to the 2-way OOO core for
all four cores.

and 4-way OOO cores is shown in Figure 3.3. The lightweight core’s performance is about

6.5% lower than the traditional 2-way OOO core’s and 52% better than the scalar, in-order

core. The 4-way OOO core has the highest performance as expected, outperforming the

2-way OOO core by 66%. Performance of the lightweight core onspecint suffers relative

to the traditional core due to the limitations of its simple branch predictor and commit-

time branch recovery. On the other hand, its power usage of the lightweight core is 22.5%

lower than the traditional OOO core’s, as shown in Figure 3.4. This is primarily due to

the much lower of the MAT and consumer-based issue queue compared to the CAM-based

alternatives. The scalar cores has 24% lower power than the lightweight core, a much

smaller difference than the difference in performance. Thesmaller difference is primarily

due to leakage, which limits how much the lower activity factors of the scalar core can

lower its overall power. The 4-way OOO core on the other hand uses 230% more power

than the lightweight core thanks to the high power draw of itslarge structures.

Figure 3.5 shows the average energy efficiency of all cores inBIPS3

Watt . 4. The traditional

4 BIPS3

Watt is like ED2 in that both are voltage-independent metrics to capture theenergy cost required for a

Chapter 3. Lightweight Out-of-Order Execution 44

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Scalar IO Lightweight OO 2-way OO 4-way OO

N
o

rm
al

iz
ed

 E
n

er
g

y
E

ff
ic

ie
n

cy

spec specint specfp

Figure 3.5: Arithmetic meanBIPS3

Watt normalized to the lightweight 2-way OOO core.

2-way core still beats the lightweight core on specint, but the lightweight core has a 6.7%

energy-efficiency overall. The scalar core is very inefficient in this metric, dragged down

by the combination of long execution time and high power floordue to leakage.

Because future manycores are will be limited by both power and area, I have developed

a composite measure of power- and area-efficiency by dividing the power-efficiency num-

ber of each core (inBIPS3

Watt) by the area of the core. Figure 3.6 shows this overall metric.

The combination of smaller area, lower power and only modestly lower performance of

the lightweight core results in it having a 36% higher combined power-and area-efficiency.

Both the scalar core and the 4-way OOO core perform poorly in this metric, although for

opposite reasons. The scalar cores has very low energy-efficiency combined with low area.

The 4-way core has good energy-efficiency, but its area is almost 3 times as large as the

lightweight core.

particular performance level. I prefer the BIPS-based metric because (unlikeED2) larger values imply better
results.

Chapter 3. Lightweight Out-of-Order Execution 45

0

0.2

0.4

0.6

0.8

1

1.2

Scalar IO Lightweight OO 2-way OO 4-way OO

N
o

rm
al

iz
ed

 A
re

a-
E

n
er

g
y

E
ff

ic
ie

n
cy spec specint specfp

Figure 3.6: Arithmetic mean energy and area efficiency (BIPS3

Watt·mm2) normalized to the
lightweight 2-way OOO core.

3.7 Conclusion

Throughput-oriented cores in recent CMP designs have optedto forego out-of-order exe-

cution, judging it to not be power- and area-efficient. In this chapter I have shown that the

largest structures needed for out-of-order execution can be redesigned to be more efficient,

with only a 6.5% loss in overall performance. The lightweight core uses less overall power

and more energy-efficient than a traditional 2-way OOO core.The lightweight core is also

22% smaller than the traditional OOO 2-way core and has better combined power- and

area-efficiency than a scalar, in-order core, the traditional 2-way OOO core and a 4-way

OOO core.

Chapter 4

Federation

Increasing difficulties in improving frequency and instruction-level parallelism have led to

the advent of multicore processors. When designing such a processor, there is a funda-

mental tradeoff between the complexity or capability of each individual core and the total

number of cores that can fit within a given area. For applications with sufficient paral-

lelism, Daviset al. [32] and Carmean [25] show that maximum aggregate throughput is

achieved by using a large number of highly multi-threaded scalar cores. However, for ap-

plications with more limited parallelism, performance would be improved with a smaller

number of more complex cores.

How can these two approaches be reconciled? To improve the single-thread perfor-

mance of an existing throughput-oriented system, one approach would be to add a dedi-

cated out-of-order (OOO) core to the existing scalar cores.Unfortunately, this dedicated

core comes at the cost of multiple scalar cores, reducing theaggregate throughput of the

system. Using an even larger core with simultaneous multi-threading (SMT) would still

limit the throughput and/or increase overall power. Instead, I proposeFederation, a tech-

nique that allows us to retain a significant fraction of the performance benefit of the dedi-

cated core with a much smaller area overhead.

46

Chapter 4. Federation 47

4.0.1 Why Federation?

It may be objected that a better solution would be to have a small number of dedicated OOO

cores to handle limited thread count. However, this approach cannot solve the problem for

more than a few threads. This is because the area efficiency ofOOO cores, even with SMT,

is lower than that of multi-threaded in-order cores [32], which means that a CMP with a

large number of OOO cores would have substantially lower throughput than a CMP using

multi-threaded in-order cores. Certainly a dedicated OOO core will give great performance

on one thread, and provisioning a single OOO core is a sensible solution to deal with

the Amdahl’s Law problem posed by serial portions of a parallel program or a single,

interactive thread.1

I will show that Federation boosts performance with minimalarea overhead, preserving

the area efficiency advantage of multi-threaded in-order cores while offering performance

competitive with dedicated OOO cores and the best energy-efficiency per unit area of all

the options I studied.

Clearly, Federation can also be helpful for serial portionsof execution if the designer

chooses not to include a dedicated OOO core. This might occurif single-thread workloads

or serial phases are not considered sufficiently important,or if design time or intellectual

property issues preclude the use of a true OOO core.

4.0.2 Contributions

In this work, I first describe how to take two minimalist, scalar, in-order cores that have

no branch prediction hardware and combine them to achieve two-wide, OOO issue. I also

show how Federation, with some small adaptions, can be extended to dual-issue in-order

cores, enabling the construction of a 4-way federated OOO core.

1You see this approach embodied in the Sony Cell [51] and AMD Fusion [48]

Chapter 4. Federation 48

The main contributions of this chapter are:

• I show how to build a minimalist OOO processor from two in-order cores with less

than 2KB of new hardware state and only 3.7% area increase over a pair of scalar in-

order cores, using the lightweight structures introduced in Chapter 3. By comparison,

a traditional 2-way OOO core costs 2.65 scalar cores in die area!

• I show that despite its limitations, such an OOO processor offers enough perfor-

mance advantage over an in-order processor to make Federation a viable solution for

effectively supporting a wide variety of applications. In fact, the two-way federated

organization often approaches the performance of a traditional OOO organization of

the same width, is competitive in energy efficiency with a traditional OOO core of

the same width, and has better area- efficiency than all otheroptions I studied.

• I show that it is possible to extend Federation to 2-way in-order cores and achieve

performance close to a dedicated 4-way OOO core.

Federated cores are best suited for workloads which usuallyneed high throughput but

sometimes exhibit limited parallelism. Federation provides faster, more energy-efficient

cores for the latter case without sacrificing area that wouldreduce thread capacity for the

former case.

4.1 Background

Future microprocessor designs will likely incorporate many simple in-order cores rather

than a small number of complex OOO cores [9]. Current examples of this trend include

the Sun Niagara I and II [3, 56], each of which contain up to eight cores per processor. At

the same time, graphics processors (GPUs), which traditionally consist of a large number

Chapter 4. Federation 49

of simple processing elements, have become increasingly programmable and general pur-

pose [84]. The most recent GPU designs from NVIDIA [81] and AMD [7] incorporate

128 and 320 processing elements, respectively. This so-called manycoretrend will pro-

vide substantial increases in throughput but may have a detrimental effect on single-thread

latency. Federation is proposed to overcome this limitation.

When designing a federated processor, there are two possible approaches: design a

new processor from the ground-up to support Federation or add Federation capability to

an existing design. For the purposes of this chapter, I will take the latter approach and add

Federation support to an existing multicore, in-order architecture. Based on the current

trends cited above, the baseline in-order microarchitecture which I will focus on is similar

to Niagara. It is composed of multiple simple scalar in-order cores implementing the Alpha

ISA which are highly multi-threaded to achieve high throughput by exploiting thread-level

parallelism (TLP) and memory-level parallelism (MLP) [44]. Specifically, each in-order

core has four thread contexts2, with hardware state for 32 64-bit integer registers and 32 64-

bit floating point registers per thread context. Additionally, the integer and floating point

register files are banked, with one bank per context and two read ports and one write port

per bank. Unlike Niagara I (but like Niagara II), each core inour baseline architecture has

dedicated floating point resources. To deal with multi-cycle instructions such as floating

point instructions and loads, the in-order core has a small (four-entry) completion buffer.

This buffer is used both to maintain precise exceptions and to prevent stalling when a

multi-cycle instruction issues. The in-order cores implement only static not taken branch

prediction and use a branch address calculator (BAC) in the decode stage to minimize fetch

bubbles and to conserve ALU bandwidth.

To simplify the discussion, in this chapter I focus on a single pair of in-order cores

2But as Table 4.5 shows, the area overhead of multi-threadingis not very large and Federation is thus an
attractive option even for single-threaded cores.

Chapter 4. Federation 50

B
p
re
d

F
e
tc
h

Is
s
u
e

A
llo
c
a
te

D
e
c
o
d
e

E
x
e
c
u
te

M
e
m

W
ri
te
b
a
c
k

C
o
m
m
it

R
e
n
a
m
e

D
e
c
o
d
e

A
llo
c
a
te

Figure 4.1: The pipeline of a federated core, with the new pipeline stages in shaded boxes.

��������� 	������	��
�������������������������� ���
������� 	������	��
�������������������������� ���
������� �� ������� !

��� "

Figure 4.2: A simplified floorplan showing the arrangement oftwo in-order cores with the
new structures necessary for Federation in the area betweenthe cores.

which can federate to form a single OOO core. In practice, thetechniques I describe are

intended to be applied to a multicore processor with a significantly larger number of cores,

with each adjacent pair of cores able to federate into a single OOO core.

4.2 Out-of-Order Pipeline

The primary goal of Federation is to add OOO execution capability to the existing in-order

cores with as little area overhead as possible. Thus, each federated OOO core is relatively

simple compared to current dedicated OOO implementations.Specifically, each federated

core is single-threaded3 and two-way issue with a 32-entry instruction window. The feder-

3Thus when the two in-order cores federate, the number of thread contexts provided by the pair of cores
is reduced from eight to one. This clearly has implications for thread scheduling, which will be explored in

Chapter 4. Federation 51

ated core implements the pipeline shown in Figure 4.1, with the additional pipeline stages

not present in the baseline in-order cores shown in shaded boxes. A possible floorplan for

the federated core is shown in Figure 4.2.

In order to limit the area overhead of Federation, I strive toavoid adding any significant

CAMs or structures with a large number of read and write ports. Table 4.1 lists the sizes

of the new structures required to support OOO execution, as well as whether or not each

structure is implemented by re-using the existing hardwarefrom the large, banked register

file of the underlying multi- threaded core. While an extremely area-conscious approach

could use the register file to implement all of the new structures, this would excessively

increase the complexity and wiring overhead of the design. The structures which reuse the

register file in our design are those which are close to the register read and writeback stages

in the pipeline, require few read and write ports, and are read and written to at sizes close

to those which the register file already supports.

The major new wiring required to support Federation is listed in Table 4.2. The fol-

lowing subsections provide a detailed explanation of the operation of each pipeline stage

in the federated core, along with justification for the design tradeoffs that were made.

4.2.1 Branch Prediction

Federation uses the same minimal branch prediction and recovery as is described in Sec-

tion 3.2. A new finite state machine (FSM) keeps track of whichrequest to send to the

instruction cache, deciding among misprediction recoveryrequests from the commit stage,

the return address stack, and the NLS.

future work.

Chapter 4. Federation 52

Structure
Size

Type
Reuses

(Bits) RF
Branch Predictor (NLS) 6,144 SRAM No

Branch Predictor (Bimodal) 4,096 SRAM No
Return Address Stack 256 SRAM No

Speculative Rename Table 640 Reg No
Retirement Rename Table 384 Reg No

Free Lists 384 Reg No
Issue Queue (Wakeup) 176 Reg No

Issue Queue (Data) 896 Reg Yes
Unified Register File 4,096 Reg Yes
Memory Alias Table <64 Reg No
Bpred Recovery State 256 Reg No

Worst Case Total (Bits) 10,496 SRAM/6,844 Register
Assumed Base Case Total (Bits)10,496 SRAM/1,852 Register

Table 4.1: Area estimates for the new structures added to thebaseline in-order processor.
Type differentiates between 6T SRAM cells as are used for caches and large tables and
registers used for building the smaller structures inside the pipeline, which have full swing
bitlines and are potentially multiported. The last column indicates whether I assume the
structure can be built using only reused register file entries if the baseline core is multi-
threaded. The worst case total is calculated under the assumption that none of the structure
can reuse the register file.

New Wiring Width
Cross Core Value Copying2 * (64 + 6) bits
Mem Unit to 2nd D-Cache 2 * 64 bits
Cross I-Cache to Decode 32 bits

Decode to Allocate approx. 64 bits

Table 4.2: The size of wires that must be added to the baselinecore in order to support
Federation.

Chapter 4. Federation 53

4.2.2 Fetch

The fetch stage starts by receiving a predicted cache line from NLS, a return address from

the RAS, or, in the case of a misprediction, a corrected PC from the branch unit in the

execute stage. It then initiates the fetch by forwarding this information to the instruction

cache (IC). The ICs of the two cores are combined into a cache with double the associativity

and random replacement.

Since each core can only decode a single instruction, the second instruction (if valid)

is sent to the second core for decoding. So that this extra wire does not influence cycle

time, I allocate an extra pipeline stage (labeled “Decode” in Figure 4.1) for copying the

instruction to the second core, buffering the first instruction in a pipeline register.

4.2.3 Decode

Once an instruction has been received from the fetch stage, the separate decode units in

the two cores can operate independently. The decoded instructions are then routed to the

allocate stage. If the first of the two instructions is a takenbranch, a signal is sent to

the allocate stage to ignore the second decoded instruction. Since the allocate unit is a

new structure located between the two cores, propagating the instructions to it in the same

pipeline stage as decode or allocate might influence overallcycle time. I instead allocate

an extra pipeline stage (labeled “Allocate” in Figure 4.1) to allow the signals from both

decode units to propagate to the allocate unit. The performance implications of this routing

overhead are discussed in Section 4.4. The BAC of one of the baseline cores is used to

calculate and verify the target of any taken branch.

Chapter 4. Federation 54

4.2.4 Allocate

During the allocate stage, each instruction checks for space in several structures required

for OOO execution. All instructions check for space in both the Issue Queue (IQ) and

the Active List (AL). In traditional OOO architectures, load and store instructions would

also need to check for a free Load-Store Queue (LSQ) entry, but our implementation uses

a Memory Alias Table, which is free from such constraints (see Section 3.4). If space is

not available in any of the required structures, the instruction (and subsequent instructions)

will stall until space becomes available.

The allocate stage maintains two free lists, one for the IQ and one for the unified register

file, with both lists implemented as new structures. I decided against using existing register

file entries to implement these free lists because of their early position in the pipeline, the

small size of each entry, and the complexity of deciding which entries to add to or remove

from the free list. This complexity means that only a fraction of a clock cycle is available

for the actual read/write operation. In addition to the freelists, the allocate stage also

maintains the current AL head and tail pointers so that it candetermine if there is space

available in the AL and then assign an AL entry to the current instruction(s).

4.2.5 Rename

The federated core uses a unified register file with speculative and retirement Register

Alias Tables (RAT). Since the design utilizes a subscription-based instruction queue (see

Section 3.3), it must keep track of the number of subscribersfor each instruction. For each

architected register, its status and the number of consumers currently in the IQ is stored in

a second table, which is accessed in parallel with the RAT.

Each rename table for a two-way OOO processor requires four read ports and two

write ports, while each existing register bank has only two read ports and one write port.

Chapter 4. Federation 55

Thus, implementing the rename tables using the existing register files would require the

exclusive use of two entire register banks. Given the relatively small size of the rename

table, it makes sense to implement it as a separate structure.

There are two separate OOO register files, one each for the integer and floating point

registers. Each register file consists of the 32 architectedregisters and a number of rename

registers, implemented using the register files of the underlying multi-threaded cores, with

each register stored in both cores simultaneously. As mentioned earlier, the existing register

files are heavily banked. The unified register files use part ofseveral of these banks in order

to support the required number of read and write ports. Even so, it is still possible for a

particular register access pattern to require more reads from or writes to a single bank

than that bank can support. Additional logic detects this case and causes one of the two

instructions to stall. The performance impact of bank contention is explored in Section 4.4.

Logic is needed to check for read after write (RAW) dependencies between two instruc-

tions being renamed in the same cycle. Additional logic is also necessary to check for race

conditions between an instruction being renamed and an instruction that generates one of

its input operands being issued in the same cycle. This logicchecks whether the status of

one of the input operands is changing in the same cycle as its status is being read from the

rename table. This classic two ships passing in the night problem is also present in many

in-order processors, where instructions which check the poison bits of their input operands

have to be made aware of any same-cycle changes to the status of those operands. Thus,

depending on the design of the baseline in-order core, it might be possible to reuse this

logic for the OOO processor. I assume that this capability isnot supported by our baseline

in-order core and that it must be introduced from scratch.

Because branches are only resolved at commit time, there is no need to checkpoint the

state of the RAT for every branch. If a branch misprediction or another kind of exception is

detected, the pipeline is flushed and a bit associated with each RAT entry is set to indicate

Chapter 4. Federation 56

that the most up to date version of the register is in the non-speculative RAT. As soon as

an instruction in the rename stage writes to a particular register, this bit is reset to indicate

that the speculative version is the most up-to-date.

4.2.6 Issue

Federation uses the consumer-based issue queue introducedin Chapter 3.

As mentioned in Section 3.3, the consumer-based issue queuedoes not issue older in-

struction first. In addition, schedulers for clustered architectures often attempt to schedule

consuming instructions on the same cluster as their producers in order to avoid the over-

head of copying the result between clusters. Given that our design maintains a copy of

each register value on both cores, the core on which a consuming instruction is scheduled

is only relevant in the case where it is ready to be issued as soon as its producer has issued.

I again choose the simplest design, scheduling all instructions on core zero when possible

and only assigning an instruction to core one when a previousinstruction has been assigned

to core zero that cycle. To avoid maintaining memory ordering across the two cores, loads

and stores are only assigned to core zero.

4.2.7 Execute

Each instruction executes normally on the ALU to which it wasassigned during the issue

stage. The only change to the bypass network on each core is the addition of circuitry

for copying the result to the register file of the other core. Since this is not a zero-cycle

operation, the new circuits can be added without affecting the critical path. Additionally, a

benefit of using the dependence-based IQ is that the core knows during execution whether

it is necessary to broadcast the result using the bypass network, based on whether or not

any consumers have subscribed to the instruction.

Chapter 4. Federation 57

4.2.8 Memory Access

The data caches are merged in the same way as the instruction caches, by having each cache

hold half the ways of a merged cache with twice the associativity. Instead of a traditional

load-store queue, our design uses a simpler structure called a Memory Alias Table (MAT).

I do not allow memory bypassing and flush the pipeline when a load and store are detected

accessing the same address out-of-order. A detailed explanation and evaluation of the MAT

is provided in Section 3.4. The only additional action required of load instructions in this

stage is to index into the MAT with their target address and increment a counter.

4.2.9 Write Back

Similar to the Alpha 21264 [61], all results are written to the register files on both cores, to

avoid the complication of having to generate explicit copy instructions for consumers on

the other core.

4.2.10 Commit

Federation uses the commit time branch recovery that is described in Section 3.2.

4.3 Simulation Setup

I use the same simulator and inputs as describe in Section 3.5for modeling the federated

core as well as the cores I use for comparison.

The federated core is compared against five other cores: the baseline scalar, in-order

core from which the federated core is built; a 2-way in-ordercore, designated federated

in-order, built from two scalar cores; the lightweight 2-way OOO core; and traditional,

dedicated 2-way and 4-way OOO cores. The simulation parameters for the different cores

Chapter 4. Federation 58

Parameter Scalar 2-way 4-way
Active List none 32 128
Issue Queue none 16 32

Load-Store Queue none 16 64
Data Cache 8KB 16KB 32KB

Instruction Cache 16KB 32KB 32KB
Unified L2 Cache 256KB 256KB 2MB

Branch Target Buffer none 512 4K
Direction Predictor not-taken 2K bimodal 16K tour.

Memory 100 Cycles, 64-Bit

Table 4.3: Simulator parameters for the different core types. The federated and lightweight
cores have the same sized resources as the dedicated 2-way core. Note that the federated
and lightweight cores use an MAT instead of an LSQ, and thus the number of loads and
stores is limited by the size of the Active List rather than the size of the LSQ.

are listed in Table 4.3. Although the in-order cores are highly multi-threaded, the simula-

tions run only a single thread, since this represents the best case for single-thread latency.

Note that the smaller L2 for the small cores represents a single tile of a much larger L2, to

simulate the fact that these cores will not be the only cores active on the chip and thus do

not have exclusive use of the whole L2.4

4.4 Results

Figure 4.3 shows the impact on performance of the individualdesign changes of the fed-

erated core. Each energy saving or lower complexity featureis turned OFF individually to

show its (negative) impact on overall performance; the IPC gain associated with each de-

sign choice thus represents the improvement in performanceI would expect if the federated

core instead used the associated more complex, traditionaldesign approach. For example,

the 1.74% improvement in IPC associated with the MAT indicates that I could improve the

4I also simulated all cores with a 32MB L2 cache and verified that while absolute performance improves
by about 20%, this occurs across the board, so that the relative performance between the federated and the
dedicated OOO cores changes by less than 0.9%

Chapter 4. Federation 59

0.85%

2.40%

0.00% 0.00%

1.38% 1.74%

5.78%

2.74%

0.03%
1.02%

11.17%

0%

2%

4%

6%

8%

10%

12%

increased
fetch latency

clustered
ALUs

random i-
cache

replacement

consumer-
based issue

queue

NLS MAT commit-time
branch

recovery

pseudo-
random

scheduling

unified IQ bank
contention

dedicated
OOO

A
ve

ra
g

e
IP

C
 G

ai
n

Figure 4.3: I show the performance impact of each individualfeature by turning them
OFF individually. The average IPC gain for a specific featurerepresents the performance
improvement I would expect if I replaced that feature with the equivalent traditional, more
complex design. The dedicated OOO data point shows the improvement in performance
achieved by the dedicated OOO over the federated OOO core.

performance of the federated core by 1.74% by implementing an LSQ instead of a MAT.

While most of the individual limitations have only a very small effect on performance,

commit time branch recovery decreases average IPC by over 5%.

To separate out the impact of those features which I might apply to a traditional OOO

core from the extra constraints imposed by federating two scalar cores, the two constraints

which are a direct consequence of combining two distinct, baseline cores are shown on the

left of the figure. These two constraints are the only constraints which do not apply to the

lighweight core, which, as described in Chapter 3, is a dedicated 2-way OOO core with all

of the low overhead structures of the federated core.

4.4.1 Other Points in the Design Space

The design chosen for the federated core represents only onepoint in a whole spectrum

of possible designs. I have aimed for a balance between extraarea and performance, but

would also like to discuss some alternative design choices using the techniques I have pre-

sented which either provide greater area savings or increased performance. Commit time

branch prediction recovery has a large negative performance impact on our design. The

Chapter 4. Federation 60

design tradeoff here would be to limit the number of unresolved branches in the AL at

any given time and add a small number of shadow rename maps, which are saved on each

branch and restored on a branch misprediction, to allow OOO branch recovery at write-

back. Our experiments (not shown) reveal that adding only two shadow rename maps (768

register bits overhead) provides most of the benefit of OOO branch recovery and results in

5.1% better performance than the normal federated core. I did not use this configuration

in the final analysis because I wanted to err on the side of the simplest design. Clearly this

would slightly improve Federation’s performance and energy efficiency.

The biggest additional structure of the federated core is the NLS branch predictor. To

save even more space, I considered moving branch predictionfrom the fetch stage to the

decode stage and only using a way predictor, reducing the number of bits in each NLS

entry to the logarithm of the number of ways in the instruction cache. The target of direct

branches would be calculated using the BAC, which is used to verify branch targets in

all designs, and the NLS predictor would only predict which way of the set to read from

the instruction cache. The most common indirect branches (returns) would be predicted

by the RAS; however, the core would have to stall on other indirect branches. Using the

way predictor would preserve the power savings associated with reading out only one way

during most cycles, but reduce the size of the NLS from 6,144 bits to 1,536 bits. While the

performance impact of moving branch prediction to the decode stage is only 0.5%, stalling

on non-return indirect branches affects some programs significantly.

4.4.2 Area Impact of Federation

I used the same methodology as described in Section 3.5.1 to estimate the size of the

federated core. The sizes of all cores used are shown in Table4.5.

It is interesting to note that the ratio of the area of the 4-way OOO core to the area

Chapter 4. Federation 61

Unit Name State in Bits Size inmm2

Bpred Dir Table 2 · 2048 0.0167
Bpred Target Table 15 · 512 0.0313

Rename Tables 4 · 32 · (5 + 4) 0.0194
Consumer Inst Queue 00 0.0231

Inter Core Wires NA 0.0515
Total NA 0.1422

Table 4.4: Estimated sizes of extra structures for Federation in 45nm technology.

Core Type Size inmm2

1-way in-order 1.739
1-way in-order MT 1.914

Federated OOO 3.970
Lightweight 2-way OOO 3.945

2-way OOO 5.067
4-way OOO 11.189

Table 4.5: Estimated sizes for core types in 45nm technology.

of the in-order core is close to the 5-to-1 ratio in [25], eventhough our assumptions and

baseline designs are somewhat different.

The area of the federated core was calculated by adding the areas of all the major new

functional units to the area of two scalar in-order cores. I estimated the area needed by

the major inter-core wiring listed in Table 4.2 by calculating the width of the widest new

unit (the integer and floating point rename tables laid out side-by-side) and using the same

280nm wire pitch as used in [55]. In contrast to that work, which has a significant amount

of extra area devoted to new inter-core wires, the area used by the wires for federating two

cores is less than 0.05mm2, since the wires do not have to cross over multiple large cores,

but only connect two immediately adjacent small cores.

Chapter 4. Federation 62

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Scalar IO Federated IO Federated OO Lightweight
OO

2-way OO 4-way OO

A
ve

ra
g

e
IP

C

spec specint specfp

Figure 4.4: Arithmetic mean IPC.

0

0.5

1

1.5

2

2.5

3

3.5

Scalar IO Federated IO Federated OO Lightweight
OO

2-way OO 4-way OO

N
o

rm
al

iz
ed

 A
ve

ra
g

e
P

o
w

er

spec specint specfp

Figure 4.5: Arithmetic mean power dissipation, normalizedto Federated OOO.

4.4.3 Overall Performance and Energy Efficiency Impact of Federa-

tion

The overall performance of the six different core types is shown in Figure 4.4, with their

average power consumption shown in Figure 4.5. The 4-way OOOcore achieves about

twice the IPC of the federated OOO core but uses about three times the power, while

the dedicated 2-way OOO core achieves 12.9% higher performance than the federated

OOO core while dissipating 30.1% more power. The lightweight OOO core achieves 5.9%

better performance than the federated OOO core with only a fraction of a percent higher

power consumption. The dedicated in-order core and the federated in-order core have

Chapter 4. Federation 63

0

0.5

1

1.5

2

2.5

Scalar IO Federated IO Federated OO Lightweight
OO

2-way OO 4-way OO

N
o

rm
al

iz
ed

 E
n

er
g

y
E

ff
ic

ie
n

cy

spec specint specfp

Figure 4.6: Arithmetic meanBIPS3

Watt , normalized to Federated OOO.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Scalar IO Federated IO Federated OO Lightweight
OO

2-way OO 4-way OO

N
o

rm
al

iz
ed

 A
re

a-
E

n
er

g
y

E
ff

ic
ie

n
cy spec specint specfp

Figure 4.7: Arithmetic mean BIPS3

Watt·mm2 , normalized to Federated OOO.

substantially lower performance than the federated OOO core, which is not fully offset by

their lower power consumption. This can be partially attributed to the fact that all cores—

except for the 4-way OOO core, which has larger caches—have similar amounts of leakage

in their caches and thus the savings in active power are offset to some degree by the static

leakage power.

Figure 4.6 shows the average energy efficiency inBIPS3

Watt of the different cores.5 The

high-performance 4-way OOO core has a large advantage over the smaller cores in energy

5 BIPS3

Watt is like ED2 in that both are voltage-independent metrics to capture theenergy cost required for a
particular performance level. I prefer the BIPS-based metric because (unlikeED2) larger values imply better
results.

Chapter 4. Federation 64

efficiency, because it is able to use its higher power to achieve substantially better perfor-

mance. The dedicated 2-way OOO core has better efficiency than the federated OOO core

in SpecInt, but lower efficiency in SpecFP. The lightweight OOO core has higher energy

efficiency than the federated core thanks to its higher performance and essentially equiv-

alent power dissipation. The two in-order cores have the lowest energy efficiency, even

though they have the lowest absolute power consumption. Once again, this is mostly due

to leakage power, which penalizes cores with longer execution times.

To measure both the power- and area-efficiency of the different cores, Figure 4.7 shows

the BIPS3

Watt·mm2 of the different configurations. The purpose of this metric is to account for

the area cost of attaining a certainBIPS3

Watt value. In fact, this metric does not even show

Federation’s true benefits, since most of the area of the federated core is reused from the

underlying scalar cores, whereas the area of the dedicated cores must be cannabalized from

the existing cores. I am investigating a metric based onextraarea required by a particular

organization. Nevertheless, in terms ofBIPS3

Watt·mm2 , the lightweight OOO core outperforms

the federated OOO core by 18%, while the federated OOO core outperforms the dedicated,

traditional 2-way OOO core by 13.3% and the 4-way core by 30%.

4.5 Federating 2-way Cores

In the previous section I explored federating two multi-threaded scalar cores into an OOO

core, based on the assumption that scalar cores were the mostefficient use of area for

throughput. There have been several recent designs [56] which employ 2-way in-order

cores, even when the power budget is very limited. Reasons for choosing 2-way cores

instead of scalar cores might include an inability to include a single high-performance

core along with the multiple throughput cores. Such systemsneed the higher single-thread

performance a 2-way core can offer.

Chapter 4. Federation 65

For designs which use 2-way in-order cores as their baseline, I explored federating

two of these cores into a 4-way OOO core. While all the new structures I introduced

for Federation can be scaled to support a 4-way core, I add some improvements to most

structures to enable both higher performance and lower power when scaled.

4.5.1 Changes to Federation Structure

Many high performance OOO cores support predicting multiple branches per cycle. While

the NLS can implicitly jump over non-taken branches, I do notextend either the direction

predictor or the NLS predictor to produce multiple predictions per cycle.

Commit time branch recovery was already the biggest single performance cost in the

2-way federated core, and would have imposed a 15% performance penalty on the 4-way

federated core (data not shown). Changing the processor to allow OOO branch recovery

requires a small number of rename map checkpoints, as well aslogic in the rename stage

which steers updates of the rename map to the appropriate branch checkpoint. I found that

four branch checkpoints delivered performance almost equivalent to having no limit to the

number of branches in the ROB.

Simply scaling the dependence based issue queue to support 4-way issue would require

doubling both the number of read and write ports as well as extending the arbitration logic

to support issuing four instructions to the different ALUs.To reduce the number of ports

required as well as the complexity of the arbitration logic,I use ideas from [118] to partition

the issue queue among the issue ports in a fixed manner. For a federated core of 2-way

baseline cores, the instruction queue is partitioned into four equal partitions. Each partition

can only receive and issue a single instruction per cycle, but receives wakeup signals from

all partitions. Instructions are assigned to issue queue partitions at rename time primarily

based on which ALU type is assigned to which issue port, and secondarily on a load-

Chapter 4. Federation 66

balancing heuristic. As with load-balancing between coresand selecting among ready

instructions, I choose the simplest mechanism possible of distributing instructions round-

robin to partitions with empty slots.

Unlike issue queues in clustered architectures, which are distributed among the differ-

ent clusters, assigning an instruction to a particular partition of the instruction queue does

not mean a fixed assignment to a fixed ALU on a fixed core. For the case of a federated

4-way core, the partitioned instruction queue steers instructions to the two cores based on

how many instructions are being issued in any given cycle. This is accomplished by taking

the ready signals from the four partitions and feeding them into a four-entry priority en-

coder. The first two partitions with ready instructions get to execute their instructions on

core zero, while the next two partitions execute their instructions on core one. For most

benchmarks this steering policy means that the great majority of instructions are executed

on core zero and do not incur any extra latency when sending orreceiving values from the

load/store unit. Because the ready information for instructions in the issue queue has to be

available before select can occur, the inter-partition priority encoder can operate in parallel

to instruction select and not impact the critical path.

An issue which parallels the problems of the issue queue is the increasing number of

ports on the register file. While the number of read ports required by Federation is matched

by the underlying cores, the number of write ports is not. To avoid having to increase the

number of write ports, I use a technique similar to [65] of partitioning the unified register

file between the different functional units. Using the banked register file of the underlying

core, I assign one bank per issue port, reducing the number ofwrite ports required to just

one per bank.

In the initial implementation of the MAT, all loads and stores were treated as if they

moved 64 bit values, the largest operand size in the Alpha ISA. Treating all loads and

stores as uniform simplified the MAT implementation to only require a single counter

Chapter 4. Federation 67

Parameter 2-way IO 4-way OOO
Active List none 128

IQ none 32
LSQ none 64

Data Cache 32KB 64KB
Instr. Cache 32KB 64KB
Unified L2 2MB 2MB

BTB 512 4K
Dir Pred 2K bimodal 16K tour.
Memory 100 Cycles, 64-Bit

Branch Misprediction Penalty 16 Cycles minimum

Table 4.6: Simulator parameters for the 2-way in-order and 4-way out-of-order cores.

increment/decrement or check per operation, no matter whatthe actual operand size of the

load or store was. The downside of dealing with all loads and stores in this manner is that

extra aliasing will occur if adjoining 32 bit values are written to and read from in close

proximity.

To eliminate this false aliasing problem, I changed the MAT implementation to sup-

port 32 bit loads and stores as default. Operations which move 64 bits must incre-

ment/decrement or check two adjoining counters in the MAT. This increases the com-

plexity of the MAT’s logic and makes the MAT appear half its size for 64 bit operations,

but eliminates the problem of false aliasing between neighboring 32 bit values.

Because the 4-way core can still only issue one load and one store per cycle, the MAT

retains the same number of ports as the base federated core. To support a larger number

of memory instructions in flight without too many false positive memory aliasing events, I

increase the number of entries in the MAT.

4.5.2 Simulation Setup

The simulation infrastructure described in Section 4.3 wasalso used for this set of experi-

ments. The resources of the dedicated 2-way in-order and 4-way OOO cores are shown in

Chapter 4. Federation 68

0

0.2

0.4

0.6

0.8

1

1.2

1-way IO 2-way IO Federated
2-way OO

Lightweight
2-way OO

Federated
4-way OO

4-way OON
o

rm
al

iz
ed

 IP
C

 a
n

d
 E

n
er

g
y-

E
ff

ic
ie

n
cy

Normalized IPC Normalized Energy-Efficiency

Figure 4.8: Arithmetic mean IPC andBIPS3

Watt , normalized to Federated 4-way OOO.

Table 4.6. To reflect the greater emphasis on single-thread performance that a design using

2-way in-order cores might have, I substantially increasedthe pipeline depth of all of the

core types to more accurately represent designs which aim atachieving higher frequencies.

I compare the 4-way federated core against five other cores: the scalar core used as the

baseline for the 2-way federated core; the 2-way in-order core used as the baseline for the

4-way federated core; the 2-way federated OOO core; the lightweight 2-way OOO core;

and the dedicated 4-way OOO core. Here, the resources of the lightweight core have been

scaled to match those of the the dedicated 4-way OOO core.

4.5.3 Results

Figure 4.8 shows the relative performance and energy efficiency of the six core types.

The 4-way federated core achieves performance only 10% worse than the dedicated 4-way

OOO core. Comparing theBIPS3

Watt of the different cores shows that the 4-way federated core

provides 15% better energy efficiency than the dedicated 4-way core. This result shows

that even large OOO cores can benefit heavily from more power efficient structures, as

long as they do not impact performance too significantly.

The changes to the Federation structures outlined in Section 4.5.1 impact performance

Chapter 4. Federation 69

as follows: the improved and enlarged MAT boosts performance by 3% due to fewer false

positive memory aliasing events; the partitioned instruction queue surprisingly does not

hurt performance on average; and, as previously mentioned,the introduction of branch

checkpoints improves performance by 15% and is the single largest contributor to the im-

proved performance of the 4-way federated core.

4.6 Conclusions and Future Work

Manycore chips of dozens or more simple but multi-threaded cores will need the ability to

cope with limited thread count by boosting the per-thread performance. This chapter shows

how 2-way OOO capability can be built from very simple, in-order cores, with performance

92.4% better than the in-order core, 30% lower average powerthan a dedicated 2-way

OOO core, and competitive energy efficiency compared to a 2-way OOO core. Using a

consumer-subscription based issue queue and eliminating the Load-Store Queue in favor

of the Memory Alias Table, I have shown that no major CAM-based structures are needed

to make an OOO pipeline work. In fact, these same insights canbe used to design a

new, more efficient, OOO core, as the lightweight OOO resultsshow. However, even a

lightweight dedicated OOO core would still come at a high cost in area. I have also shown

that the techniques of Federation can be applied to higher performance 2-way in-order

cores to achieve performance close to that of a dedicated high-performance 4-way OOO

core.

The most important advantage of Federation is that it can be added to a manycore

architecture without sacrificing the ability to use the constituent in-order cores as multi-

threaded, throughput-oriented cores. Federation requires several new structures, but with

very low area overhead—less than 2KB of new SRAM tables and less than 0.25KB of new

register-type structures in the pipeline perpair of cores—only 3.7% area overhead per pair.

Chapter 4. Federation 70

Put another way, this means that for a set of 32 scalar cores, the area of Federation for each

pair only adds an aggregate area equivalent to 0.59 cores or 0.373 MB of L2 cache. For

2-way in-order cores with branch prediction the relative area overhead is even less. As a

result, Federation actually provides greater energy efficiency per unit area—specifically,

13.3% better BIPS3

Watt·mm2 than a dedicated 2-way OOO core, and 30% better than a 4-way

OOO core!

The option of adding Federation therefore removes the need to choose between high

throughput with many small cores or high single-thread performance with aggressive OOO

cores and the associated problems of selecting a fixed partitioning among some combina-

tion of these. This is particularly helpful in the presence of limited parallelism and it allows

a multicore chip to trade off throughput for latency on a veryfine-grained level at runtime.

Federation thus allows multicore chips to give higher performance across a wider spectrum

of workloads with different amounts of TLP and deal with workloads that have different

amounts of parallelism during different phases of execution.

As I have pointed out in Section 2.2.1, the structure of Federation was chosen with the

lessons of clustering in mind. As such, I designed Federation without further plans for hor-

izontally aggregating more than two cores into a single verywide core. For higher single-

thread performance, the combination of Federation with techniques which can effectively

shorten the critical path — such as runahead execution [78],sophisticated prefetchers [41],

or dynamic optimization [4] — seems to be the most fruitful path to pursue. Many such

techniques have as one of their main advantages their toleration of infrequent or long la-

tency communication with the main core, which makes it much easier to implement them

using multiple cores of a manycore processor. Future work onusing manycore processors

to improve single-thread performance will have to find the right balance between adding

extra hardware when absolutely necessary and emulating many hardware features with

software or firmware on some of the cores of the processor.

Chapter 5

Diverge on Miss

5.1 Introduction

The growth in single-thread performance has slowed dramatically in recent years, due to

limits in the power consumption, thermal hotspots and complexity of microprocessors. As

a response, the microprocessor industry has shifted its focus onto multicore processors,

which combine a number of cores onto a single die. Some of these designs give higher

priority to overall throughput than to single-thread latency, trading out-of-order cores for

simpler, smaller in-order cores which are smaller and less power hungry. While single-

thread performance suffers, overall chip throughput is increased. This design point is often

referred to as manycore, as opposed to more traditional multicore designs, which retain

large, high-performance out-of-order cores for maximum single-thread performance.

In the previous Chapters I assumed that multithreaded, scalar in-order cores would

be the throughput cores of future asymmetric manycore processors. Single instruction

multiple data(SIMD) cores offer an attractive addition to scalar cores, because SIMD

organization can amortize the area and power overhead of a single frontend over a large

number of execution backends. For example, using the same area estimation methodology

I use in Section 3.5.1, I estimate that a 32-wide SIMD core requires about one fifth the area

71

Chapter 5. Diverge on Miss 72

of 32 individual scalar cores.1

If SIMD cores have better throughput, power- and area-efficiency than scalar cores, the

design point for cores between the throughput cores and the few, high-performance cores

will probably move. One possibility is that slightly fewer cores with higher performance

would be preferred compared to scalar, in-order cores, making the lightweight out-of-order

cores cores or 2-way in-order cores which can be federated anoptimal design choice.

For SIMD cores to be accepted as the main throughput core typeof asymmetric CMPs,

their performance must be consistently better than scalar cores across the widest possible

range of programs. This is currently often not the case due tolimitations in how SIMD

cores perform on certain memory access patterns.

5.1.1 Divergent Memory Accesses

To better tolerate memory and pipeline latencies, SIMD manycore processors typically use

fine-grained multithreading, switching among multiple warps2, so that active warps can

mask stalls in other warps waiting on long-latency events. The drawback of this approach

is that the size of the register file increases along with the number of warps per core. Most

current and planned manycore processors also use on-chip caches to reduce the required

off-chip bandwidth and to hide the latency of accessing DRAMas much as possible. The

combination of SIMD cores and caches presents special problems for architects because

each SIMD thread may independently hit or miss. This problemis not just limited toarray-

styleSIMD organizations where each SIMD thread is a scalar processing element.Vector-

SIMD instructions sets with gather support, including [97, 1] suffer the same problem.

Divergence becomes a particular problem for load or store instructions that have irregular

1Note that this estimate does not include the area of any interconnection network, among the MIMD
cores, which often grows supra-linearly with the number of cores [69].

2For simplicity, I use the termthreadto refer to a SIMD lane, andwarp to a SIMD group that operates in
lockstep. Multithreading a SIMD core therefore consists ofsupporting multiple warps.

Chapter 5. Diverge on Miss 73

access patterns. Consider code where each thread of a SIMD warp needs to read many

contiguous values in a global array, but each thread accesses distinct regions, starting at

a random offset, for example in DNA sequence alignment. While reading in their values,

the probability that a thread in a warp will cross a cache lineboundary and have to stall

grows as the number of threads per warp increases. In such a case the lockstep nature of

SIMD execution forces the core to stall or switch to another warp for each load. Clearly,

such memory access patterns will waste much of the computational power of the SIMD

core waiting on memory requests.

Here I present a new hardware mechanism,diverge on miss, that takes advantage of

looping behavior to temporarily mask off threads in a warp that miss in the data cache and

allows the other threads to continue executing, re-enabling the masked off threads as soon

as possible. Letting threads which hit in the cache continueto execute allows them to use

idle execution slots when all warps of a core would otherwisebe stalled. It also allows

them to issue future cache misses earlier, increasing memory level parallelism [44].

We show that diverge on miss can increase performance of a manycore processor using

32-wide SIMD cores by up to a factor of 3.14, can decrease the area of each SIMD core

by 35% at equal performance or increase peak performance by 30%. We show how such a

mechanism can be built with low-overhead on top of existing structures meant to deal with

control-flow divergence. Diverge on miss builds on the fact that high-performance SIMD

and vector coresalready havelogic for masking off threads on a fine-grained basis to sup-

port arbitrary control-flow andcan already deal withmultiple parallel memory operations

finishing out-of-order due to their support of scatter/gather operations.

Chapter 5. Diverge on Miss 74

5.2 Background on SIMD Divergence Handling

5.2.1 Control-Flow Divergence

The baseline architecture in this study uses the same post-dominator based reconvergence

algorithm as presented in Funget al. [39]. Each warp is associated with a branch diver-

gence stack, which tracks control flow for all threads in the warp. Each entry in this stack

holds 3 fields, the active PC field, an active threads bitmask and a reconvergence PC field.

If a divergent branch (where some threads evaluate the branch as taken and some as

not-taken) is executed, the top of the stack entry is modifiedto hold the reconvergence PC

along with a bitmask of the currently active threads in the warp. A new entry is pushed on

the stack consisting of the fall through PC, a bitmask indicating which threads evaluated

the branch as not-taken, as well as the reconvergence PC of the branch. A second entry

consisting of the branch target PC is also pushed on the stack, along with the bitmask

indicating which threads evaluated the branch as taken, andagain the reconvergence PC.

The active PC and thread active bitmask are then set to the active PC and bitmask

fields of the top of the stack (which is the taken branch entry in this case) and execution

continues. When the active PC reaches the reconvergence PC,the stack is popped and the

active PC and bitmask are set to the values contained in the not-taken stack entry.

Finally, when the reconvergence PC is reached a second time the active bitmask is

restored to what it was before the branch. If a branch is encountered multiple times in

a row (such as a loop branch), then no new entry needs to be created on the stack; it is

enough to modify the bitmask if any active threads want to exit the loop. As we will

show in Section 5.3, the same basic operations that are needed to support control-flow

divergence by the pipeline logic (checking the PC against a PC stored in a structure, taking

a pre-defined action if the PC’s match, modifying the bitmaskof active threads based on

the result of that action) also to support diverge on miss.

Chapter 5. Diverge on Miss 75

All threads

executing

normally

All threads

miss cache,

warp stalled

Some threads miss cache,

whole warp stalled

Figure 5.1: Warps can be forced to wait on memory by a single miss from a single thread.
Even cores with multiple warps are forced to stall by a singlecache miss per warp.

5.2.2 Handling of arbitrary scatter/gather memory requests in the

base architecture

Consider a SIMD vector or array core with scatter/gather support and an attached data

cache. When such a core executes a load, the data cache looks up each cache line touched

by each load from each thread. If even a single lookup misses,execution of the entire warp

has to stall until that miss has been serviced. We call memoryoperations in which some

threads hit and some threads missdivergentmemory operations.

If a core only has a single warp to execute, it has to stall in such an event. Even a core

with multiple warps that it can switch among can be stalled byonly a small number of

individual memory requests missing the cache, as illustrated in Figure 5.1.

If the architecture allows writing back individual thread register values into the SIMD

register file as a background operation, no intermediate storage is needed. If this is not the

case, a Memory Coalescing Buffer (MCB) is needed, where values are buffered between

the time they are read from the cache and when they are writtenback. An MCB is also

needed for divergent memory operations. All threads that have hit in the cache must capture

their values, as the cache lines they access may be evicted during the servicing of any

misses.

Chapter 5. Diverge on Miss 76

5.3 Diverge on Miss

Diverge on miss is a hardware mechanism which allows some threads in a warp to continue

to execute on divergent memory accesses. Threads which missin the data cache (or a given

cache level if there is a multi-level cache hierarchy) are masked off and do not continue

execution, while the threads that hit in the cache continue to execute normally. Such a warp

is called aslippingwarp, as it allows some threads to slip or lag behind others. Memory

requests from missing threads are serviced in parallel withthe warp continuing execution.

When the warp next encounters the same memory instruction (or a condition which forces

re-synchronization of all threads in a warp) the missing threads that have subsequently

received their memory value are re-enabled if they have received their memory values.

Threads which still have not received their memory values continue to be masked off.

Individual threads can slip a variable amount relative to other threads, potentially missing

the cache shortly after being re-enabled. Slipping warps can either catch up when other

threads miss in the cache or continue to execute after the other threads have already finished

executing, forcing the warp to execute longer.

For programs which are memory latency bound, diverge on misscan dynamically trade

execution cycles for more latency tolerance, higher MLP andpotentially improved utiliza-

tion of the data cache. We will show in Section 5.4 how the hardware can use runtime

control mechanisms to limit the amount of slip, controllingthe amount of extra execution

cycles based on the needs of the running program.

We discuss two options for supporting diverge on miss: a purehardware implementa-

tion and a hybrid hardware-software approach which only exposes a new type of load and

store instructions, but leaves all the implementation and handling of the divergence to the

software layer.

Chapter 5. Diverge on Miss 77

Memory Divergence

Table

PC

Threads marked in

white are waiting on a

memory op at the

specified PC, threads

marked in gray are

not divergent

Figure 5.2: The Memory Divergence Table tracks which lanes of a warp are waiting on
which memory op and which ones are ready to be merged back intothe active warp.

5.3.1 Pure Hardware Implementation

Diverge on miss uses a very similar structure to the divergence stack used by branch di-

vergence. The Memory Divergence Table (MDT) shown in Figure5.2, keeps track of

divergent memory operations.

The following actions occur when a divergent memory operation is executed:

1. The memory request is issued to the cache and a bitmask indicating which threads

hit and which miss is returned.

2. The fact that some threads hit and some missed is detected by the control logic.

3. The control logic searches the current warp’s MDT entriesfor an existing entry with

the same PC, merging the new request into the MDT entry if it exists. If an MDT

entry is not found, the control tries to allocate an MDT entryto the instruction.

Allocation might fail because of a limited number of entriesper core, or because the

adaptive slip controller (described later) decides that itis better to have this memory

operation execute as a normal load or store3.

If allocation succeeds, the threads which missed the cache are written to the MDT

as a bitmask along with the PC of the memory operation. The MCBentry is also

3In either case an MCB entry is also allocated to the memory operation. If no MCB entry is available,
execution has to stall until an entry becomes available.

Chapter 5. Diverge on Miss 78

initialized with the memory addresses requested by the threads that missed the cache

and the per-thread status fields are set to either waiting or invalid. The missing

addresses are sent to the memory subsystem to be fetched while threads which hit

in the cache receive their memory values and continue executing. If allocation fails

the warp falls-back to normal SIMD execution, and blocks waiting for all misses to

complete.

4. As the time between when a cache line is returned and when a thread can be merged

back into the active warp cannot be known a priori, it is possible that a cache line

would be evicted while the requesting thread is waiting for re-activation. To prevent

this case, as soon as a cache line is returned the memory values that were requested

are extracted and each value stored in the appropriate slot in the MCB entry. The

slots’ status bits are also updated from waiting to ready.

5. When the same memory instruction gets executed again (or aforced reconvergence

happens), the control logic will again search the MDT and findan existing entry.

Threads which have their status bits set to ready will write their value back to the

register file along with those lanes that hit in the cache, andtheir status field will be

updated to invalid. If all threads have the invalid status the entry can be deallocated.

5.3.2 Software-Controlled Implementation

An alternative approach is to add a new type of instruction, called theload&snoopand

store&snoop. These instructions operate as normal loads and stores if they hit in the level

one data cache (or another level of the cache hierarchy). If they miss, however, they do not

block but are instead turned into implicit prefetches. By guaranteeing a fixed latency to

completion they have the benefit of being easy to schedule forthe compiler in optimized

loops, similar to accesses to scratchpad memories in other architectures [38].

Chapter 5. Diverge on Miss 79

If a thread misses in the cache, a bit is set in a bitmask. The bitmask can be stored

either in a special purpose register or returned as a second register write of the instruction,

similar to the low and high parts of a multiplication. In thisapproach neither the MDT

nor the MCB are implemented in hardware. The software can implement most of the

functionality of these structures, or modify them according to the needs of the application.

Note that because the cache lines which are prefetched are not locked down in any way,

a load&snoopor store&snoopcan fail repeatedly and indeed indefinitely. For example if

all threads in a warp try to load distinct cache lines that aremapped to a single set in the

cache and the cache’s associativity is smaller than the width of a warp, it is impossible for

all loads to hit in the cache simultaneously. It should be noted that software can always

serialize all loads or stores of a warp if it detects too many retries.

5.3.3 Ensuring Reconvergence

Supporting SIMD divergence on memory operations raises similar concerns as supporting

SIMD branch divergence. Ensuring that all threads get re-merged into the active warp and

finish executing requires some extra policies and logic per core.

In typical usage a divergent load or store will be inside a loop body and executed a

large number of times. In this scenario diverged lanes can normally reconverge on the next

iteration of the loop. But if a thread diverges during the last loop iteration or control flow

jumps outside the loop body must be ensured to still reconverge.

If a subset of threads in a warp reach a return statement whileother threads are still

masked off, the control logic checks the MDT and re-activates those threads while masking

off the threads which have hit the return statement. Note that this is the same mechanism

that is used to handle branch divergence, so the control logic only has to be extended to

check the MDT in addition to the branch divergence stack. If there are multiple entries in

Chapter 5. Diverge on Miss 80

the MDT this process is repeated until the MDT is empty.

5.4 Limiting Thread Divergence

A SIMD core which allows threads to diverge on cache misses has to deal with the prob-

lem of excessive divergence. This can happen if some threadshit in the cache the great

majority of the time, while the others almost always miss. This can happen due to the

inherent nature of a given workload, the interaction of the program with the cache subsys-

tem or a number of other reasons. In the worst case this means that by the time the fast

threads finish executing a loop, the slow threads have only advanced a few iterations. The

warp containing these threads will have to execute the slow threads to completion, greatly

wasting execution cycles and not gaining any benefit in termsof overall warp execution

latency.

Worse, excessive divergence is that it can make the cache access behavior of a given

warp much worse, with accesses that would have been a contiguous, coalesced set of hits

turning into accesses spread over multiple cache lines, increasing cache churn and decreas-

ing hit rates. These drawbacks to diverge on miss SIMD execution grow proportionally to

the divergence between threads in a warp.

To limit the amount of divergence I introduce new control hardware, which I call the

Adaptive Slip Controller (ASC), to limit how far threads in awarp can slip relative to

each other. The ASC has a small counter for each thread in a warp. If an undiverged

warp encounters a diverge on miss event, those threads whichhit in the cache have their

counters incremented. If any thread’s counter hits some maximum value, the warp reverts

to blocking execution of all loads and stores until the maximum counter value falls below

the maximum value again. Note that threads which are marked as inactive by the branch

divergence stack are not considered in this process.

Chapter 5. Diverge on Miss 81

If a warp is already diverged when it encounters another diverge event and all tail-

end threads (which have counter values of zero) hit in the cache, the counter values of

all threads which miss the cache in this instance are decremented. The same mechanism

applies when some threads reach the maximum counter value. They are disabled and their

counters get decremented when the remaining threads hit in the cache. The counter of each

thread is reset when hardware warps are reassigned to a new set of software threads.

5.4.1 Adaptively Limiting Thread Divergence

The optimal maximum divergence value is very much dependenton the interaction of the

program, the input and the architecture. We use a mechanism -called adaptive diff - which

keeps track of the number of cycles a core has been was not actively executing instructions

(a value of zero indicating that it is completely ALU bound),if the amount of off-chip

bandwidth that it used was above its fair fraction of overallbandwidth (bandwidth bound),

and the number of cycles it was stalled waiting on memory (latency bound). Since enabling

more slip results in more extra execution cycles (as the trailing threads finish execution)

and can result in more bandwidth usage (due to previously coalesced accesses being broken

into chunks which are touched at different points in time), the amount of slip is controlled

by how ALU, bandwidth or latency bound a given program is during a sampling period. I

use very long sampling periods of 100000 cycles or more. If the core was neither ALU nor

bandwidth bound over a given sampling period, the maximum allowed divergence value is

incremented, and otherwise it is decremented.

5.5 Hardware Overhead

Diverge on miss adds the Memory Divergence Table, the per-thread divergence counters

and some other small structure to each core. Table 5.1 lists the extra state required for each

Chapter 5. Diverge on Miss 82

Structure
Fields State Number Total

per Entry per Entry of Entries Structure Size
Memory DivergencePC, Thread 32 bits 2·N 16−256

Table Bitmask +32 bits bytes
Per-Thread Per-Thread 8 bits 32·N 32−512

Divergence Counter Counter bytes
Per-Warp Thread 32 bits N 4−16

Slip-Limit Bitmask Bitmask bytes
Max-Slip Per-Core 8 bits 1 1 byte
Counter Counter

Table 5.1: New structures needed to support diverge on miss.N is the number of warps per
core, which range from 1 to 16.

structure. The MDT is similar to the branch divergence stack, in that each entry needs to

record the PC of a divergent instruction, along with a bitmask indicating which threads took

which of the two possible paths. The number of MDT entries perwarp is directly related

to the maximum number of outstanding memory operations eachwarp supports. I assume

that the baseline architectures allows two outstanding memory operations per warp, which

means that the augmented core with diverge on miss has two MDTand MCB entries per

warp.

As explained in Section 5.4, it is useful to dynamically adapt the maximum amount

of slip allowed between threads in a single warp at runtime. To track the slip of each

thread a small counter is needed per thread. I assume that each counter is 8 bits, allowing

threads to slip by 255 hits or misses relative to each other. These counters are updated with

each divergent memory operation and checked against the MaxSlip Counter. If any thread

reaches the maximum allowed slip a bit is set in the warp’s Slip-Limit Bitmask, disabling

further execution of that thread until divergence is reduced below the threshold value.

Chapter 5. Diverge on Miss 83

core type Area
scalar core 1.05mm2

32 scalar core 33.60mm2

32-wide SIMD core with 2 warps 7.3mm2

32-wide SIMD core with 16 warps 11.5mm2

Table 5.2: Area estimates for different core configurations

5.5.1 Core Areas

To estimate the area of the SIMD cores, I used the same methodology as used in Section

3.5.1. I assume that each lane in a SIMD core has a 32 bit data path and that each thread

has a total of 32 32-bit registers, so that each 32-wide SIMD warp uses 4KB of register

file.

I use the numbers for each functional unit and scale them by their capacities and port

numbers relative to the Opteron core. Table 5.2 shows the areas for a 32-wide SIMD core

with 2 warps, a core with 16 warps, a scalar core and 32 scalar cores calculated with this

methodology.

5.6 Experimental Setup

5.6.1 Simulator

My custom simulator models a number of SIMD/vector cores, along with a cache hierarchy

and a shared memory subsystem. The cores are modeled as having a constant CPI of one

for all non-memory instructions and having private L1 data caches and that the structures

for holding outstanding memory requests are not a limiting factor. Each core can have

one or multiple warps, and it can switch among on a cycle by cycle basis at no extra cost.

The scheduling algorithm is round-robin, skipping warps which are waiting on memory

requests. The memory reference traces are collected directly from the native applications,

Chapter 5. Diverge on Miss 84

which are instrumented with calls to my simulator. To determine the number of instruc-

tions between memory references, each application is inspected manually and the number

of arithmetic and control flow instructions between memory references are passed to the

simulator.

Direct instrumentation of native applications was preferred over gathering large mem-

ory traces to avoid the I/O and decompression overheads of normal trace based simulators.

The combination of a simple core model and direct instrumentation of native applications

allows the simulator to be very fast (slowdowns only about 10x over pure native execution

are the norm) and can consequently capture the performance on input sizes which would be

prohibitively slow to simulate otherwise. This is especially important when dealing with a

large number of cores and threads per core.

5.6.2 Simulated System and Power Model

The base chip consists of 32 in-order cores each supporting 32-wide SIMD execution, all

running at 2 GHz, for an overall maximum execution bandwidthof 2 Teraops. Each core

has a 32KB private data cache, which has 32B cache lines and is4-way set associative. I

model a standard LRU replacement policy. All cores share a 256 GB/sec memory interface,

with a memory access latency of 500 cycles.

5.6.3 Workload

The chosen application kernels represent a mix of application domains and memory access

patterns. We have included a kernel (k-means) which is pure streaming, having no reuse of

data between threads and cores. We do not expect this kernel to benefit from the sharing

tracker, and use it to make sure the sharing tracker does not hurt such applications. Another

set of kernels (neighbor list generation, Lennard-Jones force calculation and Gaussian fil-

Chapter 5. Diverge on Miss 85

ter) has data reuse between software threads, but the sharing patterns are mostly between

threads that tend to access nearby data. These threads are often mapped to the same core

and the L1 data caches are enough to capture most of the data reuse. We expect these

kernels to show only limited benefits from the sharing tracker, as only a small fraction of

memory requests will not hit in the local cache or go to globalmemory.

Lastly, we have also included kernels (ray tracing and DNA sequence alignment) which

have both large working sets and data sharing patterns that are non-regular, meaning that

threads on different cores will share data. We expect these kernels to show the most im-

provement out of all kernels.

5.6.4 Molecular Dynamics

We use the molecular dynamics package HOOMD (Highly Optimized Object Oriented

Molecular Dynamics) [8] version 0.8. HOOMD is a general purpose molecular dynamics

package that can take advantage of the computational power of GPUs using CUDA [80].

The two most computationally intensive functions in HOOMD are the Lennard-Jones po-

tential computation and neighbor list generation, making up over 95% of the runtime.

Note that HOOMD also supports other potentials, which all have the same computation

and memory patterns as the Lennard-Jones computation.

The neighbor list function (NL) determines for every particle being simulated which

other particles are close enough that their Lennard-Jones interactions with the current par-

ticle have to be taken into account. Since all particles moveduring the simulation time

frame, the neighbor list is regenerated every 10 time steps.To avoid the need to check

every particle against every other particle, particles aresorted into spacial bins in a pre-

liminary step. Each particle then computes the distance between it and all of the particles

in all the neighboring bins, adding those particles that fall inside of a cutoff radius to its

Chapter 5. Diverge on Miss 86

neighbor list. To avoid having to regenerate the neighbor list each time step, the cutoff

radius is made larger than necessary, so that particles which might move inside the real

cutoff radius in several time steps are also added to the neighbor list.

The Lennard-Jones function (LJ) calculates the Lennard-Jones potential for each par-

ticle each time step, calculating distance and force for each particle on the neighbor list.

Both kernels are parallelized by assigning each particle toa single thread.

I run the standard HOOMD benchmark simulating a liquid consisting of 64000 parti-

cles at a packing fraction of 0.2 interacting via the Lennard-Jones force. I simulate the first

600 time steps.

5.6.5 DNA Sequence Alignment

We use the program MummerGPU [96] (SA), which uses a suffix tree to efficiently find

alignments of short DNA sequences (such as those generated by high-speed DNA sequenc-

ing machines) against a reference genome. The tree is traversed from the root in a data

dependent manner, with each edge holding a variable number of base pairs which must all

match for the traversal to proceed to the next node.

MummerGPU parallelizes its computation by mapping each input string to a thread.

Similar to Schatzet al. [96], I run SA in the exact matching mode, matching batches of

synthetic snippets of length 25, 50, 200 and 800 base pairs sampled randomly from the

Bacillus anthracisgenome(GenBankID: NC 003997.3) to match against itself. Each

batch contains a total of one million base pairs, with batches containing longer string con-

taining linearly fewer samples. I report the average performance over all 4 string lengths.

Chapter 5. Diverge on Miss 87

5.6.6 Ray Tracing

We use the bwfirt ray tracing framework [88], and specificallythe provided SimpleBVH

ray tracer as the test application. SimpleBVH decomposes the scene into a bounding vol-

ume hierarchy tree. Each ray traverses the tree to find the object that it hits in the scene.

Bwfirt uses SimpleBVH to do path tracing through a given scene, letting rays bounce

around a scene multiple times until they hit a light source. We chose bwfirt because it

doesn’t just trace primary rays, but use ray tracing to create effects which are very expen-

sive to replicate with traditional GPU rasterization and can increase the quality of rendered

images.

We parallelize SimpleBVH by having each thread trace a different ray through the

scene. This method of parallelization provides a large number of independent tasks with-

out the need for any communication between threads until theoutput of the final result.

As input we use the conference scene with approximately 1 million triangles and set the

resolution of the generated image to 1024 by 1024 pixels.

5.6.7 Data Mining

We use the k-means program (KM) from Minebench [79]. The k-means code randomly

generates N cluster centers, where N is given by the user. It then computes the distance

between each point and each cluster center and assigns each point to the cluster with the

closest center. After completing the reassignment of points to clusters it recomputes the

cluster centers as the average of all points assigned to the cluster. The last two steps are

repeated until the number of points switching cluster to another falls below a pre-specified

threshold.

Both the distance computation per point and the recomputation of the cluster centers

can be easily parallelized. We assign each point to a thread for the distance computation

Chapter 5. Diverge on Miss 88

as well as the cluster center recomputation. We run k-means with 32 clusters and with the

provided input set of roughly half a million data points, each with 36 features

5.6.8 Image Manipulation

We use a blurring kernel (GF), which computes the 3 by 3 Gaussian blur for each pixel of

the input image. Each warp is assigned an image tile consisting of 32 by 32 pixels, with

threads being assigned a single row in the tile. The input is arandomly generated black

and white image with 2048 by 2048 pixels resolution.

5.7 Evaluation

The baseline for all comparisons unless otherwise stated isthat each core has a single warp.

5.7.1 Application Behavior

We first explore the performance characteristics and scaling behavior of the selected ker-

nels on the baseline chip as outlined in Section 5.6.2. Table5.3 shows some of the most

important performance aspects of each application.

Each of these kernels access their main data structure in their critical loop, causing

frequent cache misses due to low temporal or spatial locality. The number of instructions

per memory operation is a good indicator of how well a given application will tolerate

frequent cache misses.

K-means is the only kernel which can exploit the full performance of the base chip with

only a single warp per core, achieving 2 teraops/sec. The other kernels are all limited by

memory stalls to much lower performance, with sequence alignment achieving only 2.9%

of the maximum possible performance.

Chapter 5. Diverge on Miss 89

Kernel Name
instructions off-chip bandwidth inst per sec.

per memory op (GB/sec) (MInst/sec)
Neighbor List

Generation (NL) 19 8.15 156
Lennard-Jones Force

Calculation (LJ) 25 26.34 204
DNA Seq. Align. (SA) 7 62.77 57

Ray Tracing (RT) 15 30.60 124
K-Means (KM) 5 0.52 41

Gaussian Filter (GF) 8 77.91 65

Table 5.3: Number of instructions per memory operation, bandwidth usage and instructions
per second for each kernel

0

2

4

6

8

10

12

14

16

2 warps 4 warps 8 warps 16 warps

R
el

at
iv

e
T

h
ro

u
g

h
p

u
t

co
m

p
ar

ed
 t

o
 1

 w
ar

p

NL
LJ
SA
RT
KM
GF

Figure 5.3: Increase in performance of 2 to 16 warps per core relative to a single warp per
core.

Figure 5.3 shows the increase in throughput when the number of warps per core is

increased from 1 to 16, and Figure 5.4 shows the bandwidth used for the same config-

urations. The neighbor list generation kernel shows the best increase, being limited by

arithmetic throughput with 16 warps per core. On the other hand, the sequence alignment

and ray tracing kernels become bandwidth bound at 4 and 8 warps respectively.

Chapter 5. Diverge on Miss 90

0

50

100

150

200

250

300

1 warp 2 warps 4 warps 8 warps 16 warps

G
B

/s
ec

NL
LJ
SA
RT
KM
GF

Figure 5.4: Bandwidth usage of all kernels with 1 to 16 warps per core. The total available
bandwidth is 256 GB/sec.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 warp 2 warps 4 warps 8 warps 16 warps

R
el

at
iv

e
S

p
ee

d
u

p avg
max slip

best
mix of
max slip

Figure 5.5: Relative speedup with 1 to 16 warps per core with adiverge on miss and a fixed
maximum slip across all kernels for one particular config andcombining the best fixed slip
for each kernel.

Chapter 5. Diverge on Miss 91

5.7.2 Fixed Slip Performance

Figure 5.5 shows the relative speedup for 1 to 16 warps per core with a fixed maximum

slip value compared to normal, blocking SIMD execution. We show both the speedup with

the best average maximum slip across all kernels, as well as the speedup possible when

combining the results with the best per-kernel fixed maximumslips. The difference at 1

and 2 warps is very significant, with relative speedups of of 2.65 vs. 4 at 1 warp per core

and 2.88 vs. 3.15 at 2 warps per core. Moreover, the k-means kernel (which is ALU bound)

exhibits a slowdown vs. blocking warps.

These results show clearly that the maximum slip value cannot be set statically across

all applications, but has to adapt to the workload.

5.7.3 Adaptive Slip Performance

Figure 5.6 shows the speedup with the adaptive slip controller versus blocking warps for 1

to 16 warps per core.

The biggest gains can be seen for 1 to 4 warps per core, where the geometric mean

speedup is 3.14 to 1.75 for 1 to 4 warps. At 8 and 16 warps per core many kernels become

purely bandwidth bound, which means that improving latencyper warp does not give any

benefit. The 2D Gaussian filter has the highest speedup of all tested kernels, increasing

throughput to 8.3 times the blocking warp implementation with 1 warp per core. As the

number of warps increase the relative speedup compared to 1 warp per core decreases,

as the kernel becomes bandwidth bound relatively quickly. The neighbor list generation

and Lennard-Jones force calculation kernels also show highspeedups at 2.5 and 5.6 re-

spectively with 1 warp per core. As the number of warps per core is increased, the two

kernels start to be limited by ALU throughput and bandwidth respectively, showing almost

no speedup at 16 warps. The DNA sequence alignment kernel hasits best speedup at 1

Chapter 5. Diverge on Miss 92

warp per core with 4.23. The alignment is also bandwidth bound as the number of warps

increases.

K-means is a counterpoint to the other kernels, showing no appreciable speedup. This

is because each thread reuses the data for the its point 32 times (once for each of the 32

cluster centers), leading to a small number of initial cachemisses followed by the great

majority of memory accesses hitting in the data cache. This behavior only changes at 8

and 16 warps, as the number of threads per core overwhelms thedata cache and capacity

misses result in a slowdown. With 8 warps, diverge on miss canprovide a small speedup,

as threads can reuse data in the cache in some cases where blocking warps would mean

that the accesses would be too far apart in time. This is a goodexample how diverge on

miss can help workloads which require a large number of warpsfor part of their execution,

but are also limited by cache thrashing in other parts.

If I compare the performance of cores with diverge on miss to acore with a single warp

and normal SIMD execution, diverge on miss increases performance by a factor of 3.14,

4.67, 5.38, 4.94 and 4.30. The peaking out at 4 warps is primarily due to cache thrashing

kicking in on high warp counts. Compared to the base scaling shown in Figure 5.3, it can

be seen that a core with 2 warps and diverge on miss can provideequivalent performance

to a core with 16 warps and normal SIMD execution. From the area estimates in Section

5.5.1 we can see that such a core is approximately 35% smallerthan a core with 16 warps.

Figure 5.7 shows the speedup across number of warp for both diverge on miss and

normal execution. Diverge on miss with adaptive slip control provides a higher peak per-

formance (5.38 times the baseline) than normal execution (4.14 times the baseline), but

only requires 4 warps per core versus 16 warps per core. Because diverge on miss can

tolerate more latency with a given number of warps, it is morelimited by bandwidth limi-

tations. As such, area saved by smaller cores could be used for more I/O, bigger caches or

other structures which reduce off-chip bandwidth.

Chapter 5. Diverge on Miss 93

0

1

2

3

4

5

6

7

8

9

1 warp 2 warps 4 warps 8 warps 16 warps

S
p

ee
d

u
p

 u
si

n
g

 a
d

ap
ti

ve
 s

lip
p

in
g

 w
ar

p
s

NL
LJ
SA
RT
KM
GF

Figure 5.6: Speedup for 1 to 16 warps per core of adaptive slipping warps versus default
blocking warps at the same number of warps per core.

0

1

2

3

4

5

6

1 warp 2 warps 4 warps 8 warps 16 warps

S
p

ee
d

u
p

 C
o

m
p

ar
ed

 t
o

 1
 w

ar
p

, n
o

rm
al

 e
xe

cu
ti

o
n

base

adaptive
slip

Figure 5.7: Comparing the speedup of both normal execution and slipping warps from 1
to 16 warps. The baseline is 1 warp per core with normal execution. Adaptive slip can
provide a higher peak performance of 5.38 times the base performance versus 4.14 for
normal execution, which needs 4 times more warps.

Chapter 5. Diverge on Miss 94

Since both Larrabee and Niagara provide unified second levelcache on-chip, I also

explore whether adding diverge on miss to a design where the SIMD cores are coupled to

L2 caches is worthwhile. We simulate a design with the same number and type of cores

as in previous experiments, but where each core has a private256KB L2 cache. Each L2

cache is has 32B cache lines and is 16-way set associative. Off-chip bandwidth and access

latency constant are kept constant from the previous experiments.

The mean performance of such a chip using normal SIMD execution is

8.1%,7.2%,7.4%,52.4% and 115.9% better than the chip without L2 caches for 1 to 16

warps per core and scaling from 1 to 16 warps per core improvesfrom a factor of 4.14 to

6.35. The higher speedup at 8 and 16 warps per core is primarily due to several kernels

making good use of the larger caches and being less bandwidthbound due to less cache

thrashing. The relatively small gain for 1 to 4 warps is due tothe fact that the NL, LJ and

SA kernels suffer primarily from compulsory misses and no kernel exhibits cache thrashing

with a small number of warps per core.

The relative speedup of using diverge on miss execution wheneach core has a 256KB

L2 cache is shown in Figure 5.8. The performance increase is even larger than in Figure

5.6 primarily because kernels are less bandwidth bound and have fewer L2 caches misses,

so that the misses which can be hidden with diverge on miss cover a larger fraction of all

misses and provide a bigger relative improvement in performance.

5.8 Conclusion

To maximize performance within power and area constraints,designers have turned to

architectures with many small, multithreaded SIMD cores for throughput oriented work-

loads. Such architectures work well for applications with regular data access patterns,

but can easily become latency bound for workloads with more complicated scatter/gather

Chapter 5. Diverge on Miss 95

0

1

2

3

4

5

6

7

8

1 warp 2 warps 4 warps 8 warps 16 warps

R
el

at
iv

e
S

p
ee

d
u

p NL
LJ
SA
RT
KM
GF

Figure 5.8: Speedup with adaptive slipping warps versus default blocking warps with each
core having a private 256KB L2 cache.

access patterns.

We introduce the concept of diverge on miss, which allows SIMD warps to continue

execution even when a subset of their threads are waiting on memory. This provides ben-

efits when runahead threads prefetch cache lines for laggingthreads. It also increases

throughput when divergent threads experience relatively random misses and runahead and

lagging threads continually leapfrog each other, rather than continually being held back

by the slowest thread. Diverge on miss improves over my priormiss-divergence handling

by requiring no additional warp scheduler entries and providing more robust speedups for

workloads with complex memory access patterns. The key insight is that SIMD cores’

support for branch divergence can be elegantly extended to support memory divergence,

without having to re-group warps into finer grained scheduling units.

We show that on a set of data-parallel kernels, diverge on miss can provide speedups

as high as 3.14 over normal SIMD execution or can reduce the core area by 35% at con-

stant performance. It can also provide 30% higher absolute peak performance than normal

execution with fewer warps per core.

Chapter 6

Sharing Tracker

6.1 Introduction

Graphics processing units (GPUs) were once fixed-function hardware for 3D render-

ing. Demand for increasing programmability for such applications have gradually driven

GPU architectures to become general-purpose manycore architectures (embedded within a

system-on-chip including various 3D-specific accelerators). The introduction of hardware

and software support for general-purpose programming languages on the GPU [19,77,80]

has allowed GPUs to become a viable platform for general-purpose computing.

Although the GPU instruction-set architecture is general-purpose, the memory hierar-

chy and performance model are different than traditional CPU architectures. GPU “cores”

are deeply multi-threaded and wide array-style SIMD organizations. On-chip memory ca-

pacity is small. Together, these choices sacrifice single-thread performance in order to

boost the number of cores and available memory bandwidth, optimizing for throughput

instead.

GPU cores share global memory. Every core also possesses a “per-block shared mem-

ory” (PBSM) that is actually a software-controlled scratchpad. GPU cores also possess two

small L1 data caches that were originally designed for specialized 3D-rendering access pat-

96

Chapter 6. Sharing Tracker 97

terns (shared constants and texturing) that turn out to be useful for general-purpose work-

loads as well [16, 28, 110]. These caches are private and are not kept coherent. Values in

these caches and in the PBSM must be kept coherent by software. This can be achieved by

the programmer or the compiler (by flushing when necessary) and techniques for compiler-

controlled software coherence have been studied for over 20years (e.g., [29,108]).

The private nature of these cores prevents re-using values shared among cores. Reuse

reduces off-chip bandwidth requirements. Hardware coherence does capture reuse, at the

expense of considerable complexity in order to support the correct semantics. Support

for scalable hardware coherence has been studied for decades (Stenstrom [108] provides a

good overview) and has recently been revisited for on-chip sharing [27, 47] in a multicore

context. Since graphics workloads typically do not benefit from coherence, it is unlikely

that GPUs will add the required hardware in the near future. The Cell BE [58] is another

major general-purpose architecture that foregoes hardware coherence. Various multicore

organizations for embedded systems also forego hardware coherence.

Capturing reuse with software-managed coherence requiressome alternative means by

which a core finds a cache line on a miss in its private L1 cache.One option is to have a

last level cache (LLC) shared among all the cores. The drawback to such a design is that

a LLC of sufficient size to support the request streams from a large number of wide SIMD

cores will significantly reduce the chip area available for the high throughput cores.

Instead, I propose thesharing tracker, which simplifies the directory from cache coher-

ence approaches for use with non-coherent cache hierarchies. The key insight is that when

software is responsible for coherence, the directory becomes a predictor and a mere perfor-

mance hint. Erroneous predictions may reduce performance but do not violate memory se-

mantics. In contrast to full coherence directories, the sharing tracker is a low-cost structure

that can be sized independently of the overall cache capacity it covers, and does not have

the complexities associated with cache coherence protocols. A simplified directory-like

Chapter 6. Sharing Tracker 98

sharing tracker is able to effectively capture reuse and fillmisses from other private, on-

chip caches. This greatly reduces off-chip accesses. With memory bandwidth increasingly

becoming the limiting factor in throughput, this can have dramatic performance benefits.

On a set of memory intensive kernels the sharing tracker can increase performance by 5

to 12% for a manycore CMP where each core has a 32KB L1 and a 256KB L2 cache (8MB

total L2 for a 32-core organization) and by 50 to 102% if thosecores omit the L2 altogether

and only have 32KB L1 caches. In fact, as long as the L1s have sufficient associativity,

an L1-only organization with sharing tracking matches performance with the large L2.

Eliminating the L2 can reduce cost or permit integration of additional cores. Adding the

sharing tracker to a manycore CMP with only per-core caches can increase performance

permm2 by 35%.

The effectiveness of the sharing tracker with only small per-core L1s is chiefly due

to two factors. First, with many cores, the aggregate L1 capacity is still large (1 MB for

32 cores x 32 KB/core). Second, a latency-tolerant design converts the cache from a tool

to reduce latency into a tool to conserve bandwidth. This means that cache misses have

minimal cost as long as bandwidth is not a bottleneck. Of course, this requires sufficiently

deep multi-threading to actually hide latency effectively. The sharing tracker’s value is in

capturing inter-core reuse that would otherwise have incurred off-chip accesses.

6.2 GPU Cache Architecture and Memory Model

I have given some background on GPU architecture in Section 1.5 and would like to talk

here about the GPUs cache subsystems and the memory model.

GPU caches are specialized to deal with different address spaces and access patterns

which are derived from the high level graphics APIs [13]. Thequestion might be asked

why GPUs have any caches for data at all, since they are optimized to tolerate latency.

Chapter 6. Sharing Tracker 99

The answer is that GPU caches are mostly meant as bandwidth savers and not as a way to

decrease latency of memory accesses. To illustrate the caches in a GPU, I use the NVIDIA

Tesla architecture [68] as an example, since it has the most publicly available information.

Each core has 3 main caches:

1. The instruction cache, which is the same as in a regular CPU. Code segments are

effectively read-only, as there is no way for a GPU thread to change it at runtime.

2. The constant cache: This cache is meant for broadcasting values to all the SIMD

threads. The data structures mapped to the address space of the constant cache are

read-only and the cache doesn’t support any form of writing.If different threads

in a SIMD group request different values, the constant cacheserializes the request.

The latency of the constant cache is relatively low, and for good performance the

workload has to exhibit temporal and spatial locality. As such, many of the design

considerations for the constant cache are similar to the ones of a L1 data cache in a

CPU.

3. The texture cache: This cache is meant for accessing textures, which in 3D graphics

is the name given to images which are mapped onto triangles being rendered to the

screen. Because of the nature of the graphics workload thesecaches act primarily to

capture spatial locality in accesses from neighboring threads in a SIMD group. Hits

in these caches have the same latency as misses, which limitstheir usefulness for

many general-purpose workloads. Textures are also read-only.

It should be noted that the data structures cached in these caches can be modified, but

this usually requires the intervention of the graphics carddriver on the CPU and completely

invalidating all the data in these caches.

Chapter 6. Sharing Tracker 100

Full tag Core Bitmask
Coherence

Status

Partial tag Core Pointer

Coherence

Directory Entry

Sharing Tracker

Entry

Figure 6.1: A cache coherence directory entry consists of a full tag, a bitmask indicating
which cores have copies of a particular cache line and a smallbitfield to track the current
coherency state. In contrast, a sharing tracker entry consists of a smaller partial tag and a
pointer to the cache that contains a particular cache line.

Since both constant and texture cache only support read-only data structures, many

general-purpose workloads suffer from the fact that each access to a read/write data struc-

ture incurs the full latency of going to memory, which is several hundred cycles.

6.2.1 GPU Memory Model and its Implications

The GPU’s memory model is that memory is non-coherent and there are no rules for or-

dering stores from a single core. Changes made by one core will only be guaranteed to

be globally visible after a heavyweight global barrier, which basically involves flushing all

the on-chip caches.

As I have mentioned in the prior section, all the current caches on a GPU only support

read-only data structures. If caches which support for reads and writes are added, case of

multiple cores writing to the same cache lines also has to be dealt with. I assume that such

a chip will use a write-validate [57] policy to deal with thisparticular issue.

6.3 Adapting Coherency Hardware

Current GPUs have multiple SIMD cores, with small, per-corecaches. To get better per-

formance on general-purpose workloads I want to exploit sharing of cache lines between

Chapter 6. Sharing Tracker 101

cores to reduce off-chip and latency of memory requests. Oneoption would be to add a

large, shared, inclusive LLC, which would naturally capture such re-use. But such a cache

would occupy significant area, which might otherwise be devoted to more cores.

In traditional CMPs, cache coherency is used to figure out if there is a copy of a re-

quested cache line in a cache on-chip and to request a copy. For manycore CMPs a snoopy

coherency protocol would be problematic because of the rapid rise in communication vol-

ume as the number of cores increases. A directory protocol isthe better choice for such

an architecture. But of course, cache coherency does much more than that, ensuring that a

core receives the most up to date version of a cache line and that if one core is writing to a

cache line no other core has a valid copy.

This is too much functionality for my purposes, since I want to only save off-chip

bandwidth and improve latency of memory requests. I want to decompose the function-

ality of directory-based cache coherency hardware and keeponly the parts needed for my

purposes.

• Tracking the status of cache lines (shared,exclusive,etc)is not necessary, since the

current programming models of GPUs allow race and reads of stale data.

• Keeping track of all copies of a cache line is not necessary, since there is no constraint

that a core must have the only copy of a cache line for a write.

• There can be cache lines which are on chip and not tracked at all. This is allowed

since stale copies of cache lines are allowed. Any copying ofcache lines between

cores is simply to save off-chip bandwidth, not for correctness.

With these relaxations of the requirements versus full cache coherence I have derived

a new structure from previous proposals for directory-based cache coherency hardware for

CMPs [27,47].

I call this new structure thesharing tracker.

Chapter 6. Sharing Tracker 102

Core Core

DL1 IL1 DL1 IL1

L2 L2
1

3

2

sharing tracker

2

Figure 6.2: On an L2 miss, the request is sent to the sharing tracker (1). The sharing tracker
is queried like a shared L3 cache. On a hit in the sharing tracker, it reads out the pointer in
its entry and forwards the request to the appropriate L2 cache (2). If there is an L2 hit, a
copy of the cache line is then forwarded to the original L2 andcore (3).

6.3.1 Sharing Tracker Organization

Figure 6.1 shows the different units involved in a sharing tracker lookup. Note that in the

following explanation I refer to all caches as being L2s, butof course the same mechanism

applies if the GPU cores only have private L1 caches. The sharing tracker is organized like

a shared cache, but each entry holds as data only a pointer to aprivate cache that contains

the specific cache line. Unlike a full distributed coherenceengine [47], the sharing tracker

does not need to track all the cores which have a copy of a givencache line (which requires

a bitmask which grows with the number of cores) or the currentcoherence state of a cache

line.

When a L2 cache miss occurs, the sharing tracker is checked, similar to a shared L3

cache (see Figure 6.2). If there is a hit in the sharing tracker, a pointer to the cache holding

that cache line (called the source cache) is read from the sharing tracker. A request is sent

to the source cache. The source cache then does a normal cachelookup. Note that the

lookup will not necessarily hit since the sharing tracker entry can be out of date or there

was a false positive hit due to the use of a partial tag. If there is a hit in the source cache,

Chapter 6. Sharing Tracker 103

that cache then forwards the cache line to the requesting cache. The sharing tracker’s entry

is updated to point to the requesting core. If a cache line is evicted from the private L2

cache of a core, the sharing tracker is checked for that entry. If the sharing tracker hits

on that cache line AND the core id of the sharing tracker entrymatches the L2 id from

whose L2 the cache line is being evicted, the sharing trackerentry is invalidated. Note that

it is possible that there are one or more copies of the evictedcache line in other private L2

caches on chip, which are lost for future sharing purposes ifthe corresponding entry in the

sharing tracker is invalidated.

Unlike a distributed cache coherency directory [47], the sharing tracker does not have

to return a correct prediction. Since each prediction is checked through an L2 lookup, false

positives are caught automatically. If there is a miss in thesource L2 cache, the request is

sent to the memory subsystem and the corresponding sharing tracker entry is invalidated.

If the sharing tracker lookup hits and returns the result that the source cache equals the

requesting cache the checking logic knows immediately thata false positive has occurred,

since the requesting cache has already done a lookup before sending the request to the

sharing tracker.

Another advantage of not having to guarantee correct lookups is that by reducing the

size of tags in the sharing tracker [36] (see Figure 6.1). As is shown in Section 6.5, it

is possible to substantially reduce the tag size without unduly reducing the effectiveness

of the sharing tracker. This is especially important for a cache-like structure such as the

sharing tracker where the tag size can be larger than the dataper entry.

6.4 Simulator

The general goal of my simulator is to let me explore new architectural ideas in the many-

core space quickly. Since I observed previously that most programs on manycores are

Chapter 6. Sharing Tracker 104

bound by the performance of the memory subsystem and becausethe manycore CMPs use

very simple core architectures compared to traditional speculative, out-of-order cores, I

have focused my efforts on the cache and memory subsystem while modeling instruction

execution with the simplest model possible.

The custom simulator models a number of SIMD/vector cores, along with a cache

hierarchy and a shared memory subsystem. The cores are modeled as having a constant

CPI of one for all non-memory instructions, private L1 data caches, and the model assumes

that the structures for holding outstanding memory requests are not a limiting factor. Each

core can have one or multiple warps, and like current GPUs, can switch among warps on

a cycle by cycle basis at no extra cost. The scheduling algorithm is round-robin, skipping

warps which are waiting on memory requests. The memory reference traces are collected

directly from the native applications, which are instrumented with calls to the simulator.

Direct instrumentation of native applications was preferred over gathering large memory

traces to avoid the I/O and decompression overheads of normal trace based simulators.

To determine the number of instructions between memory references, each application is

inspected manually and the number of arithmetic and controlflow instructions between

memory references are passed to the simulator.

The combination of a simple core model and direct instrumentation of native applica-

tions allows the simulator to be very fast (slowdowns of just10-30x over pure native exe-

cution are the norm) and can consequently capture the performance on input sizes which

would be prohibitively slow to simulate otherwise. This is especially important when deal-

ing with a large number of cores and threads per core.

Chapter 6. Sharing Tracker 105

Number of cores 32
SIMD width 32

number of warps per core 1 - 16
Register File size per warp 4KB

Per core L1 instruction cache 32KB, 8-way, 64B lines
Per core L1 data cache 32KB, 8-way, 64B lines

Non-memory CPI 1
(Optional) per core L2 cache 256KB, 16-way, 64B lines

L2 hit latency 20 cycles
hit latency in remote L2

after lookup in sharing tracker 100 cycles
Off-chip bandwidth 256 GB/sec

memory latency 500 cycles
Clock speed 2 GHz

Table 6.1: Details of the simulated systems

6.4.1 Simulated System

The simulated system is described in Table 6.1. I assume a CMPconsisting of 32 in-

order cores each supporting 32-wide SIMD execution, all running at 2 GHz, for an overall

maximum execution bandwidth of 2 Teraops. Each core has a 32KB private data cache,

which has 64B cache lines and is 8-way set associative. I explore whether it makes sense

to add a 256KB, 16-way set-associative L2 cache to each core (similar to the proposed

Larrabee [97]) in terms of area efficiency or if having smaller cores with only L1 is enough.

For all caches the simulator models a standard LRU replacement policy. I experimented

with a variety of other replacement policies, e.g. adaptations of Qureshi’s work [87, 86],

with no major benefit. I assume that it takes 100 cycles to access the sharing tracker,

forward the request to the source cache and copy a cache line to the requesting core’s

cache. All cores share a 256 GB/sec memory interface, with a memory access latency of

500 cycles.

Chapter 6. Sharing Tracker 106

Size of the physical address space supported40 bits
size of full tag and valid bit 15+1 bits

size of bitmask and coherence state 32+2 bits
number of entries needed to cover 8MB of L2 128K

Total size of coherence directory 800KB
size of partial tag and valid bit 10+1 bits

size of L2 pointer 5 bits
Total size of sharing tracker covering 8MB 256KB

Table 6.2: Comparison of a coherence directory to the sharing tracker

core type core area with core area including
only L1s(mm2) a 256KB L2(mm2)

32-wide SIMD core with 1 warp 7 11.35
32-wide SIMD core with 2 warps 7.3 11.65
32-wide SIMD core with 4 warps 7.9 12.25
32-wide SIMD core with 8 warps 9.1 13.45
32-wide SIMD core with 16 warps 11.5 15.85

Table 6.3: Area estimates for a different variants of a 32-wide SIMD core.

6.4.2 Area Model

To evaluate the tradeoff between additional cores or addingan L2 cache to each core or

adding structures such as a sharing tracker I need an estimate of the chip area the different

types of structures occupy. I use the same methodology as I described in Section 3.5.1 and

5.5.1 to arrive at the core sizes below.

I use Cacti 5 [103] to estimate the area of the per-core 256KB,16-way set associative

L2 cache as well as the other caches and cache-like structures. The area estimates from

these calculations are shown in Table 6.3.

structure description area (mm2)
8MB LLC cache 44.65

full distributed coherence directory covering 8MB 3.42
sharing tracker covering 8MB 1.01

Area for inter-core network, IO-pads, etc. 74

Table 6.4: Area estimates cache-like structures and un-core.

Chapter 6. Sharing Tracker 107

For the calculations of area efficiency in Section 6.5 I also need an estimate for all the

structures on a chip apart from the cores themselves. I estimate that the SIMD cores will

occupy 75% of the die area, with the other 25% used for the inter-core network, IO-pads,

memory buffers, etc. . I used the smallest SIMD core for this calculation and assumed as

elsewhere that the chip would have 32 cores. The area of the cache-like structures and the

non-core part of the chip are shown in Table 6.4.

I use the same workload for my evaluation as described in Section 5.6.3.

6.5 Evaluation

My initial investigations showed that reducing the tags to 10 bits showed no noticeable

performance drop compared to full tags. I use 10 bit tags in all the following experiments.

6.5.1 Performance Comparison

To evaluate the overall impact of adding the sharing to a manycore GPU, I first show

the performance and bandwidth improvement possible by adding a sharing tracker to the

base CMP with per-core L2 as described in Section 6.4.1. In this first experiment, the

L2s are maintained. The moderately large per-core L2s already capture much more of

each core’s working set (despite some duplication of data among L2s) than the 32 KB

L1, so I expect modest benefit from adding the sharing tracker. I compute the geometric

mean performance and bandwidth across all kernels introduced in Section 5.6.3, where the

performance of each kernel in each configuration has been normalized to the performance

of that kernel without a sharing tracker.

As can be seen in Figures 6.3 and 6.4, the sharing tracker can increase performance

between 3 and 12% while reducing the required off-chip bandwidth by 20 to 45%. The

kernels which benefit the most from the sharing tracker are those that are bandwidth bound

Chapter 6. Sharing Tracker 108

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1 2 4 8 16

warps per core

g
eo

m
. m

ea
n

 r
el

at
iv

e
p

er
fo

rm
an

ce

no ST

ST covering
1MB
ST covering
2MB
ST covering
4MB
ST covering
8MB

Figure 6.3: The geometric mean performance across all kernels using different sized shar-
ing trackers(ST) (covering 0 to 8 MB of L2 cache entries) normalized to no sharing tracker.
The number of warps per core is varied from 1 to 16.

and have significant sharing of data between threads on different cores. These are primarily

the RT and SA kernels which both traverse very large data structures which are shared

between all threads and have sharing complex patterns wherewidely spaced threads can

access the same data. The KM, GF and NL generation kernels show no performance

improvement. This is expected, as the GF and NL kernels have only local sharing of data

which can be satisfied by each core’s L2 caches. The KM kernel only shares a very small

array between all threads and each thread touches only its private data apart from the very

small global array, meaning it has no re-use which cannot be captures by the L1 caches.

I now evaluate the performance and bandwidth savings if eachcore only has L1 caches.

Figures 6.5 and 6.6 show the performance and bandwidth improvements possible by adding

a sharing tracker covering part or all off the L1 data caches.As the Figure shows, both

the performance and bandwidth improvements are greater than when each core has an L2

cache. Performance improves between 50% and 102% relative to the L1-only case with-

out the sharing tracker. The difference to the prior case is due to most kernels becoming

much more bandwidth and latency bound. The RT, SA and LJ kernels show bigger im-

provements, but the real difference is that the KM and GF kernels now also improve in

Chapter 6. Sharing Tracker 109

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16

warps per core

g
eo

m
. m

ea
n

 r
el

at
iv

e
B

W

no ST

ST covering
1MB

ST covering
2MB

ST covering
4MB

ST covering
8MB

Figure 6.4: The geometric mean off-chip bandwidth across all kernels using different sized
sharing trackers(ST) (covering 0 to 8 MB of L2 cache entries)normalized to no sharing
tracker. The number of warps per core is varied from 1 to 16.

performance for some configurations. This is primarily the case because these kernels

thrash their L1 caches at higher warp counts. Bandwidth savings are between 38 and 58%

for similar reasons.

Clearly the individual L1s do not have sufficient capacity tocapture each core’s work-

ing set. Next I compare organizations with and without the L2. Figure 6.7 compares

geometric mean performance across all kernels normalized to the performance of the con-

figuration with the smallest chip area, which is one warp per core and no L2.

A first fact to note is that if the performance of cores with andwithout L2 cache and no

sharing tracker is compared, the relative performance benefit of L2 grows as the number

of warps per core is increased. This is due to the fact that more warps per core put more

pressure on the caches and the L1 caches start to thrash for some kernels at 8 and 16 warps

per core. It is very interesting to note that the small sharing tracker can lift the performance

of the no-L2 configuration to the level of the configuration with L2. It is not clear how

much this is due to limited long-range temporal locality in the suite of kernels, and how

much due to latency tolerance with sufficient number of warps. At 16 warps, the L1-only

organization with the best sharing tracker outperforms theconventional organization with

Chapter 6. Sharing Tracker 110

0

0.5

1

1.5

2

2.5

1 2 4 8 16

warps per core

re
la

ti
ve

 p
er

fo
rm

an
ce

no ST
ST covering 128KB
ST covering 256KB
ST covering 512KB
ST covering 1024KB

Figure 6.5: The geometric mean performance across all kernels using different sized shar-
ing trackers(ST) (covering 0 to 1 MB of L1 cache entries) normalized to no sharing tracker.
The number of warps per core is varied from 1 to 16.

256 KB L2 per core and no sharing tracker, and is within 2.4% ofthe configuration with

L2 and the largest sharing tracker.

6.5.2 Performance/Area Comparison

Raw performance is not the only metric architects care about. Figure 6.8 shows the per-

formance permm2 of each configuration. For this calculation I use the area of each core

configuration from Table 6.3 and add the fixed overhead of the non-core part of the chip as

shown in Table 6.4. Here it can be seen that in the base case (nosharing tracker) adding L2

caches to each core makes little sense even without the sharing tracker below 8 warps per

core, as performance permm2 of the configurations with and without L2 caches are within

0 to 7% for 1 to 4 warps per core. At 8 warps per core that difference grows to 28% and to

50% at 16 warps.

With the addition of the sharing tracker, the performance per mm2 of the configurations

without L2 cache rises much more than of those with, making that configuration the top

choice. The advantage is 40% with 1 warp, 26% with 2, 39% with 4, 31% with 8 and 28%

Chapter 6. Sharing Tracker 111

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16

warps per core

re
la

tiv
e

B
W

no ST
ST covering 128KB
ST covering 256KB
ST covering 512KB
ST covering 1024KB

Figure 6.6: The geometric mean off-chip bandwidth across all kernels using different sized
sharing trackers(ST) (covering 0 to 1 MB of L1 cache entries)normalized to no sharing
tracker. The number of warps per core is varied from 1 to 16.

with 16 warps. Comparing the configuration with the highest performance permm2 (16

warps per core and per core L2 caches) without the sharing tracker to the one with sharing

tracker (16 warps per core, no L2 caches, sharing tracker covering all of the on-chip L1

capacity), there is a 35% improvement.

To more clearly illustrate the benefit of removing the L2’s from each core I plot the ratio

of performance/mm2 for each configuration with and without L2 caches and with different

sized sharing trackers in Figure 6.9.

6.6 Conclusions and Future Work

GPUs have recently emerged as a new platform for high-performance computing. Their

current cache organization is optimized for streaming datawith little temporal locality

and no sharing between cores, and requires software to manage any coherence require-

ments. To efficiently support general-purpose workloads, better support for temporal reuse

is needed. However, as long as GPUs’ main sales volume remains biased toward 3D ren-

dering applications, and these do not require cache coherence, I think it is unlikely that

Chapter 6. Sharing Tracker 112

0

2

4

6

8

10

12

1 2 4 8 16
warps per core

p
er

fo
rm

an
ce

 n
o

rm
al

iz
ed

 t
o

 n
o

L
2

1w
ar

p

no L2
no L2 128KB ST
no L2 256KB ST
no L2 512KB ST
no L2 1MB ST

L2
L2 1MB ST
L2 2MB ST
L2 4MB ST
L2 8MB ST

Figure 6.7: Performance comparison of cores with L2s and without. Performance is the
geometry mean across all kernels normalized to the performance of 1 warp per core and
no L2 cache or sharing tracker. The former 5 bars per configuration are without L2 and the
latter 5 bars are with. The first bar of each group is with sharing tracker turned off and the
rest show performance with sharing trackers of various coverage.

0

1

2

3

4

5

6

7

1 2 4 8 16

warps per core

P
er

fo
rm

an
ce

/A
re

a

no L2
no L2 128KB ST
no L2 256KB ST
no L2 512KB ST
no L2 1MB ST

L2
L2 1MB ST
L2 2MB ST
L2 4MB ST
L2 8MB ST

Figure 6.8: Performance permm2 for cores with and without L2 caches as the number of
warps per core and the sharing tracker are scaled up.

Chapter 6. Sharing Tracker 113

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 4 8 16

warps per core

re
la

ti
ve

 p
er

f/
ar

ea
 o

f
n

o
-l

2
vs

. l
2

no ST

128KB vs.
1MB
256KB vs.
2MB
512KB vs.
4MB
1MB vs.
8MB

Figure 6.9: The ratio of the performance per unit area of configurations with and without
per core L2 cache.

GPU vendors will add full cache coherence in the near future.Since cache coherence is

challenging to implement at large scales in any case, software coherence is an appealing

option for any large-scale multiprocessor, and some other organizations, notably Cell and

RAW, have followed this approach.

This chapter shows that in a throughput-oriented processorwith effective latency-

tolerance mechanisms, a lightweight alternative (called the sharing tracker) to a full on-

chip cache coherency directory provides all of the benefits of cache coherence for sharing

cache lines among multiple caches on a chip, with 4 to 20 timesless area than a coherent

organization. The sharing tracker allows the L2 to be eliminated entirely and still boosts

performance by 3%. Even in the case where the L2 organizationincludes a sharing tracker,

the L1-only organization with sharing tracker only sacrifices 2.4%. The sharing tracker

also reduces off-chip bandwidth by 38–58% compared to the over a conventional L2 or-

ganization, and increases performance permm2 by 35% compared to a design with only

per-core caches. Although my results are obtained with a GPUorganization, the success

of the sharing tracker in that context suggests that other throughput oriented architectures

should evaluate a similar approach. Generalizing this approach poses an interesting direc-

Chapter 6. Sharing Tracker 114

tion for future work.

As manycore CMPs increase the number of cores per chip, the latency of accessing any

global structure will worsen. One way to deal with this problem is by replicating resources,

but this is expensive for large structures. I want to investigate whether I can use the fact

that the sharing tracker is small and does not require precise or up-to-date data, for a design

which distributes multiple copies of the global sharing tracker across a CMP. This can

reduce global on-chip network bandwidth and latency, potentially increasing performance.

Another option I want to investigate is whether a hierarchical sharing tracker, where smaller

sharing trackers cover a subset of cores and can resolve misses before they have to go to

a global sharing tracker, can achieve the same bandwidth andlatency advantages as the

replicated sharing tracker.

Chapter 7

Conclusions

The design of microprocessors has traditionally focused onimproving single-thread perfor-

mance. This was accomplished by taking advantage of the increasing number of transistors

per die due to Moore’s Law and the increasing switching frequency of those transistors with

each process generation. The larger number of transistors were used to design ever larger,

more complex cores, which could execute more instructions per cycle with each generation.

The size of on-chip caches was also rapidly increased, reducing the fraction of memory ac-

cesses which accessed off-chip memory and stalled the processor. The higher switching

frequency of the transistors allowed new cores to run at a higher clock rate. Clock rates

were further increased by increasing the pipeline depth of processors with each new design,

which meant that each each pipeline stage did less work and had less delay, allowing new

designs to be clocked higher, independent of the process generation that they were built in.

The combination of more capable cores, deeper pipelining, and increasing switching speed

of the underlying transistors led to a steady growth in single-thread performance for two

decades [9].

Multiple factors led to the demise of this fortuitous combination. Computer architects

had used several techniques to increase performance per clock cycle over time. By the

115

Chapter 7. Conclusions 116

1990s, they had turned to out-of-order execution, which is alimited form of data-flow exe-

cution combined with bookkeeping structures to make the result appear as if the processor

had executed the program in-order, so as not to complicate the abstract processor model

that programmers had to deal with. While out-of-order coresinitially provided good per-

formance increases, their efficiency decreased steadily asthey were pushed to higher and

higher performance levels. Finally, further performance improvements were only possible

at unacceptable cost. Computer architects therefore relied much more heavily on increas-

ing the pipeline depth of processors, hoping that a faster increase in the achievable clock

rate could offset the constant or decreasing performance per cycle. Decreasing perfor-

mance is possible because aggressively increasing the pipeline depth of a core leads to

lower performance per clock. The Intel Pentium 4 [14] is an example of a design which

traded slightly lower per-clock performance for much higher clock speed. A consequence

of increasing the clockrate faster than simple process scaling allowed was that the power

consumption of microprocessors increased significantly. Rising power consumption due to

aggressively increased clock speeds was one of the reasons that the performance growth of

single-core microprocessors slowed dramatically, but notthe only one.

The model for ideal scaling of CMOS process technology was introduced by Den-

nard [33]. One important feature of Dennard scaling is that it keeps the power consump-

tion of a fixed size chip constant across process generations. At its core was the assumption

that the supply voltage of a chip and the threshold voltage ofthe transistors could be scaled

down each process generation, thereby compensating for higher frequency. The scaling

of threshold voltage has dramatically slowed down or even stopped in recent years, due

to the limits subthreshold leakage sets on threshold voltage. This in turn limits the further

lowering of the supply voltage and leads to increasing, not constant, power consumption as

a chip runs at a higher frequency at a newer process node. The higher power consumption

from both aggressive pipelining and the slowing of supply voltage scaling severly limited

Chapter 7. Conclusions 117

the increase in performance that newer designs could provide.

Once the performance growth of single-core microprocessors slowed, the microproces-

sor industry turned to integrating multiple processor cores in a single processor to further

increase performance. Having multiple cores per die meant that higher clock rates were

not required for higher throughput. In fact, two or more cores could be run at a lower fre-

quency and voltage, and potentially lower power, and still provide higher throughput than a

single core. Note that, unlike previous performance increases of microprocessors, scaling

the number of cores per chip requires programmers to actively change their programs to

exploit more and more parallelism to obtain the full benefit of the increased throughput of

such chip multiprocessors.

The design of CMPs has been an active research topic. Prior work [49, 67] has shown

that asymmetric CMPs, which have a small number of large, high-performance cores and

a large number of small, throughput-oriented cores, can outperform homogeneous CMPs,

where all cores are of the same type. The large, high-performance cores use the same

type of design as the last generation of single-core processors, which are both power- and

area-inefficient. The throughput-oriented cores are much smaller but individually provide

significantly lower performance, leaving a significant gap and leading to sub-optimal per-

formance for many workloads.

To narrow the gap in performance requires building cores which are higher-

performance than throughput cores, but have higher area-efficiency. In Chapter 3, I showed

that an out-of-order core can be built with much smaller, more power efficient structures

than previously thought at only a slight loss of performanceand a gain in both energy- and

area-efficiency [113,114,115].

The design of the new, lightweight structures, the consumer-based issue queue and the

memory alias table, take advantage of several properties oftypical programs when execute

on a speculative out-of-order core.

Chapter 7. Conclusions 118

1. The average number of consumers of a value produced by an instruction is close to

one. Even for instructions which have a large number of consumers, the probability

that a large number of them will be in the instruction window at the same time is

limited. This property of the data-flow graphs of most programs means that tradi-

tional issue queues, which allow a single instruction to haveN−1 consumers in the

issue queue (whereN is the size of the issue queue), are largely overdesigned, even

for aggressive cores.

2. The probability that loads read values produced by storesthat are still in the pipeline

of a processor is small, and performance of small and medium sized cores does

not suffer significantly if the mechanism to deal with such occurrences is slow. It is

enough to have a very small hardware structure which can catch all such occurrences,

even if there is a small probability of false positives, as long as there are no false

negatives.

This new, lightweight out-of-order core has performance only 6.5% lower than a traditional

2-way out-of-order core, while using 22% less area.

Because of differences between and within parallel programs, the optimal number and

size of throughput cores per chip will vary. An ideal future CMP could dynamically com-

bine processing elements into different sizes cores depending on the need of the running

program [49].

While the process of combining an arbitrary number of cores in a single, larger core

seems infeasible, I showed in Chapter 4 how to combine two, throughput-oriented, multi-

threaded, scalar cores into a single larger, higher-performance out-of-order core, using the

lightweight structures previously introduced [113,114,115]. This technique, called Feder-

ation, uses the fact that cores on a chip multiprocessors arevery close and can have very

low latency communication, as well as the fact that the largeregister files of multithreaded

Chapter 7. Conclusions 119

throughput cores can be re-used for the largest buffer structure of an out-of-order core, the

active list. Federation can provide single-thread performance 92.4% higher than any single

core it is built from, provide the full throughput of its constituent cores if needed, yet only

adds a 3.7% area overhead.

Once programs are written to express their computation in a parallel manner to take

advantage of CMPs, this opens up new options for architects.One example is that parallel

programs can run not just on multiple scalar cores, but on cores with SIMD instruction

sets.

SIMD cores have the advantage over scalar cores that they amortize the area and power

of a single core frontend, usually understood to be the instruction cache, fetch, decode and

control logic units, over multiple backends, which consistof the register file, execution

units, and data caches. Compared to a CMP consisting of scalar cores, a CMP using SIMD

cores can be either smaller and lower power, and have the samepeak throughput, or the

same size and power, and have higher peak throughput.

SIMD cores also have several limitations, which can preventthem from reaching their

full potential. For example, programs with irregular memory access patterns often have

low performance on SIMD cores, as the lockstep nature of SIMDexecution forces many

threads to wait on the minority of threads which incurred data cache misses.

In Chapter 5 I proposed a mechanism, called Diverge on Miss, that allows SIMD cores

to continue to execute even if a subset of their threads are waiting on memory. The key

insight that made Diverge on Miss feasible is that it can re-use the control logic which is

already in place in SIMD cores to deal with branch divergence, which occurs when threads

on a SIMD core do not all follow the same control-flow path, andonly needs to add one

small new structure and make incremental changes to anotherstructure. Diverge on Miss

can increase performance by 30% compared to a design with normal SIMD cores.

Another limiting factor for SIMD architectures is the performance of the memory sub-

Chapter 7. Conclusions 120

system. For CMPs using SIMD cores without cache coherency, such as modern graphics

processing units, there is a need for a way cores can find and re-use cache lines in other

cores caches to reduce off-chip bandwidth.

In Chapter 6, I showed how to build an imprecise directory, called the sharing tracker,

at low cost. The sharing tracker takes advantage of the fact that in a non cache-coherent

system a directory lookup can produce wrong or out-of-date information, since it is simply

a performance hint and not required for correctness. The sharing tracker can improve

performance per unit area by 35%, primarily by allowing smaller caches per core while

delivering performance better than a configuration with larger caches.

Overall, this dissertation has focused on architectural techniques to improve the perfor-

mance and efficiency of small cores of future asymmetric chipmultiprocessors. This work

will help future multicore microprocessors achieve higherand more robust performance

for a wide variety of workloads, with lower power and smallerarea.

7.1 Challenges for Manycore Architecture Research

The last five years have been truly momentous in computer architecture research. The

dominance of the sophisticated, speculative out-of-orderarchitectures has given way to

the rise of multicore and then manycore architectures, manyof which use cores which

consciously eschew all the new structures and techniques invented for out-of-order cores

over the last twenty years. Whole fields of inquiry which weremore or less abandoned by

the mainstream of academic research in the early 1990s are once again relevant.

Overshadowing all of this excitement is the uncertainty that nobody knows what soft-

ware future multicore and manycore processors will run. In fact, nobody even knows what

the dominant programming model will be. Many of the applications which are widely used

on today’s desktops do not seem to benefit from much more computing power for their cur-

Chapter 7. Conclusions 121

rent functionality. Most of today’s benchmarks are single-threaded and cannot be used for

judging the qualities of any proposed multicore architecture.

To find applications which architecture researchers can usetoday, they must look for

application domains which already have massive parallelism expressed in their programs.

These include many server workloads, which serve many usersat the same time and can

spawn a thread for each user. Traditional high-performancecomputing programs, which

have been already extensively parallelized to run on supercomputers, are also capable of

using a large number of cores and threads. Computing domainswhich have traditionally

used specialized processors, such as graphics, video and many signal processing work-

loads, can also use many cores efficiently. In fact, it is possible that the mainstream use

of manycore processors with small, efficient cores will leadto these niches to re-adopt

mainstream processors to some degree.

All of these domains have many interesting and hard problems, but which (if any) will

be a major part of future workloads? Without a clear idea of what the workload mix will

look like, researchers are faced with a chicken and egg problem. Without a set of bench-

mark programs, it is impossible to meaningfully evaluate any proposed multicore design.

I was faced with this problem when doing my work on SIMD manycore processors. I had

to search quite widely to find the few programs that I did. It took many years for industry

and academia to come to a consensus, embodied in the SPEC CPU benchmark suite, on

what the right set of benchmarks were to measure the performance of single-threaded pro-

cessors. It is possible that it will take equally long for a consensus to emerge for multicore

processors. Until such a time, researchers in the field of computer architecture will have to

do their own gathering of programs and exploring their characteristics.

Bibliography

[1] Intel Advanced Vector Extensions Programming Reference.

[2] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, andDoug Burger. Clock rate

versus ipc: the end of the road for conventional microarchitectures. InISCA ’00:

Proceedings of the 27th annual international symposium on Computer architecture,

pages 248–259, 2000.

[3] K. Aingaran, P. Kongetira, and K. Olukotun. Niagara: a 32-way Multithreaded

Sparc Processor.Micro, IEEE, 25, 2005.

[4] Yoav Almog, Roni Rosner, Naftali Schwartz, and Ari Schmorak. Specialized Dy-

namic Optimizations for High-Performance Energy-Efficient Microarchitecture. In

2nd International Symposium on Code Generation and Optimization, page 137,

2004.

[5] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porter-

field, and Burton Smith. The Tera Computer System. InICS ’90: Proceedings of

the 4th international conference on Supercomputing, pages 1–6, 1990.

[6] AMD. ATI CTM Guide: Technical reference manual. Technical report, AMD, 2006.

Version 1.01.

[7] AMD. ATI Radeon HD 2900 Technology GPU Specifications, 2007.

122

Bibliography 123

[8] Joshua A. Anderson, Chris D. Lorenz, and A. Travesset. General Purpose Molecular

Dynamics Simulations fully implemented on Graphics Processing Units.J. Comput.

Phys., 227(10):5342–5359, 2008.

[9] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,

Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John

Shalf, Samuel Webb Williams, and Katherine A. Yelick. The Landscape of Parallel

Computing Research: A View from Berkeley. Technical ReportUCB/EECS-2006-

183, EECS Department, University of California, Berkeley,December 18 2006.

[10] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M.

Aamodt. Analyzing CUDA Workloads Using a Detailed GPU Simulator. pages

163–174, 2009.

[11] Luiz André Barroso, Kourosh Gharachorloo, Robert McNamara, Andreas

Nowatzyk, Shaz Qadeer, Barton Sano, Scott Smith, Robert Stets, and Ben Vergh-

ese. Piranha: A Scalable Architecture based on Single-ChipMultiprocessing. In

ISCA ’00: Proceedings of the 27th Annual International Symposium on Computer

Architecture, pages 282–293, 2000.

[12] M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. W. Felten, and J. Sandberg.

Virtual memory mapped network interface for the shrimp multicomputer. In21st

International Symposium on Computer Architecture, May 1994.

[13] David Blythe. The Direct3D 10 system.ACM Trans. Graph., 25(3):724–734, 2006.

[14] Darrell Boggs, Aravindh Baktha, Jason Hawkins, Deborah T. Marr, J. Alan Miller,

Patrice Roussel, Ronak Singhal, Bret Toll, and K.S. Venkatraman. The microar-

chitecture of the intel pentium 4 processor on 90nm technology. Intel Technology

Journal, 8:1–17, 2003.

Bibliography 124

[15] W.J. Bouknight, S.A. Denenberg, D.E. McIntyre, J.M. Randall, A.H. Sameh, and

D.L. Slotnick. The illiac iv system.Proceedings of the IEEE, 60(4):369–388, April

1972.

[16] Michael Boyer, David Tarjan, Scott T. Acton, and Kevin Skadron. Accelerating

Leukocyte Tracking using CUDA: A Case Study in Leveraging Manycore Copro-

cessors. InProceedings of the International Parallel and DistributedProcessing

Symposium, 2009.

[17] E. Brekelbaum, II Rupley, J., C. Wilkerson, and B. Black. Hierarchical scheduling

windows. In 35th International Symposium on Microarchitecture, pages 27–36,

2002.

[18] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a Framework for

Architectural-Level Power Analysis and Optimizations. In27th International Sym-

posium on Computer Architecture, 2000.

[19] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike

Houston, , and Pat Hanrahan. Brook for GPUs: Stream Computing on Graphics

Hardware. InSIGGRAPH, 2004.

[20] Doug Burger, Todd M. Austin, and Steve Bennett. Evaluating Future Microproces-

sors: The Simplescalar Tool Set. Technical Report CS-TR-1996-1308, University

of Wisconsin-Madison, 1996.

[21] Doug Burger, Stephen W. Keckler, Kathryn S. McKinley, Mike Dahlin, Lizy K.

John, Calvin Lin, Charles R. Moore, James Burrill, Robert G.McDonald, William

Yoder, and the TRIPS Team. Scaling to the End of Silicon with EDGE Architectures.

IEEE Computer, 37(7):44–55, 2004.

Bibliography 125

[22] J. Adam Butts and Gurindar S. Sohi. Characterizing and Predicting Value Degree of

Use. In35th International Symposium on Microarchitecture, pages 15–26, 2002.

[23] Alper Buyuktosunoglu, Ali El-moursy, and David H. Albonesi. An oldest-first se-

lection logic implementation for noncompacting issue queues. In15th International

ASIC/SOC Conference, pages 31–35, 2002.

[24] Brad Calder and Dirk Grunwald. Next Cache Line and Set Prediction. In22nd

International Symposium on Computer Architecture, 1995.

[25] Doug Carmean. Future CPU Architectures: The Shift fromTraditional Models.

Intel Higher Education Lecture Series, 2007.

[26] J. B. Carter, J. Bennett, and W. Zwaenepoel. Implementation and performance of

munin. InIn Proceedings of the 13th ACM Symposium on Operating Systems Prin-

ciples, pages 152–164, Oct. 1991.

[27] Jichuan Chang and Gurindar S. Sohi. Cooperative Caching for Chip Multiproces-

sors. InISCA ’06: Proceedings of the 33rd annual international symposium on

Computer Architecture, pages 264–276, 2006.

[28] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,

and Kevin Skadron. A Performance Study of General-Purpose Applications on

Graphics Processors using CUDA.Journal of Parallel and Distributed Computing,

68(10):1370–1380, 2008.

[29] H. Cheong and A.V. Veidenbaum. A cache coherence schemewith fast selective

invalidation. InISCA ’88: Proceedings of the 15th annual international symposium

on Computer architecture, pages 299–307, May 1988.

Bibliography 126

[30] Yuan Chou, Brian Fahs, and Santosh Abraham. Microarchitecture Optimizations for

Exploiting Memory-Level Parallelism.SIGARCH Comput. Archit. News, 32(2):76,

2004.

[31] William J. Dally, Francois Labonte, Abhishek Das, Patrick Hanrahan, Jung-Ho Ahn,

Jayanth Gummaraju, Mattan Erez, Nuwan Jayasena, Ian Buck, Timothy J. Knight,

and Ujval J. Kapasi. Merrimac: Supercomputing with Streams. In SC ’03: Proceed-

ings of the 2003 ACM/IEEE conference on Supercomputing, page 35, 2003.

[32] John D. Davis, James Laudon, and Kunle Olukotun. Maximizing CMP Throughput

with Mediocre Cores. In15th Conference on Parallel Architectures and Compilation

Techniques, 2005.

[33] R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R. LeBlanc. De-

sign of ion-implanted MOSFET’s with very small physical dimensions.Solid-State

Circuits, IEEE Journal of, 9(5):256–268, Oct 1974.

[34] Romain Dolbeau and André Seznec. CASH: Revisiting Hardware Sharing in

Single-Chip Parallel Processors.J. of Instruction-Level Parallelism, 6, 2004.

[35] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu, M. Braganza,

S. Meyers, E. Fang, and R. Kumar. An Integrated Quad-Core Opteron Processor.

Solid-State Circuits Conference, 2007. ISSCC 2007. Digestof Technical Papers.

IEEE International, pages 102–103, Feb. 2007.

[36] Barry Fagin. Partial Resolution in Branch Target Buffers. IEEE Trans. Comput.,

46(10):1142–1145, 1997.

[37] Keith I. Farkas, Paul Chow, Norman P. Jouppi, and ZvonkoVranesic. The multiclus-

ter architecture: reducing cycle time through partitioning. In MICRO 30: Proceed-

Bibliography 127

ings of the 30th annual ACM/IEEE international symposium onMicroarchitecture,

pages 149–159, 1997.

[38] Brian K. Flachs, Shigehiro Asano, Sang H. Dhong, H. Peter Hofstee, Gilles Gervais,

Roy Kim, Tien Le, Peichun Liu, Jens Leenstra, John S. Liberty, Brad W. Michael,

Hwa-Joon Oh, Silvia M. Müller, Osamu Takahashi, Koji Hirairi, Atsushi Kawasumi,

Hiroaki Murakami, Hiromi Noro, Shoji Onishi, Juergen Pille, Joel Silberman, Suk-

soon Yong, Akiyuki Hatakeyama, Yukio Watanabe, Naoka Yano,Daniel A. Broken-

shire, Mohammad Peyravian, VanDung To, and Eiji Iwata. Microarchitecture and

Implementation of the Synergistic Processor in 65-nm and 90-nm SOI.IBM Journal

of Research and Development, 51(5):529–544, 2007.

[39] Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. Dynamic Warp

Formation and Scheduling for Efficient GPU Control Flow. InMICRO ’07: Pro-

ceedings of the 40th Annual IEEE/ACM International Symposium on Microarchi-

tecture, pages 407–420, 2007.

[40] Amit Gandhi, Haitham Akkary, Ravi Rajwar, Srikanth T. Srinivasan, and Konrad

Lai. Scalable load and store processing in latency-tolerant processors.IEEE Micro,

26(1):30–39, 2006.

[41] Ilya Ganusov and Martin Burtscher. Efficient Emulationof Hardware Prefetchers via

Event-Driven Helper Threading. InPACT ’06: Proceedings of the 15th International

Conference on Parallel Architectures and Compilation Techniques, pages 144–153,

2006.

[42] Alok Garg, Fernando Castro, Michael Huang, Daniel Chaver, Luis Pinuel, and

Manuel Prieto. Substituting Associative Load Queue with Simple Hash Tables in

Bibliography 128

Out-of-Order Microprocessors. InISLPED ’06: Proceedings of the 2006 Interna-

tional Symposium on Low Power Electronics and Design, pages 268–273, 2006.

[43] Michael Garland, Scott Le Grand, John Nickolls, JoshuaAnderson, Jim Hardwick,

Scott Morton, Everett Phillips, Yao Zhang, and Vasily Volkov. Parallel Computing

Experiences with CUDA.IEEE MICRO, 28(4):13–27, 2008.

[44] Andy Glew. MLP yes! ILP no! InASPLOS Wild and Crazy Ideas, 1998.

[45] Masahiro Goshima, Kengo Nishino, Toshiaki Kitamura, Yasuhiko Nakashima,

Shinji Tomita, and Shin ichiro Mori. A high-speed dynamic instruction schedul-

ing scheme for superscalar processors. InMICRO 34: Proceedings of the 34th

annual ACM/IEEE international symposium on Microarchitecture, pages 225–236,

Washington, DC, USA, 2001. IEEE Computer Society.

[46] Ed Grochowski, Ronny Ronen, John Shen, and Hong Wang. Best of Both Latency

and Throughput. InICCD ’04: Proceedings of the 22nd International Conference

on Computer Design, pages 236–243, 2004.

[47] Enric Herrero, José González, and Ramon Canal. Distributed Cooperative Caching.

In PACT ’08: Proceedings of the 17th international conferenceon Parallel archi-

tectures and compilation techniques, pages 134–143, 2008.

[48] Phil Hester. 2006 AMD Analyst Day Presentation, 2006.

[49] Mark D. Hill and Michael R. Marty. Amdahl’s Law in the Multicore Era. IEEE

Computer. To appear.

[50] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Doug Carmean, Alan

Kyker, and Patrice Roussel. The microarchitecture of the pentium 4 processor.Intel

Technology Journal, 5:1–13, 2001.

Bibliography 129

[51] H. Peter Hofstee. Power Efficient Processor Architecture and The Cell Processor. In

11th International Conference on High Performance Computer Architecture, pages

258–262, 2005.

[52] M. S. Hrishikesh, Doug Burger, Norman P. Jouppi, Stephen W. Keckler, Keith I.

Farkas, and Premkishore Shivakumar. The optimal Logic Depth per Pipeline Stage

is 6 to 8 FO4 Inverter Delays. InISCA ’02: Proceedings of the 29th annual interna-

tional symposium on Computer architecture, 2002.

[53] Michael Huang, Jose Renau, and Josep Torrellas. Energy-Efficient Hybrid Wakeup

Logic. In ISLPED ’02: Proceedings of the 2002 International Symposium on Low

Power Electronics and Design, 2002.

[54] Jaehyuk Huh, Changkyu Kim, Hazim Shafi, Lixin Zhang, Doug Burger, and

Stephen W. Keckler. A nuca substrate for flexible cmp cache sharing. In ICS ’05:

Proceedings of the 19th annual international conference onSupercomputing, pages

31–40, 2005.

[55] Enginİpek, Meyrem Kırman, Nevin Kırman, and José Martı́nez. Core Fusion: Ac-

commodating Software Diversity in Chip Multiprocessors. In 34th International

Symposium on Computer Architecture, 2007.

[56] Tim Johnson and Umesh Nawathe. An 8-core, 64-thread, 64-bit Power Efficient

Sparc Soc. InISSCC’07, pages 2–2, 2007.

[57] Norman P. Jouppi. Cache Write Policies and Performance. In ISCA ’93: Proceed-

ings of the 20th annual international symposium on Computerarchitecture, pages

191–201, 1993.

Bibliography 130

[58] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy. In-

troduction to the cell processor.IBM Journal of Research and Development, 49(4/5),

2005.

[59] R. Kalla, Balaram Sinharoy, and J.M. Tendler. IBM Power5 Chip: A Dual-Core

Multithreaded Processor.Micro, IEEE, 24(2):40–47, Mar-Apr 2004.

[60] Ujval J. Kapasi, Scott Rixner, William J. Dally, BrucekKhailany, Jung Ho Ahn,

Peter Mattson, and John D. Owens. Programmable Stream Processors.IEEE Com-

puter, pages 54–62, August 2003.

[61] R.E. Kessler, E.J. McLellan, and D.A. Webb. The Alpha 21264 Microprocessor

Architecture. InICCD ’98: Proceedings of the 16th International Conferenceon

Computer Design, 1998.

[62] Changkyu Kim, Doug Burger, and Stephen W. Keckler. An adaptive, non-uniform

cache structure for wire-delay dominated on-chip caches. In ASPLOS-X: Proceed-

ings of the 10th international conference on Architecturalsupport for programming

languages and operating systems, pages 211–222, 2002.

[63] Changkyu Kim, Simha Sethumadhavan, M. S. Govindan, Nitya Ranganathan, Divya

Gulati, Doug Burger, and Stephen W. Keckler. Composable Lightweight Processors.

In 40th International Symposium on Microarchitecture, 2007.

[64] L. Kohn, G. Maturana, M. Tremblay, A. Prabhu, and G. Zyner. The visual instruc-

tion set (vis) in ultrasparc.Compcon ’95.’Technologies for the Information Super-

highway’, Digest of Papers., pages 462–469, Mar 1995.

Bibliography 131

[65] Gurhan Kucuk, Oguz Ergin, Dmitry Ponomarev, and Kanad Ghose. Distributed

reorder buffer schemes for low power. InICCD ’03: Proceedings of the 21st Inter-

national Conference on Computer Design, 2003.

[66] R. Kumar, N.P. Jouppi, and D.M. Tullsen. Conjoined-Core Chip Multiprocessing.

In 37th International Symposium on Microarchitecture, pages 195–206, 2004.

[67] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Norman P. Jouppi,

and Keith I. Farkas. Single-ISA heterogeneous multi-core architectures for mul-

tithreaded workload performance. In31st International Symposium on Computer

Architecture, page 64, 2004.

[68] Erik Lindholm, John Nickolls, Stuart Oberman, and JohnMontrym. Nvidia tesla:

A unified graphics and computing architecture.IEEE Micro, 28(2):39–55, 2008.

[69] Gabriel H. Loh. The Cost of Uncore in Throughput-Oriented Many-Core Proces-

sors. InWorkshop on Architectures and Languages for Throughput Applications,

2008.

[70] Milo M. K. Martin, Pacia J. Harper, Daniel J. Sorin, MarkD. Hill, and David A.

Wood. Using destination-set prediction to improve the latency/bandwidth tradeoff

in shared-memory multiprocessors. InISCA ’03: Proceedings of the 30th annual

international symposium on Computer architecture, pages 206–217, 2003.

[71] C. McNairy and R. Bhatia. Montecito: A Dual-Core, Dual-Thread Itanium Proces-

sor. Micro, IEEE, 25(2):10–20, March-April 2005.

[72] Jiayuan Meng, David Tarjan, and Kevin Skadron. Leveraging Memory Level Paral-

lelism Using Dynamic Warp Subdivision. Technical Report CS-2009-02, University

of Virginia, 2009.

Bibliography 132

[73] Francisco J. Mesa-Martinez, Joseph Nayfach-Battilan, and Jose Renau. Power

Model Validation Through Thermal Measurements. In34th International Sympo-

sium on Computer Architecture, 2007.

[74] Michael Mantor. Radeon R600, a 2nd Generation Unified Shader Architectur, 2007.

[75] Pierre Michaud, André Seznec, and Stéphan Jourdan. An Exploration of Instruc-

tion Fetch Requirement in Out-of-Order Superscalar Processors. Int. J. Parallel

Program., 29(1):35–58, 2001.

[76] Gordon E. Moore. Cramming more components onto integrated circuits.Electronics

Magazine, 38(8), 1965.

[77] A. Munshi. The OpenCL specification, version 1.0, document revision 29, Dec.

2008.

[78] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt. Runahead Execution:

An Alternative to Very Large Instruction Windows for Out-of-Order Processors. In

9th International Conference on High Performance ComputerArchitecture, page

129, 2003.

[79] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and A. Choudhary.

MineBench: A Benchmark Suite for Data Mining Workloads. InWorkload Charac-

terization, 2006 IEEE International Symposium on, pages 182–188, 2006.

[80] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel

programming with cuda.Queue, 6(2):40–53, 2008.

[81] NVIDIA. NVIDIA CUDA Compute Unified Device Architecture Programming

Guide. Technical report, NVIDIA Corporation, Feb. 2007. Version 0.8.

Bibliography 133

[82] Stuart Oberman, Greg Favor, and Fred Weber. Amd 3dnow! technology: Architec-

ture and implementations.IEEE Micro, 19(2):37–48, 1999.

[83] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung

Chang. The Case for a Single-Chip Multiprocessor. InASPLOS-VII: Proceedings

of the seventh International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 2–11, 1996.

[84] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krger,

Aaron E. Lefohn, and Timothy J. Purcell. A Survey of General-Purpose Compu-

tation on Graphics Hardware. InEurographics 2005, State of the Art Reports, pages

21–51, August 2005.

[85] A. Peleg and U. Weiser. Mmx technology extension to the intel architecture.Micro,

IEEE, 16(4):42–50, Aug 1996.

[86] M.K. Qureshi. Adaptive Spill-Receive for robust high-performance caching in

CMPs. InHigh Performance Computer Architecture, 2009. HPCA 2009. IEEE 15th

International Symposium on, pages 45–54, 2009.

[87] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, SimonC. Steely, and Joel Emer.

Adaptive insertion policies for high performance caching.In ISCA ’07: Proceedings

of the 34th annual international symposium on Computer architecture, pages 381–

391, New York, NY, USA, 2007. ACM.

[88] Matthias Raab, Leonhard Grünschloss, Johannes Hanikaz, Manuel Finckh, and

Alexander Keller. bwfirt.

Bibliography 134

[89] Amir Roth. Store Vulnerability Window (SVW): Re-Execution Filtering for En-

hanced Load Optimization. In32nd International Symposium on Computer Archi-

tecture, 2005.

[90] Richard M. Russell. The cray-1 computer system.Commun. ACM, 21(1):63–72,

1978.

[91] N. Sakran, M. Yuffe, M. Mehalel, J. Doweck, E. Knoll, andA. Kovacs. The Im-

plementation of the 65nm Dual-Core 64b Merom Processor.Solid-State Circuits

Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International,

pages 106–590, Feb. 2007.

[92] T. Sakurai and A.R. Newton. A simple MOSFET model for circuit analysis.Electron

Devices, IEEE Transactions on, 38(4):887–894, Apr 1991.

[93] Pierre Salverda and Craig Zilles. Fundamental Performance Challenges in Hori-

zontal Fusion of In-Order Cores. In14th International Conference on High Perfor-

mance Computer Architecture, page ??, 2008.

[94] Peter G. Sassone, Jeff Rupley II, Edward Brekelbaum, Gabriel H. Loh, and Bryan

Black. Matrix Scheduler Reloaded. In34th International Symposium on Computer

Architecture, 2007.

[95] Toshinori Sato, Yusuke Nakamura, and Itsujiro Arita. Revisiting direct tag search

algorithm on superscalar processors. Inin Proc. of Workshop on ComplexityEffective

Design, held in conjunction with ISCA28, 2001.

[96] Michael Schatz, Cole Trapnell, Arthur Delcher, and Amitabh Varshney. High-

Throughput Sequence Alignment using Graphics Processing Units. BMC Bioin-

formatics, 8(1):474, 2007.

Bibliography 135

[97] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash, Pradeep

Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, RobertCavin, Roger Es-

pasa, Ed Grochowski, Toni Juan, and Pat Hanrahan. Larrabee:a many-core x86

architecture for visual computing.ACM Trans. Graph., 27(3):1–15, 2008.

[98] Simha Sethumadhavan, Rajagopalan Desikan, Doug Burger, Charles R. Moore, and

Stephen W. Keckler. Scalable Hardware Memory Disambiguation for High ILP

Processors. In36th International Symposium on Microarchitecture, page 399, 2003.

[99] André Seznec, Stephen Felix, Venkata Krishnan, and Yiannakis Sazeides.

Design Tradeoffs for the Alpha EV8 Conditional Branch Predictor. In29th Interna-

tional Symposium on Computer Architecture, pages 295–306, 2002.

[100] Tingting Sha, Milo M. K. Martin, and Amir Roth. Scalable Store-Load Forwarding

via Store Queue Index Prediction. In38th International Symposium on Microarchi-

tecture, pages 159–170, 2005.

[101] Tingting Sha, Milo M. K. Martin, and Amir Roth. NoSQ: Store-Load Communica-

tion without a Store Queue. In39th International Symposium on Microarchitecture,

pages 285–296, 2006.

[102] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automatically

Characterizing Large Scale Program Behavior. In10th International Conference on

Architectural Support for Programming Languages and Operating Systems, pages

45–57, 2002.

[103] Shyamkumar Thoziyoor and Naveen Muralimanohar and Jung Ho Ahn and Norman

P. Jouppi. CACTI 5.1. Technical Report HPL-2008-20, HP Labs, 2008.

Bibliography 136

[104] Dezsö Sima. The Design Space of Register Renaming Techniques. IEEE Micro,

20(5):70–83, 2000.

[105] Aaron Smith, Jim Burrill, Jon Gibson, Bertrand Maher,Nick Nethercote, Bill Yoder,

Doug Burger, and Kathryn McKinley. Compiling for EDGE Architectures. In4th

International Symposium on Code Generation and Optimization, 2006.

[106] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar processors.

In ISCA ’98: 25 years of the international symposia on Computerarchitecture (se-

lected papers), pages 521–532, New York, NY, USA, 1998. ACM.

[107] B. Stackhouse, S. Bhimji, C. Bostak, D. Bradley, B. Cherkauer, J. Desai, E. Fran-

com, M. Gowan, P. Gronowski, D. Krueger, C. Morganti, and S. Troyer. A 65 nm

2-Billion Transistor Quad-Core Itanium Processor.Solid-State Circuits, IEEE Jour-

nal of, 44(1):18–31, Jan. 2009.

[108] Per Stenström. A Survey of Cache Coherence Schemes for Multiprocessors.Com-

puter, 23(6):12–24, 1990.

[109] B. Stolt, Y. Mittlefehldt, S. Dubey, G. Mittal, M. Lee,J. Friedrich, and E. Fluhr.

Design and Implementation of the POWER6 Microprocessor.Solid-State Circuits,

IEEE Journal of, 43(1):21–28, Jan. 2008.

[110] Samuel S. Stone, Justin P. Haldar, Stephanie C. Tsao, Wen-mei W. Hwu, Zhi-Pei

Liang, and Bradley P. Sutton. Accelerating Advanced MRI Reconstructions on

GPUs. InCF ’08: Proceedings of the 5th conference on Computing frontiers, pages

261–272, 2008.

Bibliography 137

[111] Samantika Subramaniam and Gabriel H. Loh. Fire-and-Forget: Load/Store Schedul-

ing with No Store Queue at All. In39th International Symposium on Microarchi-

tecture, pages 273–284, 2006.

[112] M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt. Accelerat-

ing critical section execution with asymmetric multi-corearchitectures. InASPLOS

’09: Proceeding of the 14th international conference on Architectural support for

programming languages and operating systems, pages 253–264, 2009.

[113] David Tarjan, Michael Boyer, and Kevin Skadron. Federation: Very low overhead

Out-of-Order Execution.ACM Transactions on Architecture and Code Optimiza-

tion, accepted pending major revisions.

[114] David Tarjan, Michael Boyer, and Kevin Skadron. Federation: Out-of-Order Exe-

cution using Simple In-Order Cores. Technical Report CS-2007-11, Dept. of Comp.

Sci., Univ. of Virginia, Aug. 2007.

[115] David Tarjan, Michael Boyer, and Kevin Skadron. Federation: Repurposing Scalar

Cores for Out-of-Order Instruction Issue. InProceedings of the 45th annual Con-

ference on Design Automation (DAC), pages 772–775, 2008.

[116] S. Thakkur and T. Huff. Internet streaming simd extensions. Computer, 32(12):26–

34, Dec 1999.

[117] Marc Tremblay and J. Michael O’Connor. UltraSparc I: AFour-Issue Processor

Supporting Multimedia.IEEE Micro, 16(2):42–50, 1996.

[118] Jessica H. Tseng and Krste Asanovic. RingScalar: A Complexity-Effective Out-of-

Order Superscalar Microarchitecture. Technical Report MIT-CSAIL-TR-2006-066,

MIT CSAIL, Sep. 2006.

Bibliography 138

[119] L.W. Tucker and G.G. Robertson. Architecture and applications of the connection

machine.Computer, 21(8):26–38, Aug 1988.

[120] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Walter

Lee, Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua, Jonathan

Babb, Saman Amarasinghe, and Anant Agarwal. Baring It All toSoftware: Raw

Machines.Computer, 30(9):86–93, 1997.

[121] Hongtao Zhong, Steven A. Lieberman, and Scott A. Mahlke. Extending Multicore

Architectures to Exploit Hybrid parallelism in Single-thread Applications. In13th

International Conference on High Performance Computer Architecture, 2007.

	Introduction
	CMOS Scaling and its Implications for Processor Architecture
	Motivation for Chip Multi-Processors (CMPs)
	Why Asymmetric Manycore CMPs?
	A Short Primer on SIMD
	GPUs as an Example of Modern SIMD Architectures
	Tradeoffs between Multithreading and Cache Size
	Contributions of this Dissertation

	Related Work
	Power-Efficient Out-of-Order Structures
	Combining Cores
	SIMD Hardware
	Diverge on Miss
	Sharing Tracker

	Lightweight Out-of-Order Execution
	CMP Architecture Tradeoffs
	Minimal Branch Prediction
	Consumer-Based Issue Queue
	Replacing the Load/Store Queue with the Memory Alias Table
	Simulation Setup
	Results
	Conclusion

	Federation
	Background
	Out-of-Order Pipeline
	Simulation Setup
	Results
	Federating 2-way Cores
	Conclusions and Future Work

	Diverge on Miss
	Introduction
	Background on SIMD Divergence Handling
	Diverge on Miss
	Limiting Thread Divergence
	Hardware Overhead
	Experimental Setup
	Evaluation
	Conclusion

	Sharing Tracker
	Introduction
	GPU Cache Architecture and Memory Model
	Adapting Coherency Hardware
	Simulator
	Evaluation
	Conclusions and Future Work

	Conclusions
	Challenges for Manycore Architecture Research

	Bibliography

