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Abstract

The microprocessor industry has had to switch from devabtppver more complex and
more deeply pipelined single-core processors to multipooeessors due to running into
power, thermal and complexity limits.

Future microprocessors will be asymmetric manycore chiftipracessors, with a
small number of complex cores for serial programs and sszi@lons of parallel programs.
The majority of the cores will be small, power- and area-gffitcores to maximize overall
throughput in a limited power budget.

The main contributions of this dissertation are technigieesmproving the perfor-
mance and area-efficiency of these throughput-orientegscorhis work shows how the
single-thread performance of small, scalar cores can beased or dynamically combined
to speed up programs with only a limited number of paralletdls. It also shows how
to improve both the cores and the cache subsystem of mudtimarcessor using SIMD

cores.
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Chapter 1

Introduction

Until recently the main goal for processor designers wastarove single-thread latency
with each successive processor generation. Each procamsiained a single-core, and
architects took advantage of Moore’s Law [76] to increasthlibe sophistication and
the frequency of this core with each generation. By imprguime sophistication of the
core, the core was capable of executing more instructiongysge (through extracting
higher levels of instruction-level-parallelism (ILP))aithe higher frequency allowed the
core to execute more cycles per second. These two trendhéogalowed mainstream
processors to execute instructions at an ever higher ratvegn 1986 and 2002 single-
thread performance improved at a 52% annual rate [9].

The great benefit of this trend was that software written fdipoocessors could always
take advantage of the higher performance offered by newegsmrs without having to
change any of their core algorithms.

The cost of this trend was that both the complexity of prooesand their power con-
sumption grew rapidly along with their performance. Theesh&ze of these complex
processors posed limitations to their further success yveas getting harder and harder for

different parts of a processor to communicate with eachratiside a single cycle [37].
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In addition, the techniques used to extract higher perecgelrformance were running into
diminishing returns [2], with small performance increassguiring very large increases in
core area. But the real limiting factor turned out to be a coiaiion of the growing com-
plexity of processors and fundamental changes in how theryidg CMOS technology

was scaling.

1.1 CMOS Scaling and its Implications for Processor Ar-
chitecture

Even though the term Moore’s Law [76] is used colloquiallyréder to all the improve-
ments in semiconductor technology over time, a much moscppive explanation of the
continuing improvements in CMOS technology, which has idemmainstream technol-
ogy for semiconductor devices for approximately 30 yeaxs, mDennard scaling

Dennard scaling [33] describes scaling rules for CMOS tstois which improve den-
sity, frequency and power at the same time. These scalis sghown in Table 1.1)
require that all the important physical dimensions of agdrstor are scaled by the same
factor (k). To maintain a constant electrical field strength and atamigower density as
the size of the transistors is scaled down, the supply vekag is also scaled down by
K. The threshold voltagé, also needs to be scaled downiyo have the current | scale
down byk [92].

Since the advent of CMOS technology, the semiconductorsingdnas roughly suc-
ceeded in following Dennard scaling. As a consequence,omiocessors built in CMOS
technology enjoyed ever higher frequencies and tranststonts, increasing the perfor-
mance of microprocessors over time independently of imgmmaants in the design of mi-

croprocessors. The power consumption and power densityoobprocessors did not stay



Chapter 1. Introduction 3

Variable Scaling Factor

Oxide Thicknessyy, Gate Width and Length W & L 1/K
Doping Concentratioi, K

Supply and threshold voltadlq & Vin 1/K

Current | 1/K

CapacitanceA /tox 1/K

Delay time/circuitV C/I 1/

Power dissipation/circu¥ | 1/K?
Power density/ C/A 1

Table 1.1: Dennard scaling rules for the main variablesctifig MOSFET transistors.

constant, as would be expected from simple Dennard scddewpuse designers opted for
larger dies and more aggressive pipelining (leading todriflequencies) [52] to achieve
even higher performance levels.

This trend was greatly worsened in recent years as the iieduict supply voltage
has slowed down significantly compared to the continuedrsgah feature size. With
supply voltage scaling more slowly than transistor dengibyver density and total power
dissipation became the primary limiting factors for mia@gessors.

The primary reason that supply voltage scaling has slowaahds that a certain ratio
of supply voltage to threshold voltage needs to be maintiimeun a transistor at optimal
speed. The problem is that scaling of the threshold voltggéas almost stopped. The
scaling of threshold voltage in turn is primarily limited bybthreshold leakage, that is the
amount of current flowing through a CMOS transistor even wihéhturned off. Since

subthreshold leakage is exponentially dependent on thbrghold voltage,

lgup 0 € VN (1.1)

as shown in equation 1.1, there comes a point where furtharing of the threshold
voltage leads to unacceptable increases in subthrestaidde. For a given generation of

CMOS technology the amount of subthreshold leakage can hiEfietbin several ways.
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The most obvious is to produce transistors with higher tiwkekvoltages, but these have
slower switching speeds than those with regular threshalldges. There are many other
possibilities, but all of them either increase the cost aidpiction or negatively effect the
speed of the transistors. Overall, no currently availabtdhology can decrease leakage
fast enough for the normal scaling of threshold voltage tdiooe at anywhere close to its
historical rate.

Designers responded these trends by designing the cuesatagion of microproces-

sors to be more power efficient. They did this in several ways:

e They backed off the very aggressive pipelining that had heseal in the last gener-

ation of microprocessors (such as the Pentium 4 [50, 14]¢toehse power-density.

e They slowed down frequency scaling drastically for evers¢hkess aggressively
pipelined cores, such that today only a single commerciadyet (the IBM Power
6 [109]) exceeds 4 GHz in clock speed, even though a 3.8 GHuPed [14] was
introduced in 2004. Thanks to much less aggressive frequiamngets, it was pos-
sible to be much more aggressive in replacing regular tlotdsdmd low threshold
transistors with high threshold transistors throughorgdgarts of the core logic of

many recent processors.

e The size of new core designs was either scaled back or oldresgre just shrunk
with technology. For example, two Intel Core 2 Duo [91] comgkich is the succes-
sor to the Pentium 4, occupy a similar area as a single PedtiBrescott [14] when

compared at the same technology node. core)

e Single-thread performance was de-emphasized in sevesade[3, 56], which
meant that the size and complexity of the cores could be d¢dadek to the level

of the early 1990’s.
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1.2 Motivation for Chip Multi-Processors (CMPSs)

The pull-back from ever larger and ever faster single caftshe designers with the ques-
tion of how to best use the continuing increase in transistwnbers. One option was to
just dedicate an ever larger portion of the die area to cathgsince caches have dimin-
ishing returns with increasing size, the end user would sée avery small increase in
performance. Another option was to integrate more systerationality on the CPU die
itself. This strategy is being followed by many companies,tbe number of system com-
ponents which show a big benefit from having a very high-spleedlatency connection
to the CPU core is limited.

The option which the industry as a whole adopted was to iategnultiple cores on
a single die, hoping that there were enough parallel prograhich could take advantage
of multiple cores per chip, even if single-thread latencyg wat decreased. The name chip
multi-processor (CMP) has become popular for such designs.

The first and second generation of CMPs has used core desigm#ife last generation
of single-core processors or new designs of similar conitgleXhis limited the number
of cores per die to two initially, and four cores with the nexocess generation, while
single-thread performance stayed constant or increasegimably over the last generation

of single-core processors.

1.3 Why Asymmetric Manycore CMPs?

With the transition from single-core processors to CMPegpmms have to be parallel to
take advantage of the increasing throughput offered by CMBs$he number of cores per
die increases over time and the performance of a single noreases only slowly or even

stagnates, the gap between serial and parallel prograrmgraw wider and wider.
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But even if all programs are parallelized, the maximum nundfehreads that each
program will be able to take advantage of at any given poirtinre will vary widely.
Another problem is that even programs which can take adgarg@a virtually unlimited
number of threads will have some portion of their executioretbe serial. As Hill and
Marty point out [49], the overall speedup for such prograsmguickly limited by the serial
portion of the program.

Computer architects are faced with a number of questionswieiding the high-level
design of future processors.

How many cores should be on the die, and what is their indalidingle-thread per-
formance? There is a clear tradeoff between more and lefsrpant cores, as many
structures of high performance cores increase superdingacomplexity with increas-
ing performance [75]. This relationship holds true not jigstarea, but also for power-
efficiency, as higher performance cores are typically adss power efficient [46]. For
applications with sufficient parallelism, Daws al.[32] and Carmean [25] show that max-
imum aggregate throughput is achieved by using a large nuofbdgghly multithreaded
scalar cores. Designs which sacrifice single-thread padoce and have a large number
of small, simple cores have been callednycoreprocessors, to distinguish such designs
from the current multicore designs, which have fewer, laogees.

How far should changes in the cores go to maximize power- el etfficiency? Since
the workload of a manycore CMP consists of parallel prograhes question becomes if
a different, more parallel ISA could be used to make furtheng in efficiency. Single
Instruction Multiple Data (SIMD) organization are such gtion. A SIMD core the same
instruction for multiple threads in lockstep. See Sectighfar a more detailed discussion
of SIMD architectures.

Once a program has been expressed in a parallel fashion aredeaute using multiple

threads, the changes to execute the same program on SIM2lately minor. This
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is especially true for array type SIMD ISAs since they prédba programmer with the
abstraction of a number of normal, sequential programschvhuist execute faster if all
threads follow the same control-flow path. SIMD ISAs are draative choice compared
to scalar ISAs for the small, throughput-oriented coresi¢esicores implementing these
ISAs can amortize both the area and power of a core’s fronte@ed multiple backends.
The power and area benefits of SIMD ISAs have been shown inrshovecent graphics
processing units(GPUs) [68, 74], the Imagine [60] and Meag [31] architectures, and
the Cell processor’s [51] Synergistic Processing Elem@&k Note that SIMD cores are
not well suited for programs where each thread has veryrdiftecontrol-flow, as this type
of program will underutilize the SIMD hardware. The recgrghnounced Intel Larrabee
architecture [97] tries to deal with this problem by combmivide SIMD units with small
scalar cores, allowing such a processor to have high pesiocenon a wider variety of
workloads.

Should there be only a single type of core for the whole chipa mix of large and
small cores? Work by Hill and Marty [49], Kumagt al. [67] and Sulemaret al. [112]
shows that having at least a single high performance corerig lveneficial for overall
throughput, even if the high performance core uses the ata@ver of multiple smaller
cores. CMPs with a mix of large and small cores are cal®gnmetrior heterogeneous
CMPs.

My extrapolation from the above mentioned body of work ist thduture CMP will
have a combination of core types. It will have a small numliéarge, high-performance
cores and a large number of small, throughput cores. Thaghimut cores will themselves
be divided between scalar and SIMD cores, to provide a maxiwiiflexibility and power-

and area-efficiency.
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add r2, 15, r7

Figure 1.1: A SIMD core broadcasts a single instruction tmynthreads, which execute
the instruction in lockstep.

1.4 A Short Primer on SIMD

As shown in Figure 1.1 SIMD architectures execute a singleruiction on multiple pieces
of data, but the way this capability is expressed to the punogner divides the architectures
into two classes: vector and array architectures.

Vector computers expose to the programmer vector regjstdish hold multiple data
words. Instructions operate on these large registersngaieshing more work per instruc-
tion than to scalar machines. Each scalar word in a vect@stezdhas a specific position in
the vector, and this position along with the associatedwdi@tresources are often called
vector lanes. The programmer has to specify explicitly howoad values into these large
registers, either from a contiguous chunk of memory or uantgtrary per vector lane ad-
dresses. The later operation is often called a gather (ibpieeation is a load) or a scatter
(if the operation is a store). If there are branches whicteddpmn per vector lane values,
the programmer has to manually make sure that only the véates taking a particular
branch receive updated values. This is often accomplissied a bitmask called the active

mask.
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Array computers in the tradition of the llliac IV [15] pregehe abstraction that each
core is made up of a number of separate processing eleménte@eh of which is scalar.
Instructions are fetched through a separate unit and basade each individual PE. If a
PE does not follow a conditional branch it simply does notcete instructions which are
broadcast while the rest of the PEs execute the branch. 8iymcatter/gather operations
are simply normal stores and loads.

The advantage of vector processors is that direct regigtezgister communication
in different lanes is expressed more naturally (so callettorgpermutations), while ar-
ray processors are more natural in dealing with divergentrobflow and scatter/gather
operations.

SIMD architectures have a built in advantage in how theyesgarformance with
Moore’s Law. In contrast to scalar architectures, whichuregitechniques like increased
pipelining, larger caches or sophisticated ILP extractechniques to increase perfor-
mance, SIMD architectures can in theory increase perfocennearly simply by increas-
ing their SIMD width. This means that the area-efficiency B architectures stays the
same or even increases as they increase their performareze-efficiency increases as the
constant area of a single frontend is amortized over a largetber of backends. | say in
theory, because most applications have a limited numbeataf points they can operate
on in parallel. This number can range from the single digitthe millions, but unless a
SIMD architecture wants to limit the range of programs thaan usefully run, it cannot
increase its SIMD width arbitrarily.

This simple mechanism for increasing performance with essh technology node
meant that array and vector based SIMD architectures iwadity eschewed the use of
caches or other auxiliary structures which would have ugeatea which could have been
devoted to the SIMD data path.

While SIMD architectures have not been used by mainstreathi@&nufacturers, they
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Figure 1.2: An illustration of current GPU architecture$?@& contain many small cores,
each with its own private caches (only one is shown for siaiyli. Each core has multiple
ALU lanes, which execute instructions in lockstep. The stagifile of each core is large
enough to hold the register state of many threads. When a SjMDp (called a warp)

stalls on along latency operation, a hardware schedulenesk this latency by continuing
to execute other warps.

have been adopted by the manufacturers of graphics pragessits (GPUs). | will use

the example of GPU architecture

1.5 GPUs as an Example of Modern SIMD Architectures

Graphics processing units (GPUs) were once fixed-functiardvare for 3D render-

ing. Demand for increasing programmability for such aggilmns have gradually driven
GPU architectures to become general-purpose manycorigeatcines (embedded within a
system-on-chip including various 3D-specific accelergtorhe introduction of hardware
and software support for general-purpose programminguages on the GPU [19, 77, 80]
has allowed GPUs to become a viable platform for genergbqme computing.

GPUs are optimized to provide high-throughput and to toéefi@quent long-latency
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accesses to graphics memory. This is due to the nature ofdpaigs workload that inher-
ently has a very large number of independent tasks (hundfedeusands of triangles and
millions of pixels per rendered frame) and data accessrpatteith little temporal locality.
As a consequence, GPUs have adopted an architecture simtlae MTA Tera [5]. As
shown in Figure 1.2, each core is heavily multi-threadedsaeduling hardware decides
each cycle which of the many threads to execute. This is sBacgsince threads frequently
stall due to accesses to graphics memory, and many threadeaded to keep the ALU
unit of a core reasonably occupied. In addition, each coes asSIMD execution model
and executes multiple threads in a single clock cycle. Thgswization is again a con-
sequence of the graphics workload, where nearby tasks ex#@isame program (called
shaders) and there is minimal control-flow divergence betwasks which execute the
same program. A SIMD organization amortizes the area ancpowerhead of a core’s
frontend over many backends, increasing the total comiputtpower achievable within
a given power and area envelope. Note that SIMD lanes areredféo as threads and
SIMD groups as warps or wave fronts in GPU terminology. | wik the terms thread and
warp throughout this chapter.

GPUs do have caches, although the are much smaller than¢hescaf CPUs. The
question might be asked why GPUs have any caches for datasaheé they are optimized
to tolerate latency. The answer is that GPU caches are muosiynt as bandwidth savers

and not as a way to decrease latency of memory accesses.

1.6 Tradeoffs between Multithreading and Cache Size

As noted above, GPUs employ heavy multi-threading as a wiylé¢cate memory latency.
When adding traditional caches, which in this context afendd as supporting both reads

and writes and having an access latency substantially |tvweer memory latency, there
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Figure 1.3: Tradeoffs in choosing core types

is an interesting balance between number of warps per careéhensize of the per-core
caches. More warps per core increase memory latency take@md performance, while
increasing cache size for a given warp count will increaseale, decrease average mem-
ory latency and increase performance. But there is the gnolthat for a given cache size
increasing the number of warps per core will put more presesuarthe cache, sometimes
leading to cache thrashing and a sudden jump in the requifezhip bandwidth and a
decreasen performance.

While more warps per core increases performance, it alseases the size of the
register file to hold the larger number of threads, as welbdsriially requiring an increase
in the size of caches to prevent “thrashing”. The best perémice per unit of area is not
necessarily achieved with the maximum number of warps pértia@ largest cache as |

will show in Section 6.5.
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1.7 Contributions of this Dissertation

To run the widest range of programs well, an asymmetric CMRBtrohoose the right
balance between the different types of cores, as well asmg@ieach component. Another
issue is that, if there are large gaps between the diffempttgpes in terms of single-thread
performance or number of threads they are capable of runpiragrammers will have
a harder time getting the best performance form such a systelar all circumstances.
This point was illustrated by Marty and Hill [49], who showéthat the ideal case for
future CMPs would be if the hardware could fluidly reconfigiiself from running as a
single, extremely capable single-threaded core to a veyg laumber of simple processing
elementsand all configurations in between

While such a system is clearly infeasible, it is clear thghametric CMPs will have
different core types distributed along a curve, as illusttan Figure 1.3, with the left side
being the large and fast cores, the middle being made up dfmaughput oriented scalar
cores and the right side of the curve being made up of SIMDsceith low single-thread
performance but maximum throughput and area efficiency.

This dissertation focuses on optimizing the architectdrnmughput-oriented scalar
and SIMD cores, which are the middle and left side of the cphed curve.

Chapter 2 gives an overview of related work in the areas I@epland explains how
they relate to my own work.

| then focus on the gap in performance between the large;peglormance cores and
the throughput-oriented scalar cores. For optimal peréme across the widest range of
programs possible, the gap should be as small as possiblem#king the throughput-
oriented cores faster, by replacing them with small outtafer cores, might use too much
area and sacrifice too much throughput. | show in Chaptertdtlieof-order execution for

small cores can be much cheaper than previously imagindgdasd might make sense to
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have slightly large, but much more capable MIMD cores, retyithe gap in single-thread
performance between the large cores and the throughput MiMBs. The fundamental
insight in this chapter is that the traditional circuit stiwres needed for speculative out-of-
order execution are overdesigned and not used efficientlpgithe common case.

In Chapter 4 | show another possible solution, by combinimg inultithreaded, in-
order, scalar cores dynamically at runtime into a largerfastér out-of-order core. Both
of these solutions allow an asymmetric CMP to have robudopeance for a wider range
of active threads. The key insight of my proposed solutidhas the large register files of
multithreaded cores can be repurposed to hold the re-oudfare of an out-of-order core
and that, by not aiming for a very high-performance core,aberheads of a distributed
core can be kept within acceptable bounds.

After having focused on the middle part of the curve in the ftin® chapters, | then
investigate the memory performance bottlenecks of SIM2gowhich have turned out to
be the real limiters for SIMD cores.

In my proposal for this dissertation, | promised to investegways in which SIMD
cores could split SIMD groups at runtime, to increase theifgrmance when the control-
flow of threads in a SIMD group diverged. In my work on this mpt became obvious
that control-flow divergence was not the main limiting fadiar many programs, but that
it was memory divergence. Memory divergence occurs whethiadhds in a SIMD group
execute a load or store, and a subset of them miss in a givéxe ¢aeel. This forces all
threads in that SIMD group to wait until the all the threadschilmissed in the cache have
received their memory values. In the worst case, a singls oas force a whole SIMD
group to stall, slowing down execution of all threads. | tfiosused on on solving the
problem of memory divergence instead of control-flow diegrce, since it had a much
higher potential impact on performance for a wide varietprafgrams.

In Chapter 5 | develop a mechanism called diverge on miss;iwdllows SIMD groups
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to continue executing, even if a subset of their threads arBng on memory. This mech-
anism greatly speeds up programs where memory accesseaf8MD group are not
always to contiguous addresses and a subset of the warp nsayimthe data cache, de-
creasing the number of thread contexts needed to suppoviea fgvel of performance
or increasing the performance when holding the number aatsihe key insight of di-
verge on miss is that SIMD cores which already support céfibter divergence and scat-
ter/gather loads and stores already have most of the haedvweaded to support a form of
execution where threads can be at different points in theication due to some having
missed in the cache while others did not.

| also promised to investigate smart cache replacementaedtion policies for SIMD
cores. My work on this topic showed that, contrary to my itiun, the performance bene-
fit of such technigques was minimal. This was due to the fad¢tgr@grams for SIMD cores
that | investigated had inherently large working sets withex streaming behavior (no
temporal locality) or only reuse between close by threadw dache of each SIMD core
was simply too small to capture any reasonable working sen & the best case. Any
smarter insertion or replacement policy could only imprbieates marginally. Motivated
by these insights, | investigated how a processor with mamgs; each with relatively
small caches, could facilitate reuse of data between thescdivhile one possible solu-
tion to this problem would be to have a large shared cachdy anmrganization would
have lower area-efficiency. While there have been prior gsafs of how to use cache
coherency protocols to deal with similar problems (seei®e&.5), | focused on the case
without cache coherence. This case is particularly intergecause some manycore
architectures (such as GPUs [68, 74]) do not support cadherency, and because cache
coherency can be particularly expensive for manycore tctires, which motivates look-
ing at alternative solutions.

In Chapter 6 | introduce a way for non-coherent caches of Stdi2s to achieve most
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of the bandwidth and latency benefits available with a latgeed last level cache, but at
a fraction of the area overhead. The key insight in this draistthat for non-coherent
caches, tracking which caches contain which cache lines doehave to be precise or
up-to-date. The directory structure of a directory-basszhe coherence protocol becomes
a predictor and a lookup a mere performance hint. Erronecedigiions may reduce
performance but do not violate memory semantics.

Together, the techniques described in this dissertatipnawe the performance, power-
and area-efficiency of small, throughput-oriented coredifdérent types. They increase
the set of workloads which can profit from SIMD cores and shaw o build CMPs

which can dynamically adapt their throughput cores to waakls with fewer threads.



Chapter 2

Related Work

2.1 Power-Efficient Out-of-Order Structures

The power consumption of a modern speculative out-of-ocdee is dominated by the
power used by the large and complex buffer structures redqdiar out-of-order execution.
Chief among these are the issue queue and load/store quaue.n$odern processors are
primarily limited by their power consumption there has beahstantial effort devoted to
finding lower power organizations for these structures.

Sethumadhavaat al.[98] explore the problem of scaling a traditional LSQ dedign
larger sizes in terms of access delay, while Garadfal. [40] explore scalable and power-
efficient alternatives to traditional LSQs in the contextaaore which can speculatively
execute thousands of instructions. Both works found that arsmall fraction of loads
have values forwarded to them by stores, and design thdalded SQs around this fact.
The Memory Alias Table (MAT) | present in Chapter 3 builds @m® of the ideas about
bloom filters presented in these papers.

Buyuktosunoglwet al.[23] examined the power consumption of issue queues and the
scheduling logic in real high-performance processors aopgsed an instruction schedul-

ing mechanism which did not rely on the instructions beimgity age-ordered inside the

17
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issue queue. Sassoeeal.[94] also explored the scalability of traditional issue ges,
and proposed improvements on the alternative matrix sé¢befib] for lower power con-
sumption and better scalability. Huamg al. [53] looked at a hybrid issue logic, which
combined broadcast and direct lookup for lower power cornpgion.

The consumer-based issue queue | present in Chapter 3 diawsspiration from
Huang, but completely abandons the need for broadcast atah rogic. | also use the
findings about pseudo-random scheduling from Sassone ayukBisunoglu for a further
simplification of my design.

The Store Vulnerability Window (SVW) was introduced by R{#B] as a verification
mechanism for load/store aliasing and ordering which cteldised in conjunction with
several load speculation techniques. The Memory Aliaselaba similar structure to the
SVW, but uses much less hardware. More recent work [101,1100],has tried to largely
or completely eliminate the Load-Store Queue (LSQ) by usigSVW as the checking
mechanism for speculative forwarding, which we avoid dugsg@omplexity. Our work
differs in that we do not try to replace a part of an OOO proogdsut instead augment
a simple in-order processor so that it can detect memoryr atidéations with minimal
hardware cost. We also do no speculative forwarding; indesdabandon forwarding

completely in our design.

2.2 Combining Cores

There has been much recent interest in how to combine nikéiplall cores to execute
a single-threaded program faster. The most influential viorthis area is no doubt the
Multiscalar architecture from Wisconsin [106], which ugedombination of hardware and
software to execute normal sequential programs on a nuniilderooder cores connected

by a ring.
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More recently, work on combining several smaller cores amsingle larger and more
capable core was performed tpek et al.[55]. We compare this work to Federation in
detail in Section 2.2.1.

The Voltron architecture from Zhongf al.[121] allows multiple in-order VLIW cores
of a chip multiprocessor (CMP) to combine into a larger VLIbfe€. It requires a special
compiler to transform programs into a form which can be exgtbby this larger core. The
performance is heavily dependent on the quality of the chdebdmpiler generates, as the
hardware cannot extract fine-grained instruction paraitefrom the instruction stream by
itself. The work on Composable Lightweight Processor (C[a3) leverages the block-
level dataflow EDGE ISA [21] and associated compiler [L05ltow small cores to work
on a single instruction stream, without having to use trad#l out-of-order structures such
as a rename table or issue queue. Our work does not assumezenced compiler and is
applicable to RISC, CISC, and VLIW ISAs.

Federation, the technique | introduce in Chapter 4, diffesen Voltron and CLP in
that it does not require a special ISA, but can instead usel®Ay Federation differs
from Core Fusion in that it does not assume that the undeylgomes are already out-of-
order, but instead adds all the necessary out-of-ordectsties. The main takeaway from
Core Fusion is that constructing a very wide out-of-ordeedoom small cores faces the
issue of steeply diminishing returns in terms of the amotfipeoformance gained for extra
hardware added. This is chiefly due to the extra latencydloired by the extra interconnect
and the known performance limitations of very wide out-adler cores when not paired
with almost perfect branch prediction and memory bypasgigtien. In Federation | tried
to minimize any extra latency added to the pipeline and adiduilding interconnects
which pass over multiple cores.

Salverda and Zilles [93] explore the performance limits déaign that contains a num-

ber of in-order lanes or pipelines that can be fused at mue-to achieve out-of-order exe-
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cution. Their work assumes a “slip-oriented out-of-ordeaition model,” in which out-
of-order execution only occurs when the individual langs with respect to one another.
In other words, within each lane, instructions always ei@au-order. The performance
constraints shown in their work are only valid for machinkeattutilize this execution
model. Federation isot based on the slip-oriented out-of-order execution modehelV
in-order pipelines are federated, instructions can beegsswuit-of-order to any pipeline and
thus instructions within the same pipeline can executeobat-der with respect to one an-
other. This approach raises some scaling issues of its owfrd®s Federation from the
fundamental constraints of the slip-oriented model.

Work by Kumaret al.[67] on heterogeneous cores showed that the overall thputgh
of a heterogeneous CMP can be higher than an area- equitaleigeneous CMP, if the
OS can schedule threads to different types of cores depgiadinheir needs. However,
because the mix of large and small cores has to be set at déigign the OS or hypervi-
sor cannot dynamically make a tradeoff at runtime betweemtimber of cores (i.e., the
number of thread contexts) and single- thread latency. @@nweskiet al.[46] follow up on
this line of work and observe that the combination of perfange- and throughput- ori-
ented cores with dynamic voltage scaling can provide abett@bination of single-thread
latency and throughput than either technique can provialeeal

Adjoining cores which are federated have their caches rdexipen in federated mode,
similar to [66, 34]. However, we do not require two cores tcabée to access the same
cache simultaneously, since only one core’s load and stmts pre active when in feder-
ated mode.

Numerous groups have evaluated various combinations efecked OOO processors
and multi-threading.Ipek et al [55] provide a comprehensive overview of this body of
work. Another approach to improve the single-thread pernforce is to use runahead

execution [30, 78], which is orthogonal and even complersrib federating two simple
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cores. Runahead reduces time spent waiting on cache migksies would potentially
help the more powerful federated core relative to the ugdeglscalar core. Additionally,
federating two cores would help the runahead thread ruerfasid thus further ahead of

the main thread.

2.2.1 Comparison to Core Fusion

The work on Core Fusion [55] provides an interesting congaaripoint to Federation.
Core Fusion and Federation employ very different appraathehe problem of how to
aggregate smaller cores into a single, higher performaniee €ore Fusion aims to build
an OOO core with a very deep execution window and lots of ei@mtuwesources. To
achieve this goal, Core Fusion combines a larger numberresdaoip to four cores) than
Federation (two cores). Due to the complexity of the extracstires needed for Core Fu-
sion and the latency required to communicate between desaes at multiple locations
in the pipeline, Core Fusion must increase the length of nadirtige critical loops of the
processor pipeline. Federation employs almost exactlyofiposite approach, focusing
on aggregating fewer, smaller cores and placing an empbaddOT increasing any of
the critical loops of the pipeline unless absolutely neasssThe choice of a centralized
Issue Queue and centralized MAT stem directly from tryingwoid such overheads. We
believe that the large body of work on clustered architestwhow convincingly that dis-
tributing the critical structures of an OOO core only makesse if the workload exhibits
large amounts of ILP and few serializing conditions such @méh mispredictions and
memory aliasing events; conditions which are not true fonyraepplications which are not
easily decomposed into multiple threads and thus need hgjhgle-thread performance
the most.

In both [55] and in this paper, the performance of the agdesbeore is compared to
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that of a dedicated 4-way OOO core. Of course, directly campahe results is diffi-
cult, since the dedicated cores in the two comparisons arfgewed differently and use
different simulation methodologies. Nevertheless, Carsién of four 2-way OOO cores
achieves about 102% and 115% of the performance of a dedidatey core on Specint
and SpecFP, respectively. We show in Section 4.5.3 thatr&tale of two 2-way in-order
cores achieves 88% and 95%, respectively, of the perforenaha dedicated 4-way OOO
core, with half the execution resources and much lower poWars, even with much sim-
pler baseline cores, Federation is able to achieve perfurethat is competitive with Core
Fusion.

Comparing the areas of the aggregated cores is not nedgssaaiul, since one can
assume that a manycore processor will have more than enaugh for any aggregation
technigue. Comparing the area overhead of the aggregaobmigues and the area ef-
ficiencies of the baseline cores is more instructive. Thea aserhead of Core Fusion
is estimated to be 8.64nfirom a 200mm die with 100mn? devoted to core area, or
about 8.6% of the core area. Using scalar in-order cores asaibe, we estimate in Sec-
tion 4.4.2 that the area overhead of Federation is apprdgigna.7% of each pair of cores,
and thus 3.7% of the total core area regardless of the nunilmeres. Using 2-way in-
order cores with branch prediction as a baseline, the aredead is much smaller, since
the majority of the area overhead of federating scalar cosesdue to the addition of a
small branch predictor.

For phases of execution in which the thread count is high,ra/e@e processor imple-
menting either Core Fusion or Federation will be best ofhwitt any cores fused/federated
in order to provide as many hardware thread contexts ashpgessén such a case, Federa-
tion’s multi-threaded in-order baseline cores will pravithuch higher aggregate through-
put than Core Fusion’s 2-way OOO baseline cores becauseenfdignificantly higher

area efficiency. Carmean [25] estimates that a multi-tredad-order core takes up only
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one-fifth the area of a traditional core while providing mtran 20 times the throughput
per unit area. Thus, Core Fusion will provide superior penfnce when the thread count
is extremely low. For medium to high thread counts, howeawerhigher throughput of the

underlying cores in Federation will provide significantigler performance.

2.3 SIMD Hardware

The use of SIMD instruction sets and hardware was first preghtes early supercomputers
aimed at scientific applications, examples of which incltigellliac 1V [15], Cray-1 [90]
and Connection Machine [119]. SIMD instructions were useckplace a large number of
loop iterations with a small number of SIMD instructions kioig on a large sets of data.

Modern microprocessors adopted a very limited form of thdZimodel by adding
short vector extensions to existing ISAs [64,82, 85, 116 Je extensions were primarily
aimed at audio, video and graphics processing and are tnitevector length of four
32-bit elements.

GPUs have traditionally used SIMD execution, since thegcexion model was to

execute the same small program (called a shader) on a vgeynamber of inputs [68, 74].

2.4 Diverge on Miss

Early academic work [11, 83] on manycore processors exgltre benefit of chips built
out of many simple cores for both commercial and scientifickloads. They showed
that for workloads with enough parallelism many simple soceuld outperform large,
few high-performance cores. Recent commercial, genengdgse products that target

throughput-oriented workloads exemplify some of thesedes. For example, the Niagara
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processor [3] from Sun implements 8 simple SPARC cores, ebwfhich has 4 execution
contexts.

GPU manufacturers have evolved their designs from being p®1Cs to manycore
processors, with each core having a number of logical wadthhdbetween 32 and 64 and
a large number of warps per core [68, 7].

While all of this hardware was traditionally hidden behirmiplex graphics APIs,
recently both AMD and NVIDIA have made available APIs [43,8P~hich are meant for
general purpose computation and can take advantage of GidWdra.

The recently announced Intel Larrabee architecture [98]tha capabilities of both
GPUs and multicore processors, supporting both the x86 ¢&¢he coherency and mem-
ory ordering, as well as wide SIMD execution and multipledveare execution contexts
per core. Both Niagara and Larrabee (will) support coneerdi cache architectures, where
caches are coherent, are addressed through a unified addeess obey a well-defined
memory ordering model and are large enough to hold the wos@h of many programs.

GPUs on the other hand, because they have been designedigricmsupport graphics
APIs such as OpenGL and Direct3D [13], have very differemheaarchitectures. One
primary difference is simply in the size of caches relatventimber of ALUs. Another
difference is that caches are divided among different addspaces (so called texture and
constant caches) and optimized for specific access patidrith go along with these
address spaces in graphics applications. Although a yasteEUDA applications have
taken advantage of these properties, @hal. [28] and Boyeret al. [16] in particular
discuss the importance of using these memory paths.

In general it can be said that GPUs have designed their cachigeztures to help max-
imize aggregate throughput, but not necessarily to mirerttie latency of any individual
thread. Slipping warps enable the combination of very witd[5execution of GPUs

with regular cache hierarchies and help greatly reducdesitgead latency and increase
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throughput for workloads with irregular access patterns.

Warp divergence in SIMD processors as a result of contral-tiivergence was ex-
plored by Funget al. [39], who proposed Dynamic Warp Formation as a way to lessen
the performance loss due to this particular problem. Whigetechnique of dynamic warp
formation can also be applied to memory divergence, thewene overhead of our tech-
nique is much smaller, requiring only small additions toséirg structures. For example,
Dynamic Warp Formation requires that the register file ha/enany independent banks
as there are threads in a warp, substantially increasingréfeeoverhead due to addresses
having to be routed to each bank, each bank needing its owessldecoders and also
having much shorter word lines. Our technique requires ong/bank for the width of the

warp.

2.4.1 Comparison to Architectures with Scratchpad Memoris

The software controlled approach to diverge on miss outliné&ection 5.3.2 can be com-
pared to the streaming approach of the Merrimac architedi®t] and the Cell chip’s
Synergistic Processing Units [38]. These architecture® lexplicit memory hierarchies
and independent DMA engines, which can fetch lists of memefgrences into a large
software controlled on-chip buffer asynchronously, withibaving to block execution.

In contrast to these architectures, a software implementaf diverge on miss does
not force the programmer to explicitly organize data in adiseze buffer, nor does it fix
the size of this buffer. Any program written for a von Neumarohitecture will work
on such a processor. The extra instructions to snoop the nyemerarchy only provide

potentially higher performance.
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2.4.2 Comparison to Warp Subdivision

In our prior work by Mengt al.[72], on which | was a co-author, he proposed a hardware
technique called dynamic warp subdivision to deal with thebfem of warps stalling due
to divergent memory accesses in a SIMD core. He proposedve theeads which have hit
the cache on a given access to a new warp (a so called waryp wpilith can be scheduled
and executed independently from the parent warp, whileingathe register contents of
the affected threads in place.

The main limitation of warp subdivision is that it allows grd very limited number
warp splits (due to the extra scheduler entry needed foyevarp split) per warp, usually
1. The problem with this approach is that threads can mis$ama the cache repeatedly
in an unpredictable pattern, and that a split warp will $tédlve to stall just like a normal
warp would if any of its threads misses the cache.

The key insight behind diverge on miss is that slipping waigns continue to execute
even if threads repeatedly miss the cache and is not affegtdte pattern of cache misses
between threads in the warp. On the hardware side, the dcavdfavarp subdivision is
that the warp scheduler needs to be doubled in size compathd baseline architecture.
This can affect the critical path of the core, either dedrepfequency or making back-

to-back execution of the same warp impossible, decreasugieswarp performance.

2.5 Sharing Tracker

As an alternative to hardware cache coherence, which poseslaer of design challenges,
software-controlled coherence has been proposed as a nadable and lower-cost solu-
tion for cc-NUMA and virtual distributed shared memory (VEBmulticomputer organi-

zations. A simple version of software coherence is for tlegmmmer to manually flush
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caches when switching between reading and writing, or tdobuffer, with separate
(cached) input and (uncached) output data structures.db@s not present a great burden
when the sharing is infrequent and occurs in well-definetepag. In order to support
finer-grained sharing, considerable work was done in thea8@s90s to enable the com-
piler to automatically manage coherence in hardware shaedory systems [29, 108]
and to reduce the cost of network transactions for VDSM. éndhise of VDSM, the main
technigues were to reduce the frequency and size of updatesMunin [26]) and reduce
the latency of those updates (e.g. Shrimp [12]). These tquba generally required op-
erating system support (to manage shared pages) and pditehtéirdware support (new
network interfaces).

Chip multiprocessors have an advantage in this regardubecharing can be managed
natively in hardware and all cores share a common pool ofaglotemory. Other multi-
core organizations take advantage of this to eschew haedvadrerence, e.g. RAW [120]
and Cell [58]. GPUs take advantage of shared global memooptimize the L1 caches
for data that is read-only or exhibits only coarse-grainearisg. Although details differ,
GPU architectures from NVIDIA [68] and AMD [74] both suppgaitnilar memory hier-
archies; for more details, see the next section. Briefly;direened read-write sharing and
synchronization objects are expected to be localized med®BSM (per-block scratchpad)
or accessed only through global memory. Deep multithrepaliows other threads to hide
latency of threads stalled on global-memory access.

Bakhodaet al.[10] evaluate a multi-level, hardware-coherent cacheangtry for GPUs
but results are inconclusive. Our work proposes an altentitat avoids the challenges of
hardware coherence.

A huge body of work has of course explored the more convealtialternative of sup-
porting hardware cache coherence in multicore organizatamnd various optimizations

that can be built on top of a coherent organization. We briefgntion work that we be-
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lieve is most closely related to our line of investigation.

Changet al.[27] usecooperative cachingp share the resources of a number of private
caches on a single chip. They useemtral coherence enginghich replicates the tags of
all private caches. Requests which miss in core’s privatedche access the coherence
engine to check whether the requested cache line is in an a&2ldferent core. They also
add mechanisms for intelligently replicating cache lined &aving evicted cache lines
spill to another on-chip cache. The drawback of their teghaiis that each request needs
to check a large number of tag arrays (as many as there arge @otée chip minus one),
which is a power-hungry process, and that a single cacheéindhave copies in multiple
L2s, which wastes space in the coherence engine.

Herreroet al.[47] build on cooperative caching with their work alistributed coop-
erative caching They replace the replicated L2 tag arrays of the centra¢i@ice engine
with a distributed, address-indexed tag array, reduciegitimber of tag comparisons any
request has to make to determine whether a copy of its regglieathe line exists some-
where on chip. Our work differs in that the sharing trackerasa full coherency directory,
substantially reducing the required hardware and elinmigahe complexity of traditional
coherence hardware.

Destination Set Prediction [70] assumes a cache-cohergltitpnocessor where each
core has its own L2 cache, and each L2 has its own predictachvgmedicts which other
core/L2 cache has current ownership of certain cache IDestination set prediction was
designed for workloads with low degrees of sharing betwesps; such as commercial
workloads. Our sharing tracker differs from destinationh@ediction as it is useful for
workloads where there can be large degrees of sharing o ¢iaets with irregular patterns.
The sharing tracker tracks cache line information at théaltevel, while destination set
prediction keeps track of which other cores a given coreiptsly has exchanged cache

lines with.
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There has also been considerable work on caches with ndorunaccess laten-
cies [62, 54] (so called NUCA caches). NUCA caches are brolnfa large number of
memory tiles, which are addressed by a smart controllerchvban move around cache
lines based on recency of access or alter the degree to whsdneory tile is shared be-
tween cores. NUCA caches take a fundamentally differentagmb from our own, since
they focus on intelligently mapping cache lines based onmesddor giving cores a fixed
and uniform amount of sharing with a given set of other cofé® sharing tracker is purely
demand driven only restricted by the capacity and assuitiatif the caches it covers and
does not restrict sharing between any core anywhere on the ch

FormodelingGPUs, Bakhodat al.[10]'s simulatortGPGPUSIMs an execution driven
simulator which can run kernels compiled to NVIDIA's PTX astbly format and closely
models a current generation NVIDIA GPU. Our simulator takdégndamentally different
approach, by instrumenting data-parallel applicatiorts@ilecting only their data access

traces. Our simulation approach is discussed further iti@e6.4
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Lightweight Out-of-Order Execution

3.1 CMP Architecture Tradeoffs

CMP designers face the difficult task of what combinationingke-thread performance
and overall chip throughput to target. Single-thread perénce is improved by using
large, complex and power-hungry cores. Overall througigpaotaximized by going with
a large number of simple cores, which are small and use fitiiger. The current trend
is to choose design points which either have a small numblergé cores [35,59, 71,91,
107,109], or a large number of small cores [3,56,97]. Thaseghs that opted for small
cores have all forgone the use of out-of-order executiotHfeir chosen cores, judging it
to not be area and power efficient enough compared to addimg theead contexts per
core. | think that out-of-order execution is judged as beiogarea- and power-efficient
primarily because it has been used in the past for cores wiadhperformance as their
primary design goal, which meant that they were willing te asea less efficiently if it
meant higher performance.

| think that out-of-order execution can be a good designahtor designs which want
high throughput, but also want good single-thread perfocea | achieve this by re-

engineering the major hardware structures required forobotrder execution for much

30
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lower complexity and power by replacing content addregssabémories (CAMs) and
broadcast networks with simple lookup tables. This makesstsible for manycore pro-
cessors to offer competitive single-thread performandbowit incurring the major area

and power hit of a dedicated fast core.

3.2 Minimal Branch Prediction

Branch prediction is implemented using Next Line and Sedipteon (NLS) [24,61,117]
instead of a branch target buffer. NLS maintains an unta¢mjaé indexed by the branch
address, with each entry pointing to a line in the instructache predicted as the next
cache line to be fetched. NLS predicts the location in théaeachere the next line will be
fetched rather than the actual address to be fetched. Tmgisantly reduces the overhead
of supporting NLS. For example, implementing a 512 entry MéQuires only about 0.75
KB of extra state. A small return address stack (RAS) is atkied, which requires only
256 bits of state. | have omitted the top 32 bits of the retultresses and assume they
do not change. No negative performance impact on our wadki®aoticeable from this
simplification.

An overhead of speculative OOO execution that is often oo&ed is the fact that the
rename table of an OOO core has to have some way to recoverbiranch mispredic-
tions [104]. The usual way is for the rename table to be cheicked at each branch, and
the checkpoint of a branch restored when it is detected hlaabranch was mispredicted.

For the lightweight core branches are resolved at commg,tioviating the need to
maintain multiple snapshots of the speculative rename tablhe need to walk the active
list (AL) in the case of a branch misprediction. The core dympeeds to maintain two
copies of the rename table, a speculative version, updatee irename stage, and a non-

speculative version updated in the commit stage. If a bramesprediction is detected, the
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core waits for the branch to reach the commit stage and beltlestanstruction in the
active list. The non-speculative rename table is then sirmphpped with the speculative
version and execution can continue. Note that swappingdhteats can be accomplished
by keeping the speculative and non-speculative versiolmensame physical SRAM or
latch array structure, with one version occupying the ugadf of the structure and the
other the lower half. A simple bitvector (one bit per arcbigsl register) can then indicate
whether the version to read out is in the upper or lower halfe Bitvector is reset when
a mispredicted branch reaches the commit stage, and eaishseit when an instruction
flowing through the rename stage writes to the corresporalicigitected bit.

| have also explored the performance impact of limiting thenber of branch check-
points. However, since my focus is on simplicity, my basesdas the lightweight core
still uses commit time branch recovery, which reduces perémce by approximately 5%.
Adding just two snapshots of the rename table would almostpbetely eliminate this

overhead, but | show results for the simplest case.

3.3 Consumer-Based Issue Queue

The area and power constraints of our design prevent theemmgaitation of a traditional
CAM-based Issue Queue (IQ). To avoid tag broadcast or taghmiagic, | use a simple
table in which consumers “subscribe” to their producers bging their IQ position into
one of the producer’s IQ entry’s consumer fields, similar idesas by Huangpt al.[53]

, Brekelbaumet al.[17] and Sato [95]. Huangt al. add a subscription mechanism to a
traditional broadcast-based 1Q, and limit the number ofsstibers to one. Brekelbaum
et al. use a consumer-based IQ as a large L2 1Q, where producetigeland consumer
wakeup are decoupled, unlike my design, which uses no basatbardware and directly

wakes up consumers. Sassagteal. [94] showed that, for a processor with a 96-entry
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instruction window, over 90% of all dynamic instructionsvhao more than one dependent
instruction in the instruction window when they executeu3heach 1Q entry in our design
only has a small number of consumer fields. The exact numhmemrsumer fields per entry
is a design choice; we found that limiting the number of figlés entry to two reduced
performance by only a fraction of percent compared to aticadil 1Q. This performance
impact is evaluated in greater detail in Section 4.4.

Each entry in the IQ holds the usual opcode, register ids amdediates, but also
has several consumer id fields and two ready bits, which drevflsen the left and right
operands become available, respectively. On issue, eatiuétion checks its consumer
fields and sets the appropriate ready bits in the consumarg. df both input operands
are ready, the ready signal for that entry is sent to the sdbetd Each entry in the issue
gueue also requires two fields for the active list IDs of thadpicers of its input operands,
a field to store its opcode, and a field to store its immediaplacement value. These
extra fields are not required for the critical wakeup andcdt®p and can thus be stored
in a table physically separate from the ready bits and thewmer 1Ds.

Since the number of consumer fields is small, an instructeongtall if its producer
Is oversubscribed. This necessitates the addition of aa éxtto each producer entry in
the 1Q which is set if the producer is oversubscribed. If thitss set when the instruction
executes, a signal is sent to the rename stage to unstakfendent instruction(s).

The normal scheduling logic for an out-of-order processestto issue older instruc-
tions first. It is usually complex and power hungry. | insteéaglement a simpler pseudo-
random scheduler [94] which uses a static priority encoddrdoes not take into account
the age of different instructions. For a small out-of-ondérdow, this simplified scheduler

reduces performance by around 1%.

INote that all loads can issue speculatively, without wgitim unresolved stores; see Section 3.4 for an
explanation.
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3.4 Replacing the Load/Store Queue with the Memory

Alias Table

Traditional Load-Store Queues (LSQs) are used for enfgrcorrect ordering between
loads and stores which can potentially execute out of prognaler, and to forward values
between aliasing loads and stores. They have large CAMdfineas matching, circuitry
for age prioritization in case of multiple matches, and avending network. All these
structures would add considerable power and complexityutobaseline processor. In-
stead, | propose the Memory Alias Table (MAT), which buildsideas from the Store
Vulnerability Window (SVW) [89] and work by Gargt al.[42]. Contrary to this previous
work, the MAT only detects memory order violations and doesprovide a mechanism
for forwarding store results to younger loads, eliminating need for a forwarding net-
work which can deal with multiple (partial) matches. Sincevous work has shown that
store-to-load forwarding is rare even in large OOO cores42f omitting the forwarding
network provides considerable area savings with minimdbp@ance loss.

Memory order violations must be treated as branch misptied& and re-executed.
Unlike in [101], | do not implement a load-store alias predic but statically predict
all loads and stores to not alias. A dynamic predictor is seae for a large, high-
performance design, where accurate store-to-load foma@isl needed to exploit the avail-

able machine resources, but can be omitted from our smadjrdes

3.4.1 Concept of the Memory Alias Table

Before explaining the operation of the MAT, | should clardyr usage of certain terms.
When discussing program order, | refer to instructions aseear later; when discussing

actual execution order, | refer to instructions as youngeiaer.
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Conceptually, the MAT operates as follows: each load placesken in an address-
indexed hash table, which is removed (becomes invalid) wherload commits. Each
store checks the hash table at commit for a token from a yauogd which is still in
the pipeline. Any store finding a valid token when it is contmg knows that the token
is from a later load and signals a memory order violation. $toge does not need to
cause an immediate pipeline flush but instead leaves an texeapken in the table when
it commits. The offending load will discover this exceptimken during commit when it
invalidates its token in the hash table. The load can théwereplay or cause a pipeline
flush.

The hash table proposed by Gatgal.[42] utilizes the same basic concept as the MAT,
while the SVW inverts the relationship between loads anestavith stores leaving tokens
in a table and loads checking the table for valid aliasingiest A critical distinction
between the MAT and these previous proposals is how ingbruetge is represented in
hardware. Previous proposals used a store sequence nug®id) ¢0r a load sequence
number (LSN) to determine relative age. Since it is nondtito determine when the last
load vulnerable to a store committed, a counter represgdimnamic instruction age was
used. This required relatively large entries and the corspaiof 16-bit or larger values to
determine the relative ages of a load and a store. Other patg[®@8] used simple counting
bloom filters, but could not determine the relative age ofaallor store.

The MAT uses a simpler approach: each load increments a sioqainter when it
executes and decrements the same counter when it comnotes $heck the MAT only
when they commit. Since any earlier load will have removedsagn of its presence from
the MAT before a store reaches commit, the store knows thtg dounter in the MAT
is non-zero, there must be at least one later load in theipgwlith which it potentially
aliases. (Previous proposals had the store check theivaqnot of the MAT as soon as

the address generation for the store was complete. Theyhdmaiso way of telling if an
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aliasing load was later than the store or not; they could detgrmine that it was older.)
Since our proposal relies on the precision of the countetisarMAT for correctness,
the number of bits in each counter must equal the logarithtineogize of the AL. Note that
because our design does not have a separate LSQ strucamdydle AL can be filled with
loads and/or stores. Even for much larger instruction wivilthan | discuss here, the size
of the counters is still much smaller than the 16 bits reglicestore the SSNin [101].
Moreover, multiple counters can share a single set of highager bits (with only the LSB
private to each counter), further reducing the amount afagi® required per entry. The
sharing of the upper bits can be considered the inverse ahgfthe LSB in certain branch
predictor tables [99]. | show in Section 4.4 that sharincpball the LSB between multiple
counters is a feasible approach, as it introduces very féxa é&dse positive memory order

violations.

3.4.2 Dealing with Coherence and Consistency

To enforce a memory consistency model in the presence oécaatterence, the MAT must
ensure that no load gets the wrong value, even if it initiakgcuted out of program order.
Two loads from the same location can be out of order with retdjpeeach other as long as
no change to that location occurs between the two acceseemslre this property, any
cache coherence transaction indexes into the MAT and setsxiteption bit for its entry
or entries. Any load to this location which is in the windowaevhthis occurs will force a
flush of the pipeline.

Any load committing in the same cycle as the cache coheremegtean ignore it,
since it is assured to have received its value before the.ed@y committing load which

decrements the counter to zero can reset the exceptionirte 80 loads which have

2The SSN can be smaller than 16 bits, but since overflowing 8i¢ 1@quires a pipeline flush and a reset
of the hash table, a smaller SSN leads to lower performance.
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already received their values and have this location as theget are in the window any
longer. To ensure forward progress, the first load to seexbeption bit at commit can
still commit, since it cannot have received the wrong valuany combination of events.
This load can set a second bit (shared across the whole tablieflicate that later stores
are not the first to have seen the exception bit. This bit istraisall pipeline flushes.

The performance of the MAT, the SVW, and a traditional LSQaspared in Sec-

tion 4.4.

3.5 Simulation Setup

| evaluate our design using a simulator based on the SimalaS8.0 framework [20]
with Wattch extensions [18]. For the OOO cores, our simulatodels separate integer
and floating point issue queues, load-store queues anc distis. The pipeline has been
expanded from the 5-stage pipeline of the baseline simuataithfully model the power
and performance effects of the longer frontend pipelinebel\simulating the MAT, our
simulator allows loads to issue in the presence of unredadteres. In the case that a
memory order violation occurs, the pipeline is flushed whenaffending load attempts to
commit.

Wattch has been modified to model the correct power of theraaga sized issue
queues, load-store queues and active lists. Additionlalgcurately model the power of
misspeculation in the active lists. Static power has beg@rsget to be 25% of max power,
which is closer to recently reported data [73].

| use the full SPEC2000 suite with reference inputs comgdibedhe Alpha instruction
set. The Simpoint [102] toolkit was used to select repregemat 100 million instruction
traces from the overall execution of all SPEC2000 benchsé&fkr each run the simula-

tor was warmed up for 10 million instruction before statistivere kept to avoid startup
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Parameter 2-way 4-way
Active List 32 128
Issue Queue 16 32
Load-Store Queue 16 64
Data Cache 16KB 32KB
Instruction Cache 32KB 32KB
Unified L2 Cache 256KB 2MB
Branch Target Buffer 512 4K
Direction Predictor | 2K bimodal | 16K tour.
Memory 100 Cycles, 64-Bit

Table 3.1: Simulator parameters for the different core syfene lightweight core has the
same sized resources as the dedicated 2-way core. Notd¢higghtweight core use an
MAT instead of an LSQ, and thus the number of loads and steriwited by the size of
the Active List rather than the size of the LSQ.
effects. When presenting averages across the entire banklsuite, | weigh all bench-
marks equally by first taking the average across the multiglierence inputs for those
benchmarks that have them.

The lightweight core is compared against three other cadmseline scalar, in-order
core; and traditional, dedicated 2-way and 4-way OOO cores. simulation parameters
for the different cores are listed in Table 3.1. Note thatdimaller L2 for the small cores

represents a single tile of a much larger L2, to simulatedbethat these cores will not be

the only cores active on the chip and thus do not have exeusie of the whole L2.

3.5.1 Area Estimation Methodology

To show the area benefit of the lightweight core | need a waglhtutate area numbers for
different core types. Estimating the sizes of the diffei@e types and the area overhead
of the lightweight core is a difficult task, and | can only pice approximate answers with-

out actually implementing most of the features of the défeércores in a specific design

3] also simulated all cores with a 32MB L2 cache and verified tile absolute performance improves
by about 20%, this occurs across the board, so that theveelagrformance between the lightweight and the
dedicated OOO cores changes by less than 0.9%
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Core Type Size inmnt
1-way in-order 1.739
Lightweight 2-way OOO 3.945
2-way 00O 5.067
4-way OO0 11.189

Table 3.2: Estimated sizes for core types in 45nm technology

Subscriber Slots| Change in IPC
1 -0.71%
2 -0.34%
4 -0.04%
8 0.00%

Table 3.3: Impact on arithmetic mean IPC of the number of cuiltsr slots in the
subscription-based 1Q. The change in IPC is computed vel#tia traditional 1Q.

flow. To estimate realistic sizes for the different units afaae, | measured the sizes of
the different functional units of an AMD Opteron processodBOnm technology from a
publicly available die photo. | could only account for ab@0€6 of the total area, the rest
being x86-specific, system level circuits, or unidentifeatl scaled the functional unit ar-
eas to 45nm, assuming a 0.7 scaling factor per generatiansizhs of the different cores
were then calculated from the areas of their constituens uscaled with capacity and port

numbers. These final area estimates are shown in Table 4.5.

3.6 Results

| first present results from sensitivity studies of the chemtp the major structures intro-
duced earlier. To isolate the performance impact of eadifeand to avoid artifacts due
to clustering, | evaluate each feature separately in thbtimaal, dedicated 2-way OOO
core.

Table 3.3 shows that restricting the number of subscripglots in each 1Q entry has

very little impact on overall performance. | attribute tihisthe fact that the majority of
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Figure 3.1: Increase in arithmetic mean IPC for differentiégigns as the sizes of the 1Q
and the AL are increased. By default, designs use oldesséieduling and a CAM-based
IQ. Designs labeled “Pseudorandom” instead use pseudimnascheduling and designs
labeled “Subscription” instead use a subscription-bagedlhe percent improvement in
IPC is in comparison to the “Traditional” configuration wih4-entry 1Q and an 8-entry
AL.

dynamic instructions have only a single consumer [22], d&ad only a fraction of those
consumers are in the IQ at the same time as their producesedBm these results, each
entry in the lightweight core has two subscription slotgufe 3.1 shows the scaling behav-
ior of the subscription-based IQ compared to a traditio@aHs well as the impact of using
pseudo-random scheduling instead of oldest-first scheglulihe impact of both changes
is very small for all configurations, which is in agreementhaprevious work [94]. The
largest combination of IQ and AL shows only a 1.1% differencabsolute performance
between the best and worst configurations.

The use of the MAT allows most loads to execute earlier thag Would have with a
traditional LSQ, but at the cost of additional pipeline flashlue to both true memory order
violations and false positives from the limited size of tlaslih table. Figure 3.2 shows the
performance of the baseline core using either a MAT, SVW, $QL As the sizes of of
the hash tables are increased, the false positives areaea@dinc essentially only the true

memory order violations remain. Note that since both the S&W the MAT place no
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Figure 3.2: Scaling of arithmetic mean IPC for LSQ, SVW, andTVas the number of
entries is increased. The lines for the SVW and MAT are alnmaistinguishable.
restrictions on the number of loads and stores in the pipeéiven a 1-entry SVW or MAT
can have as many loads simultaneously in flight as there areries. The MAT and
SVW have almost exactly the same performance and both use lessgchardware than the
LSQ. As each entry of the SVW is 16 bits and each entry in the MAdnly 6 bits, the
MAT provides the best performance for a given amount of hardwSince | would need
an 8-entry LSQ to outperform even the smallest MAT, the toffdef hardware overhead
versus performance is a very favorable one.

As discussed in Section 3.4.1, the MAT can save even morevaaedoy sharing most
bits of each counter among neighboring entries in the hdasa.tdable 3.4 shows the im-
pact on performance as | increase the number of countersghame set of upper bits.
While the performance impact is minimal, the numbers arsyj@ince intuitively more
sharing should produce more false positives in the haske &t therefore lower perfor-
mance. For the lightweight core, | share one set of uppebbiigeen eight entries, so each
entry only uses 1 % bits for the counter and an additior@bit for the shared exception
bit.

The overall performance of the lightweight core comparesicaar, traditional 2-way
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Table 3.4: Impact on arithmetic mean IPC of sharing the highaer bits of each counter

in the MAT.
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o o o I I
> (2] © = N =
| |

o
)

0

Figure 3.3: Arithmetic mean IPC to the lightweight scalaonder core, the 2-way OOO

Sharing Degree| Change in IPC
2 -0.46%
4 +0.02%
8 -0.05%
16 -0.18%
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Figure 3.4: Arithmetic mean power consumption normalizethe 2-way OOO core for
all four cores.

and 4-way OOO cores is shown in Figure 3.3. The lightweight’s@performance is about
6.5% lower than the traditional 2-way OOO core’s and 52%«dektan the scalar, in-order
core. The 4-way OOO core has the highest performance astedpeutperforming the
2-way OOO core by 66%. Performance of the lightweight corsmecint suffers relative
to the traditional core due to the limitations of its simplamch predictor and commit-
time branch recovery. On the other hand, its power usageedightweight core is 22.5%
lower than the traditional OOO core’s, as shown in Figure J4is is primarily due to
the much lower of the MAT and consumer-based issue queuea@ahpo the CAM-based
alternatives. The scalar cores has 24% lower power thanighewveight core, a much
smaller difference than the difference in performance. dihaller difference is primarily
due to leakage, which limits how much the lower activity &astof the scalar core can
lower its overall power. The 4-way OOO core on the other hases230% more power
than the lightweight core thanks to the high power draw ditge structures.

Figure 3.5 shows the average energy efficiency of all cor%ﬁﬁ. 4. The traditional

4‘?,{,'2?: is like ED? in that both are voltage-independent metrics to capturetieegy cost required for a
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Figure 3.5: Arithmetic meaﬁ,{%ﬁs normalized to the lightweight 2-way OOO core.

2-way core still beats the lightweight core on specint, betlightweight core has a 6.7%
energy-efficiency overall. The scalar core is very ineffici@ this metric, dragged down
by the combination of long execution time and high power fihae to leakage.

Because future manycores are will be limited by both powdraaea, | have developed
a composite measure of power- and area-efficiency by dgithia power-efficiency num-
ber of each core (ir%ztsf) by the area of the core. Figure 3.6 shows this overall metric
The combination of smaller area, lower power and only madgéstver performance of
the lightweight core results in it having a 36% higher conebipower-and area-efficiency.
Both the scalar core and the 4-way OOO core perform poorliisimhetric, although for
opposite reasons. The scalar cores has very low energieatiiccombined with low area.
The 4-way core has good energy-efficiency, but its area iostli® times as large as the

lightweight core.

particular performance level. | prefer the BIPS-based imb&cause (unlik& D?) larger values imply better
results.



Chapter 3. Lightweight Out-of-Order Execution 45

I
[N}

W spec @specint Ospecfp

[
I

o
0

o
~

Normalized Area-Energy Efficiency
[=} o
N (o]

Scalar 10 Lightweight OO | 2-way OO 4-way OO
Figure 3.6: Arithmetic mean energy and area eﬁicier\ﬁgﬁ%) normalized to the
lightweight 2-way OOO core.

3.7 Conclusion

Throughput-oriented cores in recent CMP designs have dptéatego out-of-order exe-
cution, judging it to not be power- and area-efficient. Irstthapter | have shown that the
largest structures needed for out-of-order execution earetbesigned to be more efficient,
with only a 6.5% loss in overall performance. The lightweigbre uses less overall power
and more energy-efficient than a traditional 2-way OOO cohe lightweight core is also
22% smaller than the traditional OOO 2-way core and has bettebined power- and
area-efficiency than a scalar, in-order core, the tradili@way OOO core and a 4-way

OO0OQO core.
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Federation

Increasing difficulties in improving frequency and instian-level parallelism have led to
the advent of multicore processors. When designing suclo@epsor, there is a funda-
mental tradeoff between the complexity or capability oftreexdividual core and the total
number of cores that can fit within a given area. For appbeatiwith sufficient paral-
lelism, Daviset al.[32] and Carmean [25] show that maximum aggregate througispu
achieved by using a large number of highly multi-threadedesccores. However, for ap-
plications with more limited parallelism, performance Wbbe improved with a smaller
number of more complex cores.

How can these two approaches be reconciled? To improve tigéedihread perfor-
mance of an existing throughput-oriented system, one agpraould be to add a dedi-
cated out-of-order (OOO) core to the existing scalar cotégortunately, this dedicated
core comes at the cost of multiple scalar cores, reducingglgeegate throughput of the
system. Using an even larger core with simultaneous muigading (SMT) would still
limit the throughput and/or increase overall power. Indtdgropose~ederation a tech-
nique that allows us to retain a significant fraction of thefgrenance benefit of the dedi-

cated core with a much smaller area overhead.

46
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4.0.1 Why Federation?

It may be objected that a better solution would be to have d smmaber of dedicated OOO
cores to handle limited thread count. However, this appgr@aannot solve the problem for
more than a few threads. This is because the area efficie@@of cores, even with SMT,
is lower than that of multi-threaded in-order cores [32]ielhmeans that a CMP with a
large number of OOO cores would have substantially lowerughput than a CMP using
multi-threaded in-order cores. Certainly a dedicated OO@ will give great performance
on onethread, and provisioning a single OOO core is a sensiblgisaltio deal with
the Amdahl's Law problem posed by serial portions of a palgrogram or a single,
interactive thread.

| will show that Federation boosts performance with miniarala overhead, preserving
the area efficiency advantage of multi-threaded in-ordezswhile offering performance
competitive with dedicated OOO cores and the best enefgyegicy per unit area of all
the options | studied.

Clearly, Federation can also be helpful for serial portiohexecution if the designer
chooses not to include a dedicated OOO core. This might atsungle-thread workloads
or serial phases are not considered sufficiently important,design time or intellectual

property issues preclude the use of a true OOO core.

4.0.2 Contributions

In this work, | first describe how to take two minimalist, smalin-order cores that have
no branch prediction hardware and combine them to achiewenide, OOO issue. | also
show how Federation, with some small adaptions, can be @atkto dual-issue in-order

cores, enabling the construction of a 4-way federated OQ€. co

1You see this approach embodied in the Sony Cell [51] and AMBidfu[48]
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The main contributions of this chapter are:

e | show how to build a minimalist OOO processor from two in-@rdores with less
than 2KB of new hardware state and only 3.7% area increaseagesr of scalar in-
order cores, using the lightweight structures introduogchapter 3. By comparison,

a traditional 2-way OOO core costs 2.65 scalar cores in @a!ar

e | show that despite its limitations, such an OOO processfarofenough perfor-
mance advantage over an in-order processor to make Fexteaatiable solution for
effectively supporting a wide variety of applications. &cf, the two-way federated
organization often approaches the performance of a toagitiOOO organization of
the same width, is competitive in energy efficiency with alitianal OOO core of

the same width, and has better area- efficiency than all ojptéwns | studied.

e | show that it is possible to extend Federation to 2-way iteorcores and achieve

performance close to a dedicated 4-way OOO core.

Federated cores are best suited for workloads which usoeéiyl high throughput but
sometimes exhibit limited parallelism. Federation pre@gdaster, more energy-efficient
cores for the latter case without sacrificing area that woedhilice thread capacity for the

former case.

4.1 Background

Future microprocessor designs will likely incorporate snample in-order cores rather
than a small number of complex OOO cores [9]. Current exasngliehis trend include
the Sun Niagara | and Il [3, 56], each of which contain up tdeapres per processor. At

the same time, graphics processors (GPUSs), which traditipoonsist of a large number
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of simple processing elements, have become increasingtygammable and general pur-
pose [84]. The most recent GPU designs from NVIDIA [81] and BN¥] incorporate
128 and 320 processing elements, respectively. This $edaalanycoretrend will pro-
vide substantial increases in throughput but may have axtaital effect on single-thread
latency. Federation is proposed to overcome this limitatio

When designing a federated processor, there are two pesgiproaches: design a
new processor from the ground-up to support Federation @ri~adleration capability to
an existing design. For the purposes of this chapter, | akitthe latter approach and add
Federation support to an existing multicore, in-order éechure. Based on the current
trends cited above, the baseline in-order microarchiteatdnich | will focus on is similar
to Niagara. Itis composed of multiple simple scalar in-o#es implementing the Alpha
ISA which are highly multi-threaded to achieve high thropghby exploiting thread-level
parallelism (TLP) and memory-level parallelism (MLP) [48pecifically, each in-order
core has four thread contextsvith hardware state for 32 64-bit integer registers and82 6
bit floating point registers per thread context. Additidpahe integer and floating point
register files are banked, with one bank per context and taw perts and one write port
per bank. Unlike Niagara | (but like Niagara Il), each cor@im baseline architecture has
dedicated floating point resources. To deal with multi-eyiolstructions such as floating
point instructions and loads, the in-order core has a srfmlr{entry) completion buffer.
This buffer is used both to maintain precise exceptions angrévent stalling when a
multi-cycle instruction issues. The in-order cores impd@only static not taken branch
prediction and use a branch address calculator (BAC) inglsedk stage to minimize fetch
bubbles and to conserve ALU bandwidth.

To simplify the discussion, in this chapter | focus on a sngair of in-order cores

2But as Table 4.5 shows, the area overhead of multi-threaslingt very large and Federation is thus an
attractive option even for single-threaded cores.
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Figure 4.1: The pipeline of a federated core, with the newelpie stages in shaded boxes.
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Figure 4.2: A simplified floorplan showing the arrangementiaaf in-order cores with the

new structures necessary for Federation in the area bethee&ores.

which can federate to form a single OOO core. In practicetebbniques | describe are
intended to be applied to a multicore processor with a sicantly larger number of cores,

with each adjacent pair of cores able to federate into asi@§)O core.

4.2 Out-of-Order Pipeline

The primary goal of Federation is to add OOO execution cdipato the existing in-order
cores with as little area overhead as possible. Thus, edendieed OOO core is relatively
simple compared to current dedicated OOO implementati®pscifically, each federated

core is single-threadédnd two-way issue with a 32-entry instruction window. Thedie

3Thus when the two in-order cores federate, the number ofthcentexts provided by the pair of cores
is reduced from eight to one. This clearly has implicatiasrstfiread scheduling, which will be explored in
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ated core implements the pipeline shown in Figure 4.1, wiéhadditional pipeline stages
not present in the baseline in-order cores shown in shadezsb@ possible floorplan for
the federated core is shown in Figure 4.2.

In order to limit the area overhead of Federation, | strivavoid adding any significant
CAMs or structures with a large number of read and write poreble 4.1 lists the sizes
of the new structures required to support OOO execution,edsas whether or not each
structure is implemented by re-using the existing hardvrara the large, banked register
file of the underlying multi- threaded core. While an extrgrerea-conscious approach
could use the register file to implement all of the new strreguthis would excessively
increase the complexity and wiring overhead of the desidye. Structures which reuse the
register file in our design are those which are close to thistexgead and writeback stages
in the pipeline, require few read and write ports, and ard ezal written to at sizes close
to those which the register file already supports.

The major new wiring required to support Federation is tiste Table 4.2. The fol-
lowing subsections provide a detailed explanation of theraion of each pipeline stage

in the federated core, along with justification for the dasigdeoffs that were made.

4.2.1 Branch Prediction

Federation uses the same minimal branch prediction andegcas is described in Sec-
tion 3.2. A new finite state machine (FSM) keeps track of whietpjuest to send to the
instruction cache, deciding among misprediction recovequests from the commit stage,

the return address stack, and the NLS.

future work.
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Size Reuses

Structure (Bits) Type RE

Branch Predictor (NLS) 6,144 | SRAM No

Branch Predictor (Bimodal) | 4,096 | SRAM No

Return Address Stack 256 | SRAM No

Speculative Rename Table | 640 Reg No

Retirement Rename Table | 384 Reg No

Free Lists 384 Reg No

Issue Queue (Wakeup) 176 Reg No

Issue Queue (Data) 896 Reg Yes

Unified Register File 4,096| Reg Yes

Memory Alias Table <64 Reg No

Bpred Recovery State 256 Reg No
Worst Case Total (Bits) 10,496 SRAM/6,844 Register
Assumed Base Case Total (Bits)L0,496 SRAM/1,852 Register

Table 4.1: Area estimates for the new structures added tbabkeline in-order processor.
Type differentiates between 6T SRAM cells as are used fonesmand large tables and
registers used for building the smaller structures indiéepipeline, which have full swing
bitlines and are potentially multiported. The last columdicates whether | assume the
structure can be built using only reused register file emifithe baseline core is multi-
threaded. The worst case total is calculated under the gggumthat none of the structure
can reuse the register file.

New Wiring Width
Cross Core Value Copying?2 * (64 + 6) bits
Mem Unit to 2nd D-Cache 2 * 64 bits

Cross I-Cache to Decode 32 bits
Decode to Allocate approx. 64 bits

Table 4.2: The size of wires that must be added to the basetireein order to support
Federation.
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4.2.2 Fetch

The fetch stage starts by receiving a predicted cache lome NMLS, a return address from
the RAS, or, in the case of a misprediction, a corrected P@ fitee branch unit in the
execute stage. It then initiates the fetch by forwarding thiormation to the instruction
cache (IC). The ICs of the two cores are combined into a cadhedauble the associativity
and random replacement.
Since each core can only decode a single instruction, thenddastruction (if valid)

is sent to the second core for decoding. So that this extra edes not influence cycle
time, | allocate an extra pipeline stage (labeled “DecodeFigure 4.1) for copying the

instruction to the second core, buffering the first instiarctn a pipeline register.

4.2.3 Decode

Once an instruction has been received from the fetch sthgeseparate decode units in
the two cores can operate independently. The decoded étistna are then routed to the
allocate stage. If the first of the two instructions is a takeanch, a signal is sent to
the allocate stage to ignore the second decoded instruc8orce the allocate unit is a
new structure located between the two cores, propagatemgtructions to it in the same
pipeline stage as decode or allocate might influence oveyelé time. | instead allocate
an extra pipeline stage (labeled “Allocate” in Figure 44 )atlow the signals from both
decode units to propagate to the allocate unit. The perfocamanplications of this routing
overhead are discussed in Section 4.4. The BAC of one of thelibha cores is used to

calculate and verify the target of any taken branch.
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4.2.4 Allocate

During the allocate stage, each instruction checks forespaseveral structures required
for OO0 execution. All instructions check for space in bdik tssue Queue (IQ) and
the Active List (AL). In traditional OOO architectures, band store instructions would
also need to check for a free Load-Store Queue (LSQ) enttyguumplementation uses
a Memory Alias Table, which is free from such constraint®(Section 3.4). If space is
not available in any of the required structures, the insimaqand subsequent instructions)
will stall until space becomes available.

The allocate stage maintains two free lists, one for the Qe for the unified register
file, with both lists implemented as new structures. | degtiggainst using existing register
file entries to implement these free lists because of thely gasition in the pipeline, the
small size of each entry, and the complexity of deciding Whantries to add to or remove
from the free list. This complexity means that only a fractaf a clock cycle is available
for the actual read/write operation. In addition to the flises, the allocate stage also
maintains the current AL head and tail pointers so that itdetermine if there is space

available in the AL and then assign an AL entry to the currestruction(s).

425 Rename

The federated core uses a unified register file with spevalaind retirement Register
Alias Tables (RAT). Since the design utilizes a subscriptiased instruction queue (see
Section 3.3), it must keep track of the number of subscriteersach instruction. For each
architected register, its status and the number of consucuerently in the 1Q is stored in
a second table, which is accessed in parallel with the RAT.

Each rename table for a two-way OOOQO processor requires &ad ports and two

write ports, while each existing register bank has only teadr ports and one write port.
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Thus, implementing the rename tables using the existingtexdfiles would require the
exclusive use of two entire register banks. Given the radftismall size of the rename
table, it makes sense to implement it as a separate structure

There are two separate OOO register files, one each for tagantaind floating point
registers. Each register file consists of the 32 architeetgidters and a number of rename
registers, implemented using the register files of the uyiermulti-threaded cores, with
each register stored in both cores simultaneously. As ioeedi earlier, the existing register
files are heavily banked. The unified register files use patweéral of these banks in order
to support the required number of read and write ports. Ewelit s still possible for a
particular register access pattern to require more reanfs or writes to a single bank
than that bank can support. Additional logic detects thisecand causes one of the two
instructions to stall. The performance impact of bank cotb@ is explored in Section 4.4.

Logic is needed to check for read after write (RAW) depengenioetween two instruc-
tions being renamed in the same cycle. Additional logicss @lecessary to check for race
conditions between an instruction being renamed and arucigin that generates one of
its input operands being issued in the same cycle. This ldgcks whether the status of
one of the input operands is changing in the same cycle amitssgs being read from the
rename table. This classic two ships passing in the nightlenois also present in many
in-order processors, where instructions which check thsopdits of their input operands
have to be made aware of any same-cycle changes to the stahuse operands. Thus,
depending on the design of the baseline in-order core, ihtrbg possible to reuse this
logic for the OOO processor. | assume that this capabilibpissupported by our baseline
in-order core and that it must be introduced from scratch.

Because branches are only resolved at commit time, theensed to checkpoint the
state of the RAT for every branch. If a branch mispredictioarmther kind of exception is

detected, the pipeline is flushed and a bit associated with BAT entry is set to indicate
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that the most up to date version of the register is in the paT@ative RAT. As soon as
an instruction in the rename stage writes to a particulasteq this bit is reset to indicate

that the speculative version is the most up-to-date.

4.2.6 Issue

Federation uses the consumer-based issue queue intraduCkdpter 3.

As mentioned in Section 3.3, the consumer-based issue glomsgenot issue older in-
struction first. In addition, schedulers for clustered #etftures often attempt to schedule
consuming instructions on the same cluster as their producerder to avoid the over-
head of copying the result between clusters. Given that esigd maintains a copy of
each register value on both cores, the core on which a congumstruction is scheduled
is only relevant in the case where itis ready to be issued@sa®its producer has issued.
| again choose the simplest design, scheduling all insomston core zero when possible
and only assigning an instruction to core one when a prewaisiction has been assigned
to core zero that cycle. To avoid maintaining memory ordgeoross the two cores, loads

and stores are only assigned to core zero.

4.2.7 Execute

Each instruction executes normally on the ALU to which it vaasigned during the issue
stage. The only change to the bypass network on each core @ditlition of circuitry
for copying the result to the register file of the other cor@c8 this is not a zero-cycle
operation, the new circuits can be added without affectiegcritical path. Additionally, a
benefit of using the dependence-based IQ is that the coreskdoxring execution whether
it is necessary to broadcast the result using the bypasonretinased on whether or not

any consumers have subscribed to the instruction.
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4.2.8 Memory Access

The data caches are merged in the same way as the instruatioes; by having each cache
hold half the ways of a merged cache with twice the assodiatilnstead of a traditional
load-store queue, our design uses a simpler structurel@Néemory Alias Table (MAT).

| do not allow memory bypassing and flush the pipeline wherad bEnd store are detected
accessing the same address out-of-order. A detailed extpdarand evaluation of the MAT
is provided in Section 3.4. The only additional action regdiof load instructions in this

stage is to index into the MAT with their target address amdament a counter.

4.2.9 Write Back

Similar to the Alpha 21264 [61], all results are written te tiegister files on both cores, to
avoid the complication of having to generate explicit copstiuctions for consumers on

the other core.

4.2.10 Commit

Federation uses the commit time branch recovery that igitbescin Section 3.2.

4.3 Simulation Setup

| use the same simulator and inputs as describe in Secticioi3rBodeling the federated
core as well as the cores | use for comparison.

The federated core is compared against five other cores:atbelibe scalar, in-order
core from which the federated core is built; a 2-way in-ordere, designated federated
in-order, built from two scalar cores; the lightweight 2yv@OO core; and traditional,

dedicated 2-way and 4-way OOO cores. The simulation pass&ir the different cores
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Parameter Scalar 2-way 4-way
Active List none 32 128
Issue Queue none 16 32
Load-Store Queue none 16 64
Data Cache 8KB 16KB 32KB
Instruction Cache 16KB 32KB 32KB
Unified L2 Cache | 256KB 256KB 2MB
Branch Target Buffer none 512 4K
Direction Predictor | not-taken| 2K bimodal | 16K tour.
Memory 100 Cycles, 64-Bit

Table 4.3: Simulator parameters for the different core sydde federated and lightweight
cores have the same sized resources as the dedicated 2-#gayNate that the federated
and lightweight cores use an MAT instead of an LSQ, and thesitmber of loads and

stores is limited by the size of the Active List rather thaa $ize of the LSQ.

are listed in Table 4.3. Although the in-order cores are lyighulti-threaded, the simula-

tions run only a single thread, since this represents thiedase for single-thread latency.
Note that the smaller L2 for the small cores represents destitg of a much larger L2, to

simulate the fact that these cores will not be the only coctiseaon the chip and thus do

not have exclusive use of the whole £2.

4.4 Results

Figure 4.3 shows the impact on performance of the individesign changes of the fed-
erated core. Each energy saving or lower complexity feasuerned OFF individually to
show its (negative) impact on overall performance; the IR{ gssociated with each de-
sign choice thus represents the improvementin performiamoald expect if the federated
core instead used the associated more complex, traditi@sayn approach. For example,

the 1.74% improvement in IPC associated with the MAT indisdhat | could improve the

4] also simulated all cores with a 32MB L2 cache and verified tile absolute performance improves
by about 20%, this occurs across the board, so that theweladirformance between the federated and the
dedicated OOO cores changes by less than 0.9%
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Figure 4.3: | show the performance impact of each individeature by turning them
OFF individually. The average IPC gain for a specific feateqgesents the performance
improvement | would expect if | replaced that feature wita gguivalent traditional, more
complex design. The dedicated OOO data point shows the waprent in performance
achieved by the dedicated OOO over the federated OOO core.

performance of the federated core by 1.74% by implementingSQ instead of a MAT.
While most of the individual limitations have only a very dirgtfect on performance,
commit time branch recovery decreases average IPC by over 5%

To separate out the impact of those features which | mighlyappa traditional OOO
core from the extra constraints imposed by federating tvatascores, the two constraints
which are a direct consequence of combining two distincehiae cores are shown on the
left of the figure. These two constraints are the only comggavhich do not apply to the

lighweight core, which, as described in Chapter 3, is a ggdat2-way OOO core with all

of the low overhead structures of the federated core.

4.4.1 Other Points in the Design Space

The design chosen for the federated core represents onlpantein a whole spectrum

of possible designs. | have aimed for a balance between ardeaand performance, but
would also like to discuss some alternative design choisegjuhe techniques | have pre-
sented which either provide greater area savings or inedeasrformance. Commit time

branch prediction recovery has a large negative performanpact on our design. The
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design tradeoff here would be to limit the number of unresdloranches in the AL at
any given time and add a small number of shadow rename majs) ate saved on each
branch and restored on a branch misprediction, to allow O@@dnh recovery at write-
back. Our experiments (not shown) reveal that adding ontyshadow rename maps (768
register bits overhead) provides most of the benefit of OCHDdir recovery and results in
5.1% better performance than the normal federated cored halki use this configuration
in the final analysis because | wanted to err on the side ofithelast design. Clearly this
would slightly improve Federation’s performance and epeffjciency.

The biggest additional structure of the federated coreds\thS branch predictor. To
save even more space, | considered moving branch predfctionthe fetch stage to the
decode stage and only using a way predictor, reducing thebauwf bits in each NLS
entry to the logarithm of the number of ways in the instrucwache. The target of direct
branches would be calculated using the BAC, which is usecetdybranch targets in
all designs, and the NLS predictor would only predict whiciyvef the set to read from
the instruction cache. The most common indirect branchetarfrs) would be predicted
by the RAS; however, the core would have to stall on other@uibranches. Using the
way predictor would preserve the power savings associaithd-@ading out only one way
during most cycles, but reduce the size of the NLS from 6,i#%4td 1,536 bits. While the
performance impact of moving branch prediction to the deidge is only 0.5%, stalling

on non-return indirect branches affects some programsisigmntly.

4.4.2 Area Impact of Federation

| used the same methodology as described in Section 3.5.4titnage the size of the
federated core. The sizes of all cores used are shown in Zdhle

It is interesting to note that the ratio of the area of the 4~@¥DO core to the area
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Unit Name State in Bits | Size inmn?
Bpred Dir Table 2-2048 0.0167
Bpred Target Table 15.512 0.0313
Rename Tables | 4-32-(5+4) 0.0194
Consumer Inst Queue 00 0.0231
Inter Core Wires NA 0.0515
Total NA 0.1422

Table 4.4: Estimated sizes of extra structures for Federati 45nm technology.

Core Type Size inmnt
1-way in-order 1.739
1-way in-order MT 1.914
Federated OOO 3.970
Lightweight 2-way OOO 3.945
2-way OO0 5.067
4-way OO0 11.189

Table 4.5: Estimated sizes for core types in 45nm technology

of the in-order core is close to the 5-to-1 ratio in [25], eWeough our assumptions and
baseline designs are somewhat different.

The area of the federated core was calculated by adding ¢las af all the major new
functional units to the area of two scalar in-order coresstingated the area needed by
the major inter-core wiring listed in Table 4.2 by calcutgtithe width of the widest new
unit (the integer and floating point rename tables laid alg-4y-side) and using the same
280nm wire pitch as used in [55]. In contrast to that work,ahtas a significant amount
of extra area devoted to new inter-core wires, the area ugsdtelwires for federating two
cores is less than 0.05nfrsince the wires do not have to cross over multiple larges;ore

but only connect two immediately adjacent small cores.
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4.4.3 Overall Performance and Energy Efficiency Impact of Fdera-
tion

The overall performance of the six different core types wvahin Figure 4.4, with their
average power consumption shown in Figure 4.5. The 4-way @Q® achieves about
twice the IPC of the federated OOO core but uses about thmeestihe power, while
the dedicated 2-way OOO core achieves 12.9% higher perfarenthan the federated
OOO core while dissipating 30.1% more power. The lightwe@®O core achieves 5.9%
better performance than the federated OOO core with onlgctiém of a percent higher

power consumption. The dedicated in-order core and therdegtk in-order core have
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Figure 4.7: Arithmetic meaa%, normalized to Federated OOO.

substantially lower performance than the federated OO®, wahich is not fully offset by
their lower power consumption. This can be partially atttéal to the fact that all cores—
except for the 4-way OOO core, which has larger caches—hantasamounts of leakage
in their caches and thus the savings in active power aretaffsmme degree by the static
leakage power.

Figure 4.6 shows the average energy el‘ficienc%%ﬁﬁ3 of the different cores. The

high-performance 4-way OOOQO core has a large advantage lvwsmaller cores in energy

55\‘,{&3: is like ED? in that both are voltage-independent metrics to capturetieegy cost required for a

particular performance level. | prefer the BIPS-based imb&cause (unlik& D?) larger values imply better
results.
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efficiency, because it is able to use its higher power to aelsebstantially better perfor-
mance. The dedicated 2-way OOO core has better efficienoytiieefederated OOO core
in Specint, but lower efficiency in SpecFP. The lightweigl@© core has higher energy
efficiency than the federated core thanks to its higher pedoce and essentially equiv-
alent power dissipation. The two in-order cores have theetdvenergy efficiency, even
though they have the lowest absolute power consumptione @gain, this is mostly due
to leakage power, which penalizes cores with longer exegcutmes.

To measure both the power- and area-efficiency of the differeres, Figure 4.7 shows

the BIPS

wamre Of the different configurations. The purpose of this metsi¢d account for

the area cost of attaining a certa%%sf value. In fact, this metric does not even show
Federation’s true benefits, since most of the area of thedéstk core is reused from the
underlying scalar cores, whereas the area of the dedicated must be cannabalized from
the existing cores. | am investigating a metric baseéxiraarea required by a particular
organization. Nevertheless, in terms\ﬁ%%, the lightweight OOO core outperforms
the federated OOO core by 18%, while the federated OOO capedarms the dedicated,
traditional 2-way OOO core by 13.3% and the 4-way core by 30%.

4.5 Federating 2-way Cores

In the previous section | explored federating two multielded scalar cores into an OOO
core, based on the assumption that scalar cores were theefffiosnt use of area for
throughput. There have been several recent designs [S&hvwdmploy 2-way in-order
cores, even when the power budget is very limited. Reasanshimosing 2-way cores
instead of scalar cores might include an inability to in€w single high-performance
core along with the multiple throughput cores. Such systesesl the higher single-thread

performance a 2-way core can offer.
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For designs which use 2-way in-order cores as their basdliagplored federating
two of these cores into a 4-way OOO core. While all the newcttines | introduced
for Federation can be scaled to support a 4-way core, | ad@ $oqprovements to most

structures to enable both higher performance and lower patven scaled.

4.5.1 Changes to Federation Structure

Many high performance OOO cores support predicting metgphnches per cycle. While
the NLS can implicitly jump over non-taken branches, | doexiend either the direction
predictor or the NLS predictor to produce multiple predios per cycle.

Commit time branch recovery was already the biggest singt®opmance cost in the
2-way federated core, and would have imposed a 15% perfaenaenalty on the 4-way
federated core (data not shown). Changing the processdiote @OO branch recovery
requires a small number of rename map checkpoints, as wklbasin the rename stage
which steers updates of the rename map to the appropriatetbcaeckpoint. | found that
four branch checkpoints delivered performance almostveadgint to having no limit to the
number of branches in the ROB.

Simply scaling the dependence based issue queue to suppaytésue would require
doubling both the number of read and write ports as well asnelihg the arbitration logic
to support issuing four instructions to the different ALU& reduce the number of ports
required as well as the complexity of the arbitration logicse ideas from [118] to partition
the issue queue among the issue ports in a fixed manner. Fdegfed core of 2-way
baseline cores, the instruction queue is partitioned oo €qual partitions. Each partition
can only receive and issue a single instruction per cyclerdmeives wakeup signals from
all partitions. Instructions are assigned to issue queugipas at rename time primarily

based on which ALU type is assigned to which issue port, acdrstarily on a load-
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balancing heuristic. As with load-balancing between cameg selecting among ready
instructions, | choose the simplest mechanism possibléstrilaliting instructions round-
robin to partitions with empty slots.

Unlike issue queues in clustered architectures, which istaltlited among the differ-
ent clusters, assigning an instruction to a particulanfamtof the instruction queue does
not mean a fixed assignment to a fixed ALU on a fixed core. Fordke of a federated
4-way core, the partitioned instruction queue steersunttins to the two cores based on
how many instructions are being issued in any given cyclés iBraccomplished by taking
the ready signals from the four partitions and feeding theta & four-entry priority en-
coder. The first two partitions with ready instructions geekecute their instructions on
core zero, while the next two partitions execute their ingions on core one. For most
benchmarks this steering policy means that the great myairinstructions are executed
on core zero and do not incur any extra latency when sendirgceiving values from the
load/store unit. Because the ready information for ingtoms in the issue queue has to be
available before select can occur, the inter-partitioonitst encoder can operate in parallel
to instruction select and not impact the critical path.

An issue which parallels the problems of the issue queuesisnitreasing number of
ports on the register file. While the number of read portsiredgby Federation is matched
by the underlying cores, the number of write ports is not. Va@idhaving to increase the
number of write ports, | use a technique similar to [65] oftp@ning the unified register
file between the different functional units. Using the bahkegister file of the underlying
core, | assign one bank per issue port, reducing the numberitef ports required to just
one per bank.

In the initial implementation of the MAT, all loads and steneere treated as if they
moved 64 bit values, the largest operand size in the Alpha IB@ating all loads and

stores as uniform simplified the MAT implementation to ongguire a single counter
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Parameter 2-way 10 | 4-way OOO
Active List none 128
1Q none 32
LSQ none 64
Data Cache 32KB 64KB
Instr. Cache 32KB 64KB
Unified L2 2MB 2MB
BTB 512 4K
Dir Pred 2K bimodal| 16K tour.
Memory 100 Cycles, 64-Bit
Branch Misprediction Penalty 16 Cycles minimum

Table 4.6: Simulator parameters for the 2-way in-order amdy out-of-order cores.

increment/decrement or check per operation, no matter thikactual operand size of the
load or store was. The downside of dealing with all loads @acks in this manner is that
extra aliasing will occur if adjoining 32 bit values are \eit to and read from in close
proximity.

To eliminate this false aliasing problem, | changed the MAIplementation to sup-
port 32 bit loads and stores as default. Operations whichen@V bits must incre-
ment/decrement or check two adjoining counters in the MATisTincreases the com-
plexity of the MAT’s logic and makes the MAT appear half itgesifor 64 bit operations,
but eliminates the problem of false aliasing between neghl 32 bit values.

Because the 4-way core can still only issue one load and one sér cycle, the MAT
retains the same number of ports as the base federated ansapjport a larger number
of memory instructions in flight without too many false poasgtmemory aliasing events, |

increase the number of entries in the MAT.

4.5.2 Simulation Setup

The simulation infrastructure described in Section 4.3 alas used for this set of experi-

ments. The resources of the dedicated 2-way in-order anay4&@@®O cores are shown in
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Figure 4.8: Arithmetic mean IPC ar%z—tss, normalized to Federated 4-way OOO.

Table 4.6. To reflect the greater emphasis on single-threddrmmance that a design using
2-way in-order cores might have, | substantially increasedpipeline depth of all of the
core types to more accurately represent designs which achaving higher frequencies.
| compare the 4-way federated core against five other cdresdalar core used as the
baseline for the 2-way federated core; the 2-way in-ordez ased as the baseline for the
4-way federated core; the 2-way federated OOO core; théwrgght 2-way OOO core;
and the dedicated 4-way OOO core. Here, the resources agtitereight core have been

scaled to match those of the the dedicated 4-way OOO core.

45.3 Results

Figure 4.8 shows the relative performance and energy eftigi®f the six core types.
The 4-way federated core achieves performance only 10%evwbes the dedicated 4-way
OO0O core. Comparing th%% of the different cores shows that the 4-way federated core
provides 15% better energy efficiency than the dedicatedy-aore. This result shows
that even large OOO cores can benefit heavily from more poffiereat structures, as
long as they do not impact performance too significantly.

The changes to the Federation structures outlined in $edtth1 impact performance
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as follows: the improved and enlarged MAT boosts perforrednc3% due to fewer false
positive memory aliasing events; the partitioned instarcjueue surprisingly does not
hurt performance on average; and, as previously mentiahedintroduction of branch
checkpoints improves performance by 15% and is the singhes$a contributor to the im-

proved performance of the 4-way federated core.

4.6 Conclusions and Future Work

Manycore chips of dozens or more simple but multi-threadedswill need the ability to

cope with limited thread count by boosting the per-threatpeance. This chapter shows
how 2-way OOO capability can be built from very simple, irder cores, with performance
92.4% better than the in-order core, 30% lower average ptivear a dedicated 2-way
OO0O core, and competitive energy efficiency compared to aR-@OO0O core. Using a

consumer-subscription based issue queue and elimindténgdad-Store Queue in favor
of the Memory Alias Table, | have shown that no major CAM-lehstuctures are needed
to make an OOO pipeline work. In fact, these same insightsbeansed to design a
new, more efficient, OOO core, as the lightweight OOO ressliav. However, even a
lightweight dedicated OOO core would still come at a hight cogrea. | have also shown
that the techniques of Federation can be applied to highdorpgance 2-way in-order

cores to achieve performance close to that of a dedicatddgegormance 4-way OOO
core.

The most important advantage of Federation is that it canddedto a manycore
architecture without sacrificing the ability to use the ddnent in-order cores as multi-
threaded, throughput-oriented cores. Federation rexjg@eeral new structures, but with
very low area overhead—Iless than 2KB of new SRAM tables agwitlean 0.25KB of new

register-type structures in the pipeline peair of cores—only 3.7% area overhead per pair.
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Put another way, this means that for a set of 32 scalar ctresyéa of Federation for each
pair only adds an aggregate area equivalent to 0.59 core8©8 0B of L2 cache. For
2-way in-order cores with branch prediction the relativeaaoverhead is even less. As a
result, Federation actually provides greater energy effy per unit area—specifically,

13.3% better-21% nfsmz than a dedicated 2-way OOO core, and 30% better than a 4-way

OOO core!

The option of adding Federation therefore removes the neetidose between high
throughput with many small cores or high single-threadgrenaince with aggressive OOO
cores and the associated problems of selecting a fixedipantiy among some combina-
tion of these. This is particularly helpful in the presentkmited parallelism and it allows
a multicore chip to trade off throughput for latency on a viamg-grained level at runtime.
Federation thus allows multicore chips to give higher p@nfnce across a wider spectrum
of workloads with different amounts of TLP and deal with wodds that have different
amounts of parallelism during different phases of executio

As | have pointed out in Section 2.2.1, the structure of Fatitam was chosen with the
lessons of clustering in mind. As such, | designed Federatithout further plans for hor-
izontally aggregating more than two cores into a single véde core. For higher single-
thread performance, the combination of Federation withriggies which can effectively
shorten the critical path — such as runahead execution$éhisticated prefetchers [41],
or dynamic optimization [4] — seems to be the most fruitfullpeo pursue. Many such
techniques have as one of their main advantages their tioleraf infrequent or long la-
tency communication with the main core, which makes it musdier to implement them
using multiple cores of a manycore processor. Future wonksimg manycore processors
to improve single-thread performance will have to find tlghtibalance between adding
extra hardware when absolutely necessary and emulating heaware features with

software or firmware on some of the cores of the processor.
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Diverge on Miss

5.1 Introduction

The growth in single-thread performance has slowed draailtiin recent years, due to
limits in the power consumption, thermal hotspots and cexipt of microprocessors. As
a response, the microprocessor industry has shifted itssfoato multicore processors,
which combine a number of cores onto a single die. Some ottHesigns give higher
priority to overall throughput than to single-thread latgnrading out-of-order cores for
simpler, smaller in-order cores which are smaller and lesgep hungry. While single-
thread performance suffers, overall chip throughput issased. This design point is often
referred to as manycore, as opposed to more traditionaicurdt designs, which retain
large, high-performance out-of-order cores for maximumgs-thread performance.

In the previous Chapters | assumed that multithreadedarsaalorder cores would
be the throughput cores of future asymmetric manycore gems. Single instruction
multiple data(SIMD) cores offer an attractive addition to scalar coresgaduse SIMD
organization can amortize the area and power overhead oigéedrontend over a large
number of execution backends. For example, using the sagaesatimation methodology

| use in Section 3.5.1, | estimate that a 32-wide SIMD coreireg about one fifth the area

71
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of 32 individual scalar cores.

If SIMD cores have better throughput, power- and area-efiicy than scalar cores, the
design point for cores between the throughput cores ancethehigh-performance cores
will probably move. One possibility is that slightly feweores with higher performance
would be preferred compared to scalar, in-order cores, mgakie lightweight out-of-order
cores cores or 2-way in-order cores which can be federategtamal design choice.

For SIMD cores to be accepted as the main throughput coreotyg®ymmetric CMPs,
their performance must be consistently better than scal&scacross the widest possible
range of programs. This is currently often not the case duinitations in how SIMD

cores perform on certain memory access patterns.

5.1.1 Divergent Memory Accesses

To better tolerate memory and pipeline latencies, SIMD roang/processors typically use
fine-grained multithreading, switching among multiple p&r so that active warps can
mask stalls in other warps waiting on long-latency eventge drawback of this approach
is that the size of the register file increases along with timalver of warps per core. Most
current and planned manycore processors also use on-ahpsto reduce the required
off-chip bandwidth and to hide the latency of accessing DRadvmuch as possible. The
combination of SIMD cores and caches presents specialgrabfor architects because
each SIMD thread may independently hit or miss. This probgemot just limited tcarray-
styleSIMD organizations where each SIMD thread is a scalar psdcg®lementVector-
SIMD instructions sets with gather support, including [97, 1ffeyuthe same problem.

Divergence becomes a particular problem for load or st@®untions that have irregular

INote that this estimate does not include the area of anycoierection network, among the MIMD
cores, which often grows supra-linearly with the numberares [69].

2For simplicity, | use the terrthreadto refer to a SIMD lane, andarpto a SIMD group that operates in
lockstep. Multithreading a SIMD core therefore consistsugiporting multiple warps.
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access patterns. Consider code where each thread of a SIMDn&ads to read many
contiguous values in a global array, but each thread aceelseénct regions, starting at
a random offset, for example in DNA sequence alignment. @it@hding in their values,
the probability that a thread in a warp will cross a cache boandary and have to stall
grows as the number of threads per warp increases. In sucedtealockstep nature of
SIMD execution forces the core to stall or switch to anotharpafor each load. Clearly,
such memory access patterns will waste much of the compotdtpower of the SIMD
core waiting on memory requests.

Here | present a new hardware mechanigimerge on missthat takes advantage of
looping behavior to temporarily mask off threads in a wamgt thiss in the data cache and
allows the other threads to continue executing, re-englttie masked off threads as soon
as possible. Letting threads which hit in the cache continwexecute allows them to use
idle execution slots when all warps of a core would otheniisestalled. It also allows
them to issue future cache misses earlier, increasing myeea parallelism [44].

We show that diverge on miss can increase performance of gao@nprocessor using
32-wide SIMD cores by up to a factor of 3.14, can decrease ribe @f each SIMD core
by 35% at equal performance or increase peak performanc@%y B/e show how such a
mechanism can be built with low-overhead on top of existingcsures meant to deal with
control-flow divergence. Diverge on miss builds on the faett thigh-performance SIMD
and vector corealready havdogic for masking off threads on a fine-grained basis to sup-
port arbitrary control-flow andan already deal wittmultiple parallel memory operations

finishing out-of-order due to their support of scatter/gatbperations.
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5.2 Background on SIMD Divergence Handling

5.2.1 Control-Flow Divergence

The baseline architecture in this study uses the same posindtor based reconvergence
algorithm as presented in Furg al. [39]. Each warp is associated with a branch diver-
gence stack, which tracks control flow for all threads in ttapy Each entry in this stack
holds 3 fields, the active PC field, an active threads bitmadkaareconvergence PC field.

If a divergent branch (where some threads evaluate the brantaken and some as
not-taken) is executed, the top of the stack entry is moditidtbld the reconvergence PC
along with a bitmask of the currently active threads in thepy& new entry is pushed on
the stack consisting of the fall through PC, a bitmask inghcpawhich threads evaluated
the branch as not-taken, as well as the reconvergence P@ bfanch. A second entry
consisting of the branch target PC is also pushed on the,std@kg with the bitmask
indicating which threads evaluated the branch as takenagaith the reconvergence PC.

The active PC and thread active bitmask are then set to tiveed@®€C and bitmask
fields of the top of the stack (which is the taken branch entrthis case) and execution
continues. When the active PC reaches the reconvergendbd’§tack is popped and the
active PC and bitmask are set to the values contained in thken stack entry.

Finally, when the reconvergence PC is reached a second hienadtive bitmask is
restored to what it was before the branch. If a branch is ameoed multiple times in
a row (such as a loop branch), then no new entry needs to bdrena the stack; it is
enough to modify the bitmask if any active threads want ta the loop. As we will
show in Section 5.3, the same basic operations that are sndedmupport control-flow
divergence by the pipeline logic (checking the PC againg atBred in a structure, taking
a pre-defined action if the PC’s match, modifying the bitmakkctive threads based on

the result of that action) also to support diverge on miss.
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All threads All thregds

i executing
miss cache, |||||||||||||||||<—m.maIIy
warp stalled

Some threads miss cache,
whole warp stalled

Figure 5.1: Warps can be forced to wait on memory by a singgsrinom a single thread.
Even cores with multiple warps are forced to stall by a siglehe miss per warp.

5.2.2 Handling of arbitrary scatter/gather memory requess in the

base architecture

Consider a SIMD vector or array core with scatter/gatheipsupand an attached data
cache. When such a core executes a load, the data cache fpekshucache line touched
by each load from each thread. If even a single lookup migsesution of the entire warp
has to stall until that miss has been serviced. We call mempeyations in which some
threads hit and some threads mibgergentmemory operations.

If a core only has a single warp to execute, it has to stall ahsan event. Even a core
with multiple warps that it can switch among can be stallebbly a small number of
individual memory requests missing the cache, as illustrat Figure 5.1.

If the architecture allows writing back individual threaghrster values into the SIMD
register file as a background operation, no intermediatagéas needed. If this is not the
case, a Memory Coalescing Buffer (MCB) is needed, whereegatue buffered between
the time they are read from the cache and when they are whtdek. An MCB is also
needed for divergent memory operations. All threads tha hé in the cache must capture
their values, as the cache lines they access may be evictedydbe servicing of any

misses.
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5.3 Diverge on Miss

Diverge on miss is a hardware mechanism which allows soneadsrin a warp to continue
to execute on divergent memory accesses. Threads whichmtiesdata cache (or a given
cache level if there is a multi-level cache hierarchy) aresked off and do not continue
execution, while the threads that hit in the cache contin@xécute normally. Such a warp
is called aslippingwarp, as it allows some threads to slip or lag behind othersmbty
requests from missing threads are serviced in parallel thiétwarp continuing execution.
When the warp next encounters the same memory instructiangondition which forces
re-synchronization of all threads in a warp) the missingdls that have subsequently
received their memory value are re-enabled if they haveivedeheir memory values.
Threads which still have not received their memory valuestinoe to be masked off.
Individual threads can slip a variable amount relative teeothreads, potentially missing
the cache shortly after being re-enabled. Slipping warpsetter catch up when other
threads miss in the cache or continue to execute after tiee thifeads have already finished
executing, forcing the warp to execute longer.

For programs which are memory latency bound, diverge on caisslynamically trade
execution cycles for more latency tolerance, higher MLP @oténtially improved utiliza-
tion of the data cache. We will show in Section 5.4 how the Wwaré can use runtime
control mechanisms to limit the amount of slip, controllihg amount of extra execution
cycles based on the needs of the running program.

We discuss two options for supporting diverge on miss: a pardware implementa-
tion and a hybrid hardware-software approach which onlysgp a new type of load and
store instructions, but leaves all the implementation aattlling of the divergence to the

software layer.
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Threads marked in
white are waiting on a
[TTTITIITII T}« memoryop atthe
PC specified PC, threads
marked in gray are
not divergent

Memory Divergence
Table

Figure 5.2: The Memory Divergence Table tracks which larfes warp are waiting on
which memory op and which ones are ready to be merged backhatactive warp.

5.3.1 Pure Hardware Implementation

Diverge on miss uses a very similar structure to the divergestack used by branch di-
vergence. The Memory Divergence Table (MDT) shown in Figou2 keeps track of
divergent memory operations.

The following actions occur when a divergent memory opersis executed:

1. The memory request is issued to the cache and a bitmasiatmdj which threads

hit and which miss is returned.
2. The fact that some threads hit and some missed is detegtéeé bontrol logic.

3. The control logic searches the current warp’s MDT enfoesn existing entry with
the same PC, merging the new request into the MDT entry ifigtex If an MDT
entry is not found, the control tries to allocate an MDT entythe instruction.
Allocation might fail because of a limited number of entnes core, or because the
adaptive slip controller (described later) decides thigtlietter to have this memory

operation execute as a normal load or sfore

If allocation succeeds, the threads which missed the casherd@ten to the MDT

as a bitmask along with the PC of the memory operation. The M@y is also

3In either case an MCB entry is also allocated to the memoryatip®. If no MCB entry is available,
execution has to stall until an entry becomes available.
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initialized with the memory addresses requested by thatséhat missed the cache
and the per-thread status fields are set to either waitingnalid. The missing
addresses are sent to the memory subsystem to be fetchedtdeiads which hit
in the cache receive their memory values and continue exgcut allocation fails
the warp falls-back to normal SIMD execution, and blockstingifor all misses to

complete.

4. As the time between when a cache line is returned and wheead can be merged
back into the active warp cannot be known a priori, it is polssihat a cache line
would be evicted while the requesting thread is waiting &activation. To prevent
this case, as soon as a cache line is returned the memorg\hhtevere requested
are extracted and each value stored in the appropriatenstbeiMCB entry. The

slots’ status bits are also updated from waiting to ready.

5. When the same memory instruction gets executed againfoced reconvergence
happens), the control logic will again search the MDT and findexisting entry.
Threads which have their status bits set to ready will wiirtvalue back to the
register file along with those lanes that hit in the cache,thed status field will be

updated to invalid. If all threads have the invalid statwesehtry can be deallocated.

5.3.2 Software-Controlled Implementation

An alternative approach is to add a new type of instructiatied theload& snoopand
store&snoop These instructions operate as normal loads and storesyitihin the level
one data cache (or another level of the cache hierarchyjeyfmiss, however, they do not
block but are instead turned into implicit prefetches. Bymgunteeing a fixed latency to
completion they have the benefit of being easy to schedulth&compiler in optimized

loops, similar to accesses to scratchpad memories in otbleitectures [38].
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If a thread misses in the cache, a bit is set in a bitmask. Timealsk can be stored
either in a special purpose register or returned as a seegmster write of the instruction,
similar to the low and high parts of a multiplication. In tlapproach neither the MDT
nor the MCB are implemented in hardware. The software carlem@nt most of the
functionality of these structures, or modify them accogdio the needs of the application.
Note that because the cache lines which are prefetched atecked down in any way,
aload&snoopor store& snoopcan fail repeatedly and indeed indefinitely. For example if
all threads in a warp try to load distinct cache lines thatraapped to a single set in the
cache and the cache’s associativity is smaller than thenvaih warp, it is impossible for
all loads to hit in the cache simultaneously. It should beeddhat software can always

serialize all loads or stores of a warp if it detects too maatsies.

5.3.3 Ensuring Reconvergence

Supporting SIMD divergence on memory operations raisegiaigoncerns as supporting
SIMD branch divergence. Ensuring that all threads get regatkinto the active warp and
finish executing requires some extra policies and logic peg.c

In typical usage a divergent load or store will be inside gplbody and executed a
large number of times. In this scenario diverged lanes camaly reconverge on the next
iteration of the loop. But if a thread diverges during the lasp iteration or control flow
jumps outside the loop body must be ensured to still recgever

If a subset of threads in a warp reach a return statement wtiiker threads are still
masked off, the control logic checks the MDT and re-activ#tese threads while masking
off the threads which have hit the return statement. Notetthsiis the same mechanism
that is used to handle branch divergence, so the contrat lmgly has to be extended to

check the MDT in addition to the branch divergence stackhéfé are multiple entries in
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the MDT this process is repeated until the MDT is empty.

5.4 Limiting Thread Divergence

A SIMD core which allows threads to diverge on cache missestaeal with the prob-
lem of excessive divergence. This can happen if some thia@ads the cache the great
majority of the time, while the others almost always miss.isTéan happen due to the
inherent nature of a given workload, the interaction of thegpam with the cache subsys-
tem or a number of other reasons. In the worst case this mbahby the time the fast
threads finish executing a loop, the slow threads have onMgraskd a few iterations. The
warp containing these threads will have to execute the diogatls to completion, greatly
wasting execution cycles and not gaining any benefit in tesfrverall warp execution
latency.

Worse, excessive divergence is that it can make the caclessabehavior of a given
warp much worse, with accesses that would have been a cons8guoalesced set of hits
turning into accesses spread over multiple cache lineseasing cache churn and decreas-
ing hit rates. These drawbacks to diverge on miss SIMD exatgrow proportionally to
the divergence between threads in a warp.

To limit the amount of divergence | introduce new controldveare, which | call the
Adaptive Slip Controller (ASC), to limit how far threads invearp can slip relative to
each other. The ASC has a small counter for each thread in jp. whan undiverged
warp encounters a diverge on miss event, those threads Wwhighthe cache have their
counters incremented. If any thread’s counter hits somamanx value, the warp reverts
to blocking execution of all loads and stores until the maximcounter value falls below
the maximum value again. Note that threads which are markedaative by the branch

divergence stack are not considered in this process.
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If a warp is already diverged when it encounters anotherrgesevent and all tail-
end threads (which have counter values of zero) hit in th@esathe counter values of
all threads which miss the cache in this instance are decrtenhe The same mechanism
applies when some threads reach the maximum counter vaheg.dare disabled and their
counters get decremented when the remaining threads hi iceiche. The counter of each

thread is reset when hardware warps are reassigned to a hefxssétware threads.

5.4.1 Adaptively Limiting Thread Divergence

The optimal maximum divergence value is very much depenadletie interaction of the
program, the input and the architecture. We use a mecharuaatted adaptive diff - which
keeps track of the number of cycles a core has been was netlgekecuting instructions
(a value of zero indicating that it is completely ALU bound)the amount of off-chip
bandwidth that it used was above its fair fraction of ovepathdwidth (bandwidth bound),
and the number of cycles it was stalled waiting on memorgfley bound). Since enabling
more slip results in more extra execution cycles (as thérgaihreads finish execution)
and can result in more bandwidth usage (due to previouslgsoad accesses being broken
into chunks which are touched at different points in timle¢, &mount of slip is controlled
by how ALU, bandwidth or latency bound a given program is dgra sampling period. |
use very long sampling periods of 100000 cycles or more elttire was neither ALU nor
bandwidth bound over a given sampling period, the maximuowald divergence value is

incremented, and otherwise it is decremented.

5.5 Hardware Overhead

Diverge on miss adds the Memory Divergence Table, the perathdivergence counters

and some other small structure to each core. Table 5.1Hists)tra state required for each
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Structure Fields State | Number Total
per Entry | per Entry| of Entries| Structure Size

Memory DivergencePC, Thread 32 bits 2:N 16— 256
Table Bitmask | 432 bits bytes

Per-Thread Per-Thread 8 bits 32N 32-512
Divergence Counter Counter bytes
Per-Warp Thread 32 bits N 4—-16
Slip-Limit Bitmask | Bitmask bytes
Max-Slip Per-Core | 8 bits 1 1 byte

Counter Counter

Table 5.1: New structures needed to support diverge on iHigsthe number of warps per
core, which range from 1 to 16.

structure. The MDT is similar to the branch divergence statkhat each entry needs to
record the PC of a divergent instruction, along with a bitkiadicating which threads took
which of the two possible paths. The number of MDT entriesvpenp is directly related
to the maximum number of outstanding memory operations eacfp supports. | assume
that the baseline architectures allows two outstanding ongiwperations per warp, which
means that the augmented core with diverge on miss has two MIdTMCB entries per
warp.

As explained in Section 5.4, it is useful to dynamically adéye maximum amount
of slip allowed between threads in a single warp at runtime.tréick the slip of each
thread a small counter is needed per thread. | assume thateanter is 8 bits, allowing
threads to slip by 255 hits or misses relative to each othHers@& counters are updated with
each divergent memory operation and checked against theShfaounter. If any thread
reaches the maximum allowed slip a bit is set in the warpjs-Biimit Bitmask, disabling

further execution of that thread until divergence is redugelow the threshold value.
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core type Area
scalar core 1.05mn¥f
32 scalar core 33.60mn?

32-wide SIMD core with 2 warps  7.3mn¥
32-wide SIMD core with 16 warps 11.5mn?

Table 5.2: Area estimates for different core configurations

55.1 Core Areas

To estimate the area of the SIMD cores, | used the same mdtgydas used in Section
3.5.1. | assume that each lane in a SIMD core has a 32 bit ddiaapd that each thread
has a total of 32 32-bit registers, so that each 32-wide SIMiDpwises 4KB of register
file.

| use the numbers for each functional unit and scale them diy tlapacities and port
numbers relative to the Opteron core. Table 5.2 shows tlas doe a 32-wide SIMD core
with 2 warps, a core with 16 warps, a scalar core and 32 scatas calculated with this

methodology.

5.6 Experimental Setup

5.6.1 Simulator

My custom simulator models a number of SIMD/vector coram@hith a cache hierarchy
and a shared memory subsystem. The cores are modeled ag hasonstant CPI of one
for all non-memory instructions and having private L1 daales and that the structures
for holding outstanding memory requests are not a limitiagtdr. Each core can have
one or multiple warps, and it can switch among on a cycle byedyasis at no extra cost.
The scheduling algorithm is round-robin, skipping warpschihare waiting on memory

requests. The memory reference traces are collectedlgifemn the native applications,
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which are instrumented with calls to my simulator. To deteerthe number of instruc-
tions between memory references, each application is atsgenanually and the number
of arithmetic and control flow instructions between memafgerences are passed to the
simulator.

Direct instrumentation of native applications was prefdrover gathering large mem-
ory traces to avoid the 1/0 and decompression overheadsofaldrace based simulators.
The combination of a simple core model and direct instrurt@ of native applications
allows the simulator to be very fast (slowdowns only abowt d@er pure native execution
are the norm) and can consequently capture the performaroguat sizes which would be
prohibitively slow to simulate otherwise. This is espdgiahportant when dealing with a

large number of cores and threads per core.

5.6.2 Simulated System and Power Model

The base chip consists of 32 in-order cores each supporginwgde SIMD execution, all

running at 2 GHz, for an overall maximum execution bandwimft® Teraops. Each core
has a 32KB private data cache, which has 32B cache lines ahdw&y set associative. |
model a standard LRU replacement policy. All cores sharesa&G/sec memory interface,

with a memory access latency of 500 cycles.

5.6.3 Workload

The chosen application kernels represent a mix of appticatomains and memory access
patterns. We have included a kernel (k-means) which is grearsing, having no reuse of
data between threads and cores. We do not expect this kerbehtfit from the sharing
tracker, and use it to make sure the sharing tracker doesunagdrch applications. Another

set of kernels (neighbor list generation, Lennard-Joneefoalculation and Gaussian fil-
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ter) has data reuse between software threads, but the glpatiterns are mostly between
threads that tend to access nearby data. These threaddearenaipped to the same core
and the L1 data caches are enough to capture most of the dest r&Ve expect these
kernels to show only limited benefits from the sharing trac&e only a small fraction of
memory requests will not hit in the local cache or go to glabhamory.

Lastly, we have also included kernels (ray tracing and DNfus@ce alignment) which
have both large working sets and data sharing patterns ithatom-regular, meaning that
threads on different cores will share data. We expect thesseks to show the most im-

provement out of all kernels.

5.6.4 Molecular Dynamics

We use the molecular dynamics package HOOMD (Highly Op#&ahi©bject Oriented
Molecular Dynamics) [8] version 0.8. HOOMD is a general msp molecular dynamics
package that can take advantage of the computational pdv@Pds using CUDA [80].
The two most computationally intensive functions in HOOMi@ ¢he Lennard-Jones po-
tential computation and neighbor list generation, makipgouer 95% of the runtime.
Note that HOOMD also supports other potentials, which allehthe same computation
and memory patterns as the Lennard-Jones computation.

The neighbor list function (NL) determines for every pd#dibeing simulated which
other particles are close enough that their Lennard-Jarnesactions with the current par-
ticle have to be taken into account. Since all particles nahweng the simulation time
frame, the neighbor list is regenerated every 10 time st@&psavoid the need to check
every particle against every other particle, particlessamged into spacial bins in a pre-
liminary step. Each particle then computes the distanocsd®et it and all of the particles

in all the neighboring bins, adding those particles thdtifeide of a cutoff radius to its
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neighbor list. To avoid having to regenerate the neighltsirdach time step, the cutoff
radius is made larger than necessary, so that particleshwhight move inside the real
cutoff radius in several time steps are also added to thdéherdist.

The Lennard-Jones function (LJ) calculates the Lennangésipotential for each par-
ticle each time step, calculating distance and force foh geticle on the neighbor list.
Both kernels are parallelized by assigning each partickedimgle thread.

| run the standard HOOMD benchmark simulating a liquid csimsg of 64000 parti-
cles at a packing fraction of 0.2 interacting via the Lenndodes force. | simulate the first

600 time steps.

5.6.5 DNA Sequence Alignment

We use the program MummerGPU [96] (SA), which uses a suffix toeefficiently find
alignments of short DNA sequences (such as those generatedgbspeed DNA sequenc-
ing machines) against a reference genome. The tree is $sV/étom the root in a data
dependent manner, with each edge holding a variable nunibaise pairs which must all
match for the traversal to proceed to the next node.

MummerGPU parallelizes its computation by mapping eachitiistring to a thread.
Similar to Schatzt al. [96], | run SA in the exact matching mode, matching batches of
synthetic snippets of length 25, 50, 200 and 800 base pampled randomly from the
Bacillus anthracisgenome(GenBanklID: NC_0039973) to match against itself. Each
batch contains a total of one million base pairs, with batadwntaining longer string con-

taining linearly fewer samples. | report the average pentorce over all 4 string lengths.



Chapter 5. Diverge on Miss 87
5.6.6 Ray Tracing

We use the bwfirt ray tracing framework [88], and specificéitly provided SimpleBVH
ray tracer as the test application. SimpleBVH decomposesdthne into a bounding vol-
ume hierarchy tree. Each ray traverses the tree to find thecbtbjat it hits in the scene.
Bwfirt uses SimpleBVH to do path tracing through a given scdeging rays bounce
around a scene multiple times until they hit a light sourcee dNose bwfirt because it
doesn't just trace primary rays, but use ray tracing to ereffects which are very expen-
sive to replicate with traditional GPU rasterization and c&rease the quality of rendered
images.

We parallelize SimpleBVH by having each thread trace a wffe ray through the
scene. This method of parallelization provides a large rarobindependent tasks with-
out the need for any communication between threads untibthput of the final result.
As input we use the conference scene with approximately lomilriangles and set the

resolution of the generated image to 1024 by 1024 pixels.

5.6.7 Data Mining

We use the k-means program (KM) from Minebench [79]. The lansecode randomly
generates N cluster centers, where N is given by the usenert tomputes the distance
between each point and each cluster center and assigns @athopthe cluster with the
closest center. After completing the reassignment of pdimtclusters it recomputes the
cluster centers as the average of all points assigned tduktec The last two steps are
repeated until the number of points switching cluster talagiofalls below a pre-specified
threshold.

Both the distance computation per point and the recompunati the cluster centers

can be easily parallelized. We assign each point to a thimaithé distance computation
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as well as the cluster center recomputation. We run k-me&hs3& clusters and with the

provided input set of roughly half a million data points, leadth 36 features

5.6.8 Image Manipulation

We use a blurring kernel (GF), which computes the 3 by 3 Gaundslur for each pixel of
the input image. Each warp is assigned an image tile congisfi 32 by 32 pixels, with
threads being assigned a single row in the tile. The inputrendomly generated black

and white image with 2048 by 2048 pixels resolution.

5.7 Evaluation

The baseline for all comparisons unless otherwise statédigach core has a single warp.

5.7.1 Application Behavior

We first explore the performance characteristics and sghlehavior of the selected ker-
nels on the baseline chip as outlined in Section 5.6.2. Tallehows some of the most
important performance aspects of each application.

Each of these kernels access their main data structure imdfitcal loop, causing
frequent cache misses due to low temporal or spatial lgcdlihe number of instructions
per memory operation is a good indicator of how well a givepligption will tolerate
frequent cache misses.

K-means is the only kernel which can exploit the full perfame of the base chip with
only a single warp per core, achieving 2 teraops/sec. Ther édtrnels are all limited by
memory stalls to much lower performance, with sequencealant achieving only 2.9%

of the maximum possible performance.
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instructions

off-chip bandwidth

inst per sec.

Kemel Name per memory op (GB/sec) (MInst/sec)
Neighbor List
Generation (NL) 19 8.15 156
Lennard-Jones Force
Calculation (LJ) 25 26.34 204
DNA Seq. Align. (SA) 7 62.77 57
Ray Tracing (RT) 15 30.60 124
K-Means (KM) 5 0.52 41
Gaussian Filter (GF) 8 77.91 65

89

Table 5.3: Number of instructions per memory operationdadth usage and instructions

per second for each kernel
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Figure 5.3: Increase in performance of 2 to 16 warps per @ative to a single warp per

core.

Figure 5.3 shows the increase in throughput when the numberips per core is

increased from 1 to 16, and Figure 5.4 shows the bandwidttl fsethe same config-

urations. The neighbor list generation kernel shows thé inesease, being limited by

arithmetic throughput with 16 warps per core. On the othedhéhe sequence alignment

and ray tracing kernels become bandwidth bound at 4 and 8waspectively.
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Figure 5.4: Bandwidth usage of all kernels with 1 to 16 warmasqore. The total available
bandwidth is 256 GB/sec.
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Figure 5.5: Relative speedup with 1 to 16 warps per core willkr@rge on miss and a fixed
maximum slip across all kernels for one particular config emibining the best fixed slip
for each kernel.
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5.7.2 Fixed Slip Performance

Figure 5.5 shows the relative speedup for 1 to 16 warps perwidh a fixed maximum
slip value compared to normal, blocking SIMD execution. \Wevg both the speedup with
the best average maximum slip across all kernels, as welleaspgeedup possible when
combining the results with the best per-kernel fixed maxinslips. The difference at 1
and 2 warps is very significant, with relative speedups of.652/s. 4 at 1 warp per core
and 2.88 vs. 3.15 at 2 warps per core. Moreover, the k-meansligvhich is ALU bound)
exhibits a slowdown vs. blocking warps.

These results show clearly that the maximum slip value dabeset statically across

all applications, but has to adapt to the workload.

5.7.3 Adaptive Slip Performance

Figure 5.6 shows the speedup with the adaptive slip coetreéirsus blocking warps for 1
to 16 warps per core.

The biggest gains can be seen for 1 to 4 warps per core, whergettmetric mean
speedup is 3.14 to 1.75 for 1 to 4 warps. At 8 and 16 warps perroany kernels become
purely bandwidth bound, which means that improving latgpelywarp does not give any
benefit. The 2D Gaussian filter has the highest speedup cgsafld kernels, increasing
throughput to 8.3 times the blocking warp implementatiothwli warp per core. As the
number of warps increase the relative speedup compared @l per core decreases,
as the kernel becomes bandwidth bound relatively quicklye ieighbor list generation
and Lennard-Jones force calculation kernels also show $pgledups at 2.5 and 5.6 re-
spectively with 1 warp per core. As the number of warps pee ¢glincreased, the two
kernels start to be limited by ALU throughput and bandwidisgectively, showing almost

no speedup at 16 warps. The DNA sequence alignment kernefshidsst speedup at 1
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warp per core with 4.23. The alignment is also bandwidth ldoashthe number of warps
increases.

K-means is a counterpoint to the other kernels, showing poempable speedup. This
is because each thread reuses the data for the its point 82 (once for each of the 32
cluster centers), leading to a small number of initial cachgses followed by the great
majority of memory accesses hitting in the data cache. Téeawior only changes at 8
and 16 warps, as the number of threads per core overwhelniatheache and capacity
misses result in a slowdown. With 8 warps, diverge on misspranide a small speedup,
as threads can reuse data in the cache in some cases wheiadhlarps would mean
that the accesses would be too far apart in time. This is a geathple how diverge on
miss can help workloads which require a large number of wianmgsart of their execution,
but are also limited by cache thrashing in other parts.

If | compare the performance of cores with diverge on missdora with a single warp
and normal SIMD execution, diverge on miss increases padace by a factor of 3.14,
4.67, 5.38, 4.94 and 4.30. The peaking out at 4 warps is pityrtare to cache thrashing
kicking in on high warp counts. Compared to the base scaliogva in Figure 5.3, it can
be seen that a core with 2 warps and diverge on miss can pregidealent performance
to a core with 16 warps and normal SIMD execution. From tha asgimates in Section
5.5.1 we can see that such a core is approximately 35% srttadiera core with 16 warps.

Figure 5.7 shows the speedup across number of warp for beéngéi on miss and
normal execution. Diverge on miss with adaptive slip cdrprovides a higher peak per-
formance (5.38 times the baseline) than normal executidi¥(dmes the baseline), but
only requires 4 warps per core versus 16 warps per core. Beadiuerge on miss can
tolerate more latency with a given number of warps, it is nionéed by bandwidth limi-
tations. As such, area saved by smaller cores could be usatbfe I/O, bigger caches or

other structures which reduce off-chip bandwidth.
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Figure 5.6: Speedup for 1 to 16 warps per core of adaptiveislipwarps versus default
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Figure 5.7: Comparing the speedup of both normal executoinstipping warps from 1

to 16 warps. The baseline is 1 warp per core with normal ei@tutAdaptive slip can

provide a higher peak performance of 5.38 times the basempeahce versus 4.14 for
normal execution, which needs 4 times more warps.
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Since both Larrabee and Niagara provide unified second taake on-chip, | also
explore whether adding diverge on miss to a design wherelii® $ores are coupled to
L2 caches is worthwhile. We simulate a design with the samnmelran and type of cores
as in previous experiments, but where each core has a p2géteB L2 cache. Each L2
cache is has 32B cache lines and is 16-way set associatiftehipfoandwidth and access
latency constant are kept constant from the previous exgets.

The mean performance of such a chip using normal SIMD exatuis
8.1%,7.2%,7.4%,52.4% and 115.9% better than the chip with@ caches for 1 to 16
warps per core and scaling from 1 to 16 warps per core improgesa factor of 4.14 to
6.35. The higher speedup at 8 and 16 warps per core is printhréd to several kernels
making good use of the larger caches and being less bandiadiid due to less cache
thrashing. The relatively small gain for 1 to 4 warps is duthefact that the NL, LJ and
SA kernels suffer primarily from compulsory misses and nmk&eexhibits cache thrashing
with a small number of warps per core.

The relative speedup of using diverge on miss execution wheh core has a 256KB
L2 cache is shown in Figure 5.8. The performance increaseeis karger than in Figure
5.6 primarily because kernels are less bandwidth bound awnel flewer L2 caches misses,
so that the misses which can be hidden with diverge on misasralarger fraction of all

misses and provide a bigger relative improvement in peréoce.

5.8 Conclusion

To maximize performance within power and area constrasisjgners have turned to
architectures with many small, multithreaded SIMD coreastifisoughput oriented work-
loads. Such architectures work well for applications wiggular data access patterns,

but can easily become latency bound for workloads with moregticated scatter/gather
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Figure 5.8: Speedup with adaptive slipping warps versusutiethlocking warps with each
core having a private 256KB L2 cache.

access patterns.

We introduce the concept of diverge on miss, which allows BWarps to continue
execution even when a subset of their threads are waitingemary. This provides ben-
efits when runahead threads prefetch cache lines for laggmegds. It also increases
throughput when divergent threads experience relatiaigom misses and runahead and
lagging threads continually leapfrog each other, rathan ttontinually being held back
by the slowest thread. Diverge on miss improves over my pnigs-divergence handling
by requiring no additional warp scheduler entries and mliog more robust speedups for
workloads with complex memory access patterns. The keglmss that SIMD cores’
support for branch divergence can be elegantly extendedppost memory divergence,
without having to re-group warps into finer grained schedyiinits.

We show that on a set of data-parallel kernels, diverge os oas provide speedups
as high as 3.14 over normal SIMD execution or can reduce treearea by 35% at con-
stant performance. It can also provide 30% higher absokda& performance than normal

execution with fewer warps per core.
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Sharing Tracker

6.1 Introduction

Graphics processing units (GPUs) were once fixed-functiardvare for 3D render-
ing. Demand for increasing programmability for such aggilans have gradually driven
GPU architectures to become general-purpose manycoriemteines (embedded within a
system-on-chip including various 3D-specific accelergtorhe introduction of hardware
and software support for general-purpose programminguiages on the GPU [19, 77, 80]
has allowed GPUs to become a viable platform for genergbqme computing.

Although the GPU instruction-set architecture is genprabose, the memory hierar-
chy and performance model are different than traditiondl @Rchitectures. GPU “cores”
are deeply multi-threaded and wide array-style SIMD orgations. On-chip memory ca-
pacity is small. Together, these choices sacrifice singkead performance in order to
boost the number of cores and available memory bandwidtiiming for throughput
instead.

GPU cores share global memory. Every core also possesses-hlggk shared mem-
ory” (PBSM) that is actually a software-controlled scragal. GPU cores also possess two

small L1 data caches that were originally designed for sheeid 3D-rendering access pat-

96
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terns (shared constants and texturing) that turn out to eRiL®r general-purpose work-
loads as well [16, 28,110]. These caches are private andoatept coherent. Values in
these caches and in the PBSM must be kept coherent by soffit@igecan be achieved by
the programmer or the compiler (by flushing when necessad/jjechniques for compiler-
controlled software coherence have been studied for ovgeafs (e.g., [29,108]).

The private nature of these cores prevents re-using vahsae@ among cores. Reuse
reduces off-chip bandwidth requirements. Hardware catoereloes capture reuse, at the
expense of considerable complexity in order to support tiveect semantics. Support
for scalable hardware coherence has been studied for de(ammstrom [108] provides a
good overview) and has recently been revisited for on-chgriag [27,47] in a multicore
context. Since graphics workloads typically do not benedibf coherence, it is unlikely
that GPUs will add the required hardware in the near fututee CTell BE [58] is another
major general-purpose architecture that foregoes haela@nerence. Various multicore
organizations for embedded systems also forego hardwaereace.

Capturing reuse with software-managed coherence recgoras alternative means by
which a core finds a cache line on a miss in its private L1 caCve option is to have a
last level cache (LLC) shared among all the cores. The drekvtmasuch a design is that
a LLC of sufficient size to support the request streams froargel number of wide SIMD
cores will significantly reduce the chip area available Fa high throughput cores.

Instead, | propose thgharing trackey which simplifies the directory from cache coher-
ence approaches for use with non-coherent cache hierardtie key insight is that when
software is responsible for coherence, the directory besarpredictor and a mere perfor-
mance hint. Erroneous predictions may reduce performaumogdnot violate memory se-
mantics. In contrast to full coherence directories, theislgdaracker is a low-cost structure
that can be sized independently of the overall cache capiacibvers, and does not have

the complexities associated with cache coherence prato@lsimplified directory-like
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sharing tracker is able to effectively capture reuse andnigises from other private, on-
chip caches. This greatly reduces off-chip accesses. Wethony bandwidth increasingly
becoming the limiting factor in throughput, this can havardatic performance benefits.

On a set of memory intensive kernels the sharing trackemzaease performance by 5
to 12% for a manycore CMP where each core has a 32KB L1 and aRb8Kache (8MB
total L2 for a 32-core organization) and by 50 to 102% if thosees omit the L2 altogether
and only have 32KB L1 caches. In fact, as long as the L1s haffieisat associativity,
an L1-only organization with sharing tracking matches perfance with the large L2.
Eliminating the L2 can reduce cost or permit integration @diional cores. Adding the
sharing tracker to a manycore CMP with only per-core cachesincrease performance
permnt by 35%.

The effectiveness of the sharing tracker with only smallqme L1s is chiefly due
to two factors. First, with many cores, the aggregate L1 ciép#s still large (1 MB for
32 cores x 32 KB/core). Second, a latency-tolerant desigrerts the cache from a tool
to reduce latency into a tool to conserve bandwidth. Thismedhat cache misses have
minimal cost as long as bandwidth is not a bottleneck. Of eeuthis requires sufficiently
deep multi-threading to actually hide latency effectivéline sharing tracker’s value is in

capturing inter-core reuse that would otherwise have necLioff-chip accesses.

6.2 GPU Cache Architecture and Memory Model

| have given some background on GPU architecture in Sectardd would like to talk
here about the GPUs cache subsystems and the memory model.

GPU caches are specialized to deal with different addressespand access patterns
which are derived from the high level graphics APIs [13]. Tuestion might be asked

why GPUs have any caches for data at all, since they are @gtithtd tolerate latency.
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The answer is that GPU caches are mostly meant as bandwidiis snd not as a way to
decrease latency of memory accesses. To illustrate thesath GPU, | use the NVIDIA
Tesla architecture [68] as an example, since it has the nubdicfy available information.

Each core has 3 main caches:

1. The instruction cache, which is the same as in a regular. C@de segments are

effectively read-only, as there is no way for a GPU threadhange it at runtime.

2. The constant cache: This cache is meant for broadcastings/to all the SIMD
threads. The data structures mapped to the address spdweanfristant cache are
read-only and the cache doesn’t support any form of writitfgdifferent threads
in a SIMD group request different values, the constant caelializes the request.
The latency of the constant cache is relatively low, and fmsdyperformance the
workload has to exhibit temporal and spatial locality. Aslsumany of the design
considerations for the constant cache are similar to the oha L1 data cache in a

CPU.

3. The texture cache: This cache is meant for accessingésxtwhich in 3D graphics
is the name given to images which are mapped onto triangliaeg bendered to the
screen. Because of the nature of the graphics workload taetes act primarily to
capture spatial locality in accesses from neighboringgitisen a SIMD group. Hits
in these caches have the same latency as misses, which tmitsusefulness for

many general-purpose workloads. Textures are also relgd-on

It should be noted that the data structures cached in thebesaan be modified, but
this usually requires the intervention of the graphics chineer on the CPU and completely

invalidating all the data in these caches.



Chapter 6. Sharing Tracker 100

Coherence
Coherence Status
Directory Entry I ] ] [

Full tag Core Bitmask

Partial tag Core Pointer
Sharing Tracker
Entry — —

Figure 6.1: A cache coherence directory entry consists afldag, a bitmask indicating
which cores have copies of a particular cache line and a $itédild to track the current
coherency state. In contrast, a sharing tracker entry stsnsf a smaller partial tag and a
pointer to the cache that contains a particular cache line.

Since both constant and texture cache only support readeath structures, many

general-purpose workloads suffer from the fact that eachsscto a read/write data struc-

ture incurs the full latency of going to memory, which is sevéundred cycles.

6.2.1 GPU Memory Model and its Implications

The GPU’s memory model is that memory is non-coherent anet thiee no rules for or-
dering stores from a single core. Changes made by one cdremnyl be guaranteed to
be globally visible after a heavyweight global barrier, efhbasically involves flushing all
the on-chip caches.

As | have mentioned in the prior section, all the current eaabn a GPU only support
read-only data structures. If caches which support forgeau writes are added, case of
multiple cores writing to the same cache lines also has teehé dith. | assume that such

a chip will use a write-validate [57] policy to deal with tiparticular issue.

6.3 Adapting Coherency Hardware

Current GPUs have multiple SIMD cores, with small, per-ocaehes. To get better per-

formance on general-purpose workloads | want to exploitisgaf cache lines between
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cores to reduce off-chip and latency of memory requests. @ptien would be to add a
large, shared, inclusive LLC, which would naturally captauch re-use. But such a cache
would occupy significant area, which might otherwise be tiy¢o more cores.

In traditional CMPs, cache coherency is used to figure outefd is a copy of a re-
quested cache line in a cache on-chip and to request a copmdfycore CMPs a snoopy
coherency protocol would be problematic because of the&l nage in communication vol-
ume as the number of cores increases. A directory protodbkibetter choice for such
an architecture. But of course, cache coherency does mughtimn that, ensuring that a
core receives the most up to date version of a cache line ahd tine core is writing to a
cache line no other core has a valid copy.

This is too much functionality for my purposes, since | wamtonly save off-chip
bandwidth and improve latency of memory requests. | wantetmthpose the function-
ality of directory-based cache coherency hardware and &Bbpthe parts needed for my

purposes.

e Tracking the status of cache lines (shared,exclusiveigto)t necessary, since the

current programming models of GPUs allow race and readsate data.

e Keeping track of all copies of a cache line is not necessargeghere is no constraint

that a core must have the only copy of a cache line for a write.

e There can be cache lines which are on chip and not tracked aktas is allowed
since stale copies of cache lines are allowed. Any copyincpohe lines between

cores is simply to save off-chip bandwidth, not for correstn

With these relaxations of the requirements versus full eaxherence | have derived
a new structure from previous proposals for directory-tasehe coherency hardware for
CMPs [27,4T7].

| call this new structure theharing tracker
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Figure 6.2: On an L2 miss, the request is sent to the shaaoger (1). The sharing tracker
is queried like a shared L3 cache. On a hit in the sharing éradkreads out the pointer in
its entry and forwards the request to the appropriate L2e&é2h If there is an L2 hit, a

copy of the cache line is then forwarded to the original L2 aock (3).

6.3.1 Sharing Tracker Organization

Figure 6.1 shows the different units involved in a shariagker lookup. Note that in the
following explanation I refer to all caches as being L2s,dfutourse the same mechanism
applies if the GPU cores only have private L1 caches. Therghaacker is organized like
a shared cache, but each entry holds as data only a pointg@riwate cache that contains
the specific cache line. Unlike a full distributed cohereengine [47], the sharing tracker
does not need to track all the cores which have a copy of a gaelme line (which requires
a bitmask which grows with the number of cores) or the curceherence state of a cache
line.

When a L2 cache miss occurs, the sharing tracker is checkedarsto a shared L3
cache (see Figure 6.2). If there is a hit in the sharing tnaekpointer to the cache holding
that cache line (called the source cache) is read from thénghisacker. A request is sent
to the source cache. The source cache then does a normalloakbp. Note that the
lookup will not necessarily hit since the sharing tracketryegan be out of date or there

was a false positive hit due to the use of a partial tag. Ifeher hit in the source cache,
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that cache then forwards the cache line to the requestingecdte sharing tracker’s entry
is updated to point to the requesting core. If a cache linigted from the private L2
cache of a core, the sharing tracker is checked for that .effttyre sharing tracker hits
on that cache line AND the core id of the sharing tracker entatches the L2 id from
whose L2 the cache line is being evicted, the sharing traakiy is invalidated. Note that
it is possible that there are one or more copies of the evizaele line in other private L2
caches on chip, which are lost for future sharing purposttei€orresponding entry in the
sharing tracker is invalidated.

Unlike a distributed cache coherency directory [47], tharsty tracker does not have
to return a correct prediction. Since each prediction iskbd through an L2 lookup, false
positives are caught automatically. If there is a miss insiierce L2 cache, the request is
sent to the memory subsystem and the corresponding sheaitiget entry is invalidated.
If the sharing tracker lookup hits and returns the result tha source cache equals the
requesting cache the checking logic knows immediatelydtatse positive has occurred,
since the requesting cache has already done a lookup befoding the request to the
sharing tracker.

Another advantage of not having to guarantee correct lo®ksithat by reducing the
size of tags in the sharing tracker [36] (see Figure 6.1). sAshiown in Section 6.5, it
is possible to substantially reduce the tag size withouuilynteducing the effectiveness
of the sharing tracker. This is especially important for ahealike structure such as the

sharing tracker where the tag size can be larger than theodatntry.

6.4 Simulator

The general goal of my simulator is to let me explore new &echiral ideas in the many-

core space quickly. Since | observed previously that mosgq@ams on manycores are
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bound by the performance of the memory subsystem and betteiseanycore CMPs use
very simple core architectures compared to traditionatslagive, out-of-order cores, |
have focused my efforts on the cache and memory subsystel® mvbdeling instruction
execution with the simplest model possible.

The custom simulator models a number of SIMD/vector coremgawith a cache
hierarchy and a shared memory subsystem. The cores areedaehaving a constant
CPI of one for all non-memory instructions, private L1 dadalees, and the model assumes
that the structures for holding outstanding memory reguas not a limiting factor. Each
core can have one or multiple warps, and like current GPUsgseatch among warps on
a cycle by cycle basis at no extra cost. The scheduling dkgoris round-robin, skipping
warps which are waiting on memory requests. The memoryearéer traces are collected
directly from the native applications, which are instruneehwith calls to the simulator.
Direct instrumentation of native applications was prefdrover gathering large memory
traces to avoid the I/O and decompression overheads of harace based simulators.
To determine the number of instructions between memoryestes, each application is
inspected manually and the number of arithmetic and cofital instructions between
memory references are passed to the simulator.

The combination of a simple core model and direct instruit@m of native applica-
tions allows the simulator to be very fast (slowdowns of L&t30x over pure native exe-
cution are the norm) and can consequently capture the peafaze on input sizes which
would be prohibitively slow to simulate otherwise. This specially important when deal-

ing with a large number of cores and threads per core.
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Number of cores 32

SIMD width 32
number of warps per core 1-16

Register File size per warp 4KB

Per core L1 instruction cache 32KB, 8-way, 64B lines
Per core L1 data cache 32KB, 8-way, 64B lines

Non-memory CPI 1
(Optional) per core L2 cache 256KB, 16-way, 64B lines
L2 hit latency 20 cycles
hit latency in remote L2
after lookup in sharing tracker 100 cycles
Off-chip bandwidth 256 GB/sec
memory latency 500 cycles
Clock speed 2 GHz

Table 6.1: Details of the simulated systems
6.4.1 Simulated System

The simulated system is described in Table 6.1. | assume a G@MBisting of 32 in-
order cores each supporting 32-wide SIMD execution, alhigpat 2 GHz, for an overall
maximum execution bandwidth of 2 Teraops. Each core has 83#kate data cache,
which has 64B cache lines and is 8-way set associative. bexpthether it makes sense
to add a 256KB, 16-way set-associative L2 cache to each soreldr to the proposed
Larrabee [97]) in terms of area efficiency or if having snratieres with only L1 is enough.
For all caches the simulator models a standard LRU replacepwdicy. | experimented
with a variety of other replacement policies, e.g. adaptetiof Qureshi's work [87, 86],
with no major benefit. | assume that it takes 100 cycles tosactee sharing tracker,
forward the request to the source cache and copy a cacheolitiee trequesting core’s
cache. All cores share a 256 GB/sec memory interface, witlermaony access latency of

500 cycles.
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Size of the physical address space supported40 bits
size of full tag and valid bit 15+ 1 bits
size of bitmask and coherence state | 32+ 2 bits
number of entries needed to cover 8SMB of L2 128K

Total size of coherence directory 800KB
size of partial tag and valid bit 10+ 1 bits
size of L2 pointer 5 bits

Total size of sharing tracker covering SMB 256KB

Table 6.2: Comparison of a coherence directory to the sharacker
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core type

32-wide SIMD core with 1 warp
32-wide SIMD core with 2 warps
32-wide SIMD core with 4 warps
32-wide SIMD core with 8 warps

32-wide SIMD core with 16 warp

U

core area with| core area including
only L1smn?) | a 256KB L2mn¥)
7 11.35
7.3 11.65
7.9 12.25
9.1 13.45
11.5 15.85

Table 6.3: Area estimates for a different variants of a 38@ensIMD core.

6.4.2 Area Model

To evaluate the tradeoff between additional cores or addimg2 cache to each core or

adding structures such as a sharing tracker | need an estohite chip area the different

types of structures occupy. | use the same methodology axtided in Section 3.5.1 and

5.5.1 to arrive at the core sizes below.

| use Cacti 5 [103] to estimate the area of the per-core 25@KByay set associative

L2 cache as well as the other caches and cache-like stractlitee area estimates from

these calculations are shown in Table 6.3.

structure description area (nr)
8MB LLC cache 44.65
full distributed coherence directory covering SMB  3.42
sharing tracker covering 8MB 1.01
Area for inter-core network, 10-pads, etc. 74

Table 6.4: Area estimates cache-like structures and ua-cor
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For the calculations of area efficiency in Section 6.5 | alsechan estimate for all the
structures on a chip apart from the cores themselves. | atgithat the SIMD cores will
occupy 75% of the die area, with the other 25% used for the-otee network, 10-pads,
memory buffers, etc. . | used the smallest SIMD core for thiswation and assumed as
elsewhere that the chip would have 32 cores. The area of thedike structures and the
non-core part of the chip are shown in Table 6.4.

| use the same workload for my evaluation as described in@ebt6.3.

6.5 Evaluation

My initial investigations showed that reducing the tags @oblts showed no noticeable

performance drop compared to full tags. | use 10 bit tagsl ithalfollowing experiments.

6.5.1 Performance Comparison

To evaluate the overall impact of adding the sharing to a mamey GPU, | first show
the performance and bandwidth improvement possible byngdalisharing tracker to the
base CMP with per-core L2 as described in Section 6.4.1. infitst experiment, the
L2s are maintained. The moderately large per-core L2s djreapture much more of
each core’s working set (despite some duplication of datangn2s) than the 32 KB
L1, so | expect modest benefit from adding the sharing tradkesmpute the geometric
mean performance and bandwidth across all kernels intexbiuncSection 5.6.3, where the
performance of each kernel in each configuration has beenalazed to the performance
of that kernel without a sharing tracker.

As can be seen in Figures 6.3 and 6.4, the sharing trackemcasase performance
between 3 and 12% while reducing the required off-chip badthby 20 to 45%. The

kernels which benefit the most from the sharing tracker arsglthat are bandwidth bound
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Figure 6.3: The geometric mean performance across all leeuseng different sized shar-
ing trackers(ST) (covering 0 to 8 MB of L2 cache entries) nalized to no sharing tracker.
The number of warps per core is varied from 1 to 16.
and have significant sharing of data between threads oneliffeores. These are primarily
the RT and SA kernels which both traverse very large datatsires which are shared
between all threads and have sharing complex patterns wheety spaced threads can
access the same data. The KM, GF and NL generation kernels shgerformance
improvement. This is expected, as the GF and NL kernels halydacal sharing of data
which can be satisfied by each core’s L2 caches. The KM kemiglshares a very small
array between all threads and each thread touches onlyvtggdata apart from the very
small global array, meaning it has no re-use which cannoaptuces by the L1 caches.

| now evaluate the performance and bandwidth savings if eahonly has L1 caches.
Figures 6.5 and 6.6 show the performance and bandwidth weprents possible by adding
a sharing tracker covering part or all off the L1 data cachfsthe Figure shows, both
the performance and bandwidth improvements are greatenthan each core has an L2
cache. Performance improves between 50% and 102% relatie t_1-only case with-
out the sharing tracker. The difference to the prior caseiestd most kernels becoming
much more bandwidth and latency bound. The RT, SA and LJ kest®w bigger im-

provements, but the real difference is that the KM and GF &dsrnow also improve in
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Figure 6.4: The geometric mean off-chip bandwidth acrddseahels using different sized
sharing trackers(ST) (covering O to 8 MB of L2 cache entries)malized to no sharing
tracker. The number of warps per core is varied from 1 to 16.

performance for some configurations. This is primarily theecbecause these kernels
thrash their L1 caches at higher warp counts. Bandwidtmgawire between 38 and 58%
for similar reasons.

Clearly the individual L1s do not have sufficient capacitgépture each core’s work-
ing set. Next | compare organizations with and without the L[EAgure 6.7 compares
geometric mean performance across all kernels normaltttperformance of the con-
figuration with the smallest chip area, which is one warp jpee @nd no L2.

A first fact to note is that if the performance of cores with anthout L2 cache and no
sharing tracker is compared, the relative performanceflie@fd.2 grows as the number
of warps per core is increased. This is due to the fact thaemarps per core put more
pressure on the caches and the L1 caches start to thrasmferkswnels at 8 and 16 warps
per core. Itis very interesting to note that the small stzamiacker can lift the performance
of the no-L2 configuration to the level of the configuratiorttwiL2. It is not clear how
much this is due to limited long-range temporal locality e tsuite of kernels, and how
much due to latency tolerance with sufficient number of wakisl6 warps, the L1-only

organization with the best sharing tracker outperformsctihesentional organization with
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Figure 6.5: The geometric mean performance across all leeuseng different sized shar-
ing trackers(ST) (covering 0 to 1 MB of L1 cache entries) nalized to no sharing tracker.
The number of warps per core is varied from 1 to 16.

256 KB L2 per core and no sharing tracker, and is within 2.4%hefconfiguration with

L2 and the largest sharing tracker.

6.5.2 Performance/Area Comparison

Raw performance is not the only metric architects care abligiure 6.8 shows the per-
formance pemn? of each configuration. For this calculation | use the areaachecore
configuration from Table 6.3 and add the fixed overhead of timleaore part of the chip as
shown in Table 6.4. Here it can be seen that in the base casdénog tracker) adding L2
caches to each core makes little sense even without thengheaicker below 8 warps per
core, as performance pem? of the configurations with and without L2 caches are within
0 to 7% for 1 to 4 warps per core. At 8 warps per core that diffeesgrows to 28% and to
50% at 16 warps.

With the addition of the sharing tracker, the performanaenmef of the configurations
without L2 cache rises much more than of those with, makimg tonfiguration the top

choice. The advantage is 40% with 1 warp, 26% with 2, 39% w146 with 8 and 28%
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Figure 6.6: The geometric mean off-chip bandwidth acrddseahels using different sized
sharing trackers(ST) (covering 0 to 1 MB of L1 cache entries)malized to no sharing
tracker. The number of warps per core is varied from 1 to 16.
with 16 warps. Comparing the configuration with the highesfgrmance pemnt (16
warps per core and per core L2 caches) without the shariokerao the one with sharing
tracker (16 warps per core, no L2 caches, sharing trackesroayall of the on-chip L1
capacity), there is a 35% improvement.

To more clearly illustrate the benefit of removing the L2@freach core | plot the ratio
of performancehn? for each configuration with and without L2 caches and witfedént

sized sharing trackers in Figure 6.9.

6.6 Conclusions and Future Work

GPUs have recently emerged as a new platform for high-pegoce computing. Their
current cache organization is optimized for streaming dath little temporal locality

and no sharing between cores, and requires software to mamggcoherence require-
ments. To efficiently support general-purpose workloadteb support for temporal reuse
is needed. However, as long as GPUs’ main sales volume rerhaised toward 3D ren-

dering applications, and these do not require cache coberenhink it is unlikely that
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Figure 6.9: The ratio of the performance per unit area of goméitions with and without
per core L2 cache.

GPU vendors will add full cache coherence in the near fut@iece cache coherence is
challenging to implement at large scales in any case, soteaherence is an appealing
option for any large-scale multiprocessor, and some otlgarszations, notably Cell and
RAW, have followed this approach.

This chapter shows that in a throughput-oriented processtbr effective latency-
tolerance mechanisms, a lightweight alternative (calledsharing tracker) to a full on-
chip cache coherency directory provides all of the benefitaohe coherence for sharing
cache lines among multiple caches on a chip, with 4 to 20 tiessarea than a coherent
organization. The sharing tracker allows the L2 to be elated entirely and still boosts
performance by 3%. Even in the case where the L2 organizaiotuindes a sharing tracker,
the L1-only organization with sharing tracker only sacefic2.4%. The sharing tracker
also reduces off-chip bandwidth by 38-58% compared to tlee aconventional L2 or-
ganization, and increases performanceper by 35% compared to a design with only
per-core caches. Although my results are obtained with a Gigdnization, the success
of the sharing tracker in that context suggests that othreughput oriented architectures

should evaluate a similar approach. Generalizing thisaggbr poses an interesting direc-



Chapter 6. Sharing Tracker 114

tion for future work.

As manycore CMPs increase the number of cores per chip,térechaof accessing any
global structure will worsen. One way to deal with this perhlis by replicating resources,
but this is expensive for large structures. | want to ingzge whether | can use the fact
that the sharing tracker is small and does not require preciap-to-date data, for a design
which distributes multiple copies of the global sharingcker across a CMP. This can
reduce global on-chip network bandwidth and latency, palyincreasing performance.
Another option | want to investigate is whether a hierarahstaring tracker, where smaller
sharing trackers cover a subset of cores and can resolvesibs$ore they have to go to
a global sharing tracker, can achieve the same bandwidthaseacy advantages as the

replicated sharing tracker.



Chapter 7

Conclusions

The design of microprocessors has traditionally focusddnoving single-thread perfor-
mance. This was accomplished by taking advantage of theassrg number of transistors
per die due to Moore’s Law and the increasing switching fesmy of those transistors with
each process generation. The larger number of transiseneswsed to design ever larger,
more complex cores, which could execute more instructiensyxcle with each generation.
The size of on-chip caches was also rapidly increased, mregltize fraction of memory ac-
cesses which accessed off-chip memory and stalled theggoiceThe higher switching
frequency of the transistors allowed new cores to run at hdriglock rate. Clock rates
were further increased by increasing the pipeline depthaxfgssors with each new design,
which meant that each each pipeline stage did less work ahteba delay, allowing new
designs to be clocked higher, independent of the processatgm that they were built in.
The combination of more capable cores, deeper pipelinimgjrecreasing switching speed
of the underlying transistors led to a steady growth in srtfead performance for two
decades [9].

Multiple factors led to the demise of this fortuitous comddinn. Computer architects

had used several techniques to increase performance ér @fole over time. By the
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1990s, they had turned to out-of-order execution, whichiiméed form of data-flow exe-
cution combined with bookkeeping structures to make thelreppear as if the processor
had executed the program in-order, so as not to complicatalistract processor model
that programmers had to deal with. While out-of-order canégally provided good per-
formance increases, their efficiency decreased steadilyegswere pushed to higher and
higher performance levels. Finally, further performanmogrovements were only possible
at unacceptable cost. Computer architects thereforedreliech more heavily on increas-
ing the pipeline depth of processors, hoping that a fasteease in the achievable clock
rate could offset the constant or decreasing performanceyme. Decreasing perfor-
mance is possible because aggressively increasing théngigkepth of a core leads to
lower performance per clock. The Intel Pentium 4 [14] is aarsgle of a design which
traded slightly lower per-clock performance for much higtieck speed. A consequence
of increasing the clockrate faster than simple processngrallowed was that the power
consumption of microprocessors increased significanisinB power consumption due to
aggressively increased clock speeds was one of the redmrke performance growth of
single-core microprocessors slowed dramatically, butm@bnly one.

The model for ideal scaling of CMOS process technology wa®dced by Den-
nard [33]. One important feature of Dennard scaling is thkéeps the power consump-
tion of a fixed size chip constant across process genera#diits core was the assumption
that the supply voltage of a chip and the threshold voltagbefransistors could be scaled
down each process generation, thereby compensating foethfgequency. The scaling
of threshold voltage has dramatically slowed down or eveppsd in recent years, due
to the limits subthreshold leakage sets on threshold veltagis in turn limits the further
lowering of the supply voltage and leads to increasing, oostant, power consumption as
a chip runs at a higher frequency at a newer process node.igherpower consumption

from both aggressive pipelining and the slowing of supplfage scaling severly limited
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the increase in performance that newer designs could pFovid

Once the performance growth of single-core microprocessowed, the microproces-
sor industry turned to integrating multiple processor sonea single processor to further
increase performance. Having multiple cores per die mdwtthigher clock rates were
not required for higher throughput. In fact, two or more soteuld be run at a lower fre-
quency and voltage, and potentially lower power, and stivge higher throughput than a
single core. Note that, unlike previous performance iregeaf microprocessors, scaling
the number of cores per chip requires programmers to agtolenge their programs to
exploit more and more parallelism to obtain the full bendfiihe increased throughput of
such chip multiprocessors.

The design of CMPs has been an active research topic. Pritr[4®, 67] has shown
that asymmetric CMPs, which have a small number of largeh-pgyformance cores and
a large number of small, throughput-oriented cores, capesfdrm homogeneous CMPs,
where all cores are of the same type. The large, high-pedonce cores use the same
type of design as the last generation of single-core procgswhich are both power- and
area-inefficient. The throughput-oriented cores are muadllsr but individually provide
significantly lower performance, leaving a significant gag &ading to sub-optimal per-
formance for many workloads.

To narrow the gap in performance requires building coresclwhare higher-
performance than throughput cores, but have higher afegeaty. In Chapter 3, | showed
that an out-of-order core can be built with much smaller, en@ower efficient structures
than previously thought at only a slight loss of performaacé a gain in both energy- and
area-efficiency [113,114,115].

The design of the new, lightweight structures, the constimased issue queue and the
memory alias table, take advantage of several propertigpmal programs when execute

on a speculative out-of-order core.
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1. The average number of consumers of a value produced bystangtion is close to
one. Even for instructions which have a large number of caress, the probability
that a large number of them will be in the instruction windavitee same time is
limited. This property of the data-flow graphs of most progsameans that tradi-
tional issue queues, which allow a single instruction toeldv- 1 consumers in the
issue queue (whenmd is the size of the issue queue), are largely overdesigned, ev

for aggressive cores.

2. The probability that loads read values produced by stbesare still in the pipeline
of a processor is small, and performance of small and medined $ores does
not suffer significantly if the mechanism to deal with suckucences is slow. It is
enough to have a very small hardware structure which cah editsuch occurrences,
even if there is a small probability of false positives, asgas there are no false

negatives.

This new, lightweight out-of-order core has performandy 6r6% lower than a traditional
2-way out-of-order core, while using 22% less area.

Because of differences between and within parallel progrdne optimal number and
size of throughput cores per chip will vary. An ideal futur®E could dynamically com-
bine processing elements into different sizes cores dépgmh the need of the running
program [49].

While the process of combining an arbitrary number of conea single, larger core
seems infeasible, | showed in Chapter 4 how to combine twoutfhput-oriented, multi-
threaded, scalar cores into a single larger, higher-padace out-of-order core, using the
lightweight structures previously introduced [113, 11¥5]L This technique, called Feder-
ation, uses the fact that cores on a chip multiprocessorgeayeclose and can have very

low latency communication, as well as the fact that the |laegester files of multithreaded
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throughput cores can be re-used for the largest buffertstreiof an out-of-order core, the
active list. Federation can provide single-thread per@oroe 92.4% higher than any single
core it is built from, provide the full throughput of its cditgent cores if needed, yet only
adds a 3.7% area overhead.

Once programs are written to express their computation iarallel manner to take
advantage of CMPs, this opens up new options for archit€uis.example is that parallel
programs can run not just on multiple scalar cores, but oascwith SIMD instruction
sets.

SIMD cores have the advantage over scalar cores that thestiaentie area and power
of a single core frontend, usually understood to be theunttin cache, fetch, decode and
control logic units, over multiple backends, which consikthe register file, execution
units, and data caches. Compared to a CMP consisting of saiks, a CMP using SIMD
cores can be either smaller and lower power, and have the gaakethroughput, or the
same size and power, and have higher peak throughput.

SIMD cores also have several limitations, which can pretegrm from reaching their
full potential. For example, programs with irregular megnaccess patterns often have
low performance on SIMD cores, as the lockstep nature of SBMEcution forces many
threads to wait on the minority of threads which incurrechdatche misses.

In Chapter 5 | proposed a mechanism, called Diverge on Miss allows SIMD cores
to continue to execute even if a subset of their threads aittnggan memory. The key
insight that made Diverge on Miss feasible is that it cange-ine control logic which is
already in place in SIMD cores to deal with branch divergemnd¢ech occurs when threads
on a SIMD core do not all follow the same control-flow path, amtly needs to add one
small new structure and make incremental changes to anstitueture. Diverge on Miss
can increase performance by 30% compared to a design withat@IMD cores.

Another limiting factor for SIMD architectures is the pemftance of the memory sub-
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system. For CMPs using SIMD cores without cache coheremncyy as modern graphics
processing units, there is a need for a way cores can find ansereache lines in other
cores caches to reduce off-chip bandwidth.

In Chapter 6, | showed how to build an imprecise directoriledahe sharing tracker,
at low cost. The sharing tracker takes advantage of the liattin a non cache-coherent
system a directory lookup can produce wrong or out-of-ddtamation, since it is simply
a performance hint and not required for correctness. Thargh&racker can improve
performance per unit area by 35%, primarily by allowing derataches per core while
delivering performance better than a configuration witéarcaches.

Overall, this dissertation has focused on architectuchin&ues to improve the perfor-
mance and efficiency of small cores of future asymmetric ahitiprocessors. This work
will help future multicore microprocessors achieve higahrd more robust performance

for a wide variety of workloads, with lower power and smableea.

7.1 Challenges for Manycore Architecture Research

The last five years have been truly momentous in computeitactlire research. The
dominance of the sophisticated, speculative out-of-oedehitectures has given way to
the rise of multicore and then manycore architectures, nwdrnyhich use cores which
consciously eschew all the new structures and techniquested for out-of-order cores
over the last twenty years. Whole fields of inquiry which werere or less abandoned by
the mainstream of academic research in the early 1990s aesagyain relevant.
Overshadowing all of this excitement is the uncertainty tilabody knows what soft-
ware future multicore and manycore processors will runatt,fnobody even knows what
the dominant programming model will be. Many of the applmas which are widely used

on today’s desktops do not seem to benefit from much more ctngquower for their cur-
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rent functionality. Most of today’s benchmarks are sintjliesaded and cannot be used for
judging the qualities of any proposed multicore architestu

To find applications which architecture researchers cartadgsy, they must look for
application domains which already have massive parathedispressed in their programs.
These include many server workloads, which serve many a$e¢he same time and can
spawn a thread for each user. Traditional high-performaooceputing programs, which
have been already extensively parallelized to run on sopgpaters, are also capable of
using a large number of cores and threads. Computing doméiith have traditionally
used specialized processors, such as graphics, video amg sigmal processing work-
loads, can also use many cores efficiently. In fact, it is {pbsshat the mainstream use
of manycore processors with small, efficient cores will Iéadhese niches to re-adopt
mainstream processors to some degree.

All of these domains have many interesting and hard prohleotsvhich (if any) will
be a major part of future workloads? Without a clear idea oatwwthe workload mix will
look like, researchers are faced with a chicken and egg @mnebWithout a set of bench-
mark programs, it is impossible to meaningfully evaluatg proposed multicore design.
| was faced with this problem when doing my work on SIMD mamgcprocessors. | had
to search quite widely to find the few programs that | did. &konany years for industry
and academia to come to a consensus, embodied in the SPEC éllebntark suite, on
what the right set of benchmarks were to measure the perfarenaf single-threaded pro-
cessors. Itis possible that it will take equally long for asensus to emerge for multicore
processors. Until such a time, researchers in the field opcoen architecture will have to

do their own gathering of programs and exploring their ctiaristics.



Bibliography

[1]

2]

[3]

[4]

[5]

Intel Advanced Vector Extensions Programming Refeeenc

Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, @wlig Burger. Clock rate
versus ipc: the end of the road for conventional microaechitres. INSCA '00:
Proceedings of the 27th annual international symposium omguter architecture

pages 248-259, 2000.

K. Aingaran, P. Kongetira, and K. Olukotun. Niagara: a\82y Multithreaded
Sparc ProcessoMicro, IEEE, 25, 2005.

Yoav Almog, Roni Rosner, Naftali Schwartz, and Ari Schiaa Specialized Dy-
namic Optimizations for High-Performance Energy-Effitibticroarchitecture. In
2nd International Symposium on Code Generation and Opditioiz, page 137,
2004.

Robert Alverson, David Callahan, Daniel Cummings, Bri&oblenz, Allan Porter-
field, and Burton Smith. The Tera Computer Systemlds '90: Proceedings of

the 4th international conference on Supercomputpages 1-6, 1990.

[6] AMD. ATI CTM Guide: Technical reference manual. Techaliceport, AMD, 2006.

Version 1.01.

[7] AMD. ATl Radeon HD 2900 Technology GPU SpecificationsQ20

122



Bibliography 123

[8] Joshua A. Anderson, Chris D. Lorenz, and A. Travessehe&d Purpose Molecular

[9]

[10]

[11]

[12]

[13]

[14]

Dynamics Simulations fully implemented on Graphics PrecesUnits.J. Comput.

Phys, 227(10):5342-5359, 2008.

Krste Asanovic, Ras Bodik, Bryan Christopher Catanzalmseph James Gebis,
Parry Husbands, Kurt Keutzer, David A. Patterson, Williasster Plishker, John
Shalf, Samuel Webb Williams, and Katherine A. Yelick. Thentacape of Parallel
Computing Research: A View from Berkeley. Technical Reptf®B/EECS-2006-
183, EECS Department, University of California, Berkelegcember 18 2006.

Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry V¢pnand Tor M.
Aamodt. Analyzing CUDA Workloads Using a Detailed GPU Siatal. pages
163-174, 20009.

Luiz André Barroso, Kourosh Gharachorloo, Robert Mohra, Andreas
Nowatzyk, Shaz Qadeer, Barton Sano, Scott Smith, Robeit,&ted Ben Vergh-
ese. Piranha: A Scalable Architecture based on Single-Mhiiprocessing. In
ISCA ’00: Proceedings of the 27th Annual International Sgsipm on Computer
Architecture pages 282-293, 2000.

M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. W. Felte, and J. Sandberg.
Virtual memory mapped network interface for the shrimp meolnputer. In21st

International Symposium on Computer Architeciiviay 1994.
David Blythe. The Direct3D 10 systerACM Trans. Graph.25(3):724—734, 2006.

Darrell Boggs, Aravindh Baktha, Jason Hawkins, DehofaMarr, J. Alan Miller,
Patrice Roussel, Ronak Singhal, Bret Toll, and K.S. Verlatm. The microar-
chitecture of the intel pentium 4 processor on 90nm techgyldntel Technology

Journal 8:1-17, 2003.



Bibliography 124

[15]

[16]

[17]

[18]

[19]

[20]

[21]

W.J. Bouknight, S.A. Denenberg, D.E. Mcintyre, J.M.ndall, A.H. Sameh, and
D.L. Slotnick. The illiac iv systemProceedings of the IEEEB0(4):369-388, April
1972.

Michael Boyer, David Tarjan, Scott T. Acton, and Kevika8ron. Accelerating
Leukocyte Tracking using CUDA: A Case Study in Leveragingnylzore Copro-
cessors. IrProceedings of the International Parallel and DistributBdocessing

Symposiun2009.

E. Brekelbaum, Il Rupley, J., C. Wilkerson, and B. Blad¢kierarchical scheduling
windows. In35th International Symposium on Microarchitectupages 27-36,

2002.

David Brooks, Vivek Tiwari, and Margaret Martonosi. Wn: a Framework for
Architectural-Level Power Analysis and Optimizations.2lfth International Sym-

posium on Computer Architectyr2000.

lan Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, KayWatahalian, Mike
Houston, , and Pat Hanrahan. Brook for GPUs: Stream CongotinGraphics
Hardware. I'SIGGRAPH 2004.

Doug Burger, Todd M. Austin, and Steve Bennett. EvahgaFuture Microproces-
sors: The Simplescalar Tool Set. Technical Report CS-T&611808, University

of Wisconsin-Madison, 1996.

Doug Burger, Stephen W. Keckler, Kathryn S. McKinleyjkigl Dahlin, Lizy K.

John, Calvin Lin, Charles R. Moore, James Burrill, RobertMeDonald, William

Yoder, and the TRIPS Team. Scaling to the End of Silicon wilitEE Architectures.
IEEE Computer37(7):44-55, 2004.



Bibliography 125

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

J. Adam Butts and Gurindar S. Sohi. Characterizing anedieting Value Degree of
Use. In35th International Symposium on Microarchitectupages 15—-26, 2002.

Alper Buyuktosunoglu, Ali EI-moursy, and David H. Alhesi. An oldest-first se-
lection logic implementation for noncompacting issue qgeunl5th International

ASIC/SOC Conferengpages 31-35, 2002.

Brad Calder and Dirk Grunwald. Next Cache Line and Sedftion. In22nd

International Symposium on Computer Architeciur@95.

Doug Carmean. Future CPU Architectures: The Shift froraditional Models.

Intel Higher Education Lecture Series, 2007.

J. B. Carter, J. Bennett, and W. Zwaenepoel. Implentemand performance of
munin. Inin Proceedings of the 13th ACM Symposium on Operating Sg<eim-
ciples pages 152—-164, Oct. 1991.

Jichuan Chang and Gurindar S. Sohi. Cooperative CgdanChip Multiproces-
sors. InISCA '06: Proceedings of the 33rd annual international spsipm on

Computer Architecturegpages 264—276, 2006.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjaarethy W. Sheaffer,
and Kevin Skadron. A Performance Study of General-Purpgsgli¢ations on
Graphics Processors using CUD23ournal of Parallel and Distributed Computing

68(10):1370-1380, 2008.

H. Cheong and A.V. Veidenbaum. A cache coherence scheithefast selective
invalidation. InISCA '88: Proceedings of the 15th annual international sgsipm

on Computer architecturgpages 299-307, May 1988.



Bibliography 126

[30] Yuan Chou, Brian Fahs, and Santosh Abraham. Microtechire Optimizations for
Exploiting Memory-Level ParallelismSIGARCH Comput. Archit. New32(2):76,
2004.

[31] William J. Dally, Francois Labonte, Abhishek Das, Ra¢Hanrahan, Jung-Ho Ahn,
Jayanth Gummaraju, Mattan Erez, Nuwan Jayasena, lan BuaktAy J. Knight,
and Ujval J. Kapasi. Merrimac: Supercomputing with Stream$C '03: Proceed-

ings of the 2003 ACM/IEEE conference on Supercompugpiage 35, 2003.

[32] John D. Davis, James Laudon, and Kunle Olukotun. Mazing CMP Throughput
with Mediocre Cores. 145th Conference on Parallel Architectures and Compilation

Techniques2005.

[33] R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassand A.R. LeBlanc. De-
sign of ion-implanted MOSFET’s with very small physical dinsions.Solid-State
Circuits, IEEE Journal gf9(5):256—-268, Oct 1974.

[34] Romain Dolbeau and Andr&#233; Seznec. CASH: Revigititardware Sharing in

Single-Chip Parallel Processork.of Instruction-Level Parallelispn®, 2004.

[35] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bgabo Wu, M. Braganza,
S. Meyers, E. Fang, and R. Kumar. An Integrated Quad-CorerOptProcessor.
Solid-State Circuits Conference, 2007. ISSCC 2007. DigeJechnical Papers.
IEEE Internationa) pages 102—-103, Feb. 2007.

[36] Barry Fagin. Partial Resolution in Branch Target BugfelEEE Trans. Compu.
46(10):1142-1145, 1997.

[37] KeithI. Farkas, Paul Chow, Norman P. Jouppi, and Zvovikanesic. The multiclus-
ter architecture: reducing cycle time through partitignitn MICRO 30: Proceed-



Bibliography 127

[38]

[39]

[40]

[41]

[42]

ings of the 30th annual ACM/IEEE international symposiunMdcroarchitecture

pages 149-159, 1997.

Brian K. Flachs, Shigehiro Asano, Sang H. Dhong, H. Pdtdstee, Gilles Gervais,
Roy Kim, Tien Le, Peichun Liu, Jens Leenstra, John S. Libd&tad W. Michael,
Hwa-Joon Oh, Silvia M. Muller, Osamu Takahashi, Koji HiraAtsushi Kawasumi,
Hiroaki Murakami, Hiromi Noro, Shoji Onishi, Juergen Pjlioel Silberman, Suk-
soon Yong, Akiyuki Hatakeyama, Yukio Watanabe, Naoka Y&remiel A. Broken-
shire, Mohammad Peyravian, VanDung To, and Eiji lwata. BBechitecture and
Implementation of the Synergistic Processor in 65-nm ardr@GOI.IBM Journal

of Research and Developmebi(5):529-544, 2007.

Wilson W. L. Fung, lvan Sham, George Yuan, and Tor M. Aaditn@®ynamic Warp
Formation and Scheduling for Efficient GPU Control Flow. NWKCRO ’'07: Pro-
ceedings of the 40th Annual IEEE/ACM International Sympuason Microarchi-
tecture pages 407—420, 2007.

Amit Gandhi, Haitham Akkary, Ravi Rajwar, Srikanth TrirBvasan, and Konrad
Lai. Scalable load and store processing in latency-totgnatessorslEEE Micro,

26(1):30-39, 2006.

llya Ganusov and Martin Burtscher. Efficient EmulatafiHardware Prefetchers via
Event-Driven Helper Threading. PACT '06: Proceedings of the 15th International
Conference on Parallel Architectures and Compilation Teghes pages 144-153,

2006.

Alok Garg, Fernando Castro, Michael Huang, Daniel Gmaluis Pinuel, and

Manuel Prieto. Substituting Associative Load Queue witm@e Hash Tables in



Bibliography 128

Out-of-Order Microprocessors. ISLPED ’'06: Proceedings of the 2006 Interna-
tional Symposium on Low Power Electronics and Desjpyges 268—-273, 2006.

[43] Michael Garland, Scott Le Grand, John Nickolls, JosAanderson, Jim Hardwick,
Scott Morton, Everett Phillips, Yao Zhang, and Vasily Volkd?arallel Computing
Experiences with CUDAIEEE MICRQ 28(4):13-27, 2008.

[44] Andy Glew. MLP yes! ILP no! IPASPLOS Wild and Crazy Ideak998.

[45] Masahiro Goshima, Kengo Nishino, Toshiaki Kitamuraasihiko Nakashima,
Shinji Tomita, and Shin ichiro Mori. A high-speed dynamistiruction schedul-
ing scheme for superscalar processors. MICRO 34: Proceedings of the 34th
annual ACM/IEEE international symposium on Microarchitee, pages 225-236,
Washington, DC, USA, 2001. IEEE Computer Society.

[46] Ed Grochowski, Ronny Ronen, John Shen, and Hong Wangt @eBoth Latency
and Throughput. IHCCD ’'04: Proceedings of the 22nd International Conference

on Computer Desigrpages 236—243, 2004.

[47] Enric Herrero, José Gonzalez, and Ramon Canal. ibiged Cooperative Caching.
In PACT '08: Proceedings of the 17th international conferenoeParallel archi-

tectures and compilation techniqugmges 134-143, 2008.
[48] Phil Hester. 2006 AMD Analyst Day Presentation, 2006.

[49] Mark D. Hill and Michael R. Marty. Amdahl’s Law in the Mtitore Era. IEEE

Computer To appear.

[50] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs,ugoCarmean, Alan
Kyker, and Patrice Roussel. The microarchitecture of threipe 4 processointel

Technology Journab:1-13, 2001.



Bibliography 129

[51] H. Peter Hofstee. Power Efficient Processor Architecand The Cell Processor. In
11th International Conference on High Performance ComipAtehitecture pages

258-262, 2005.

[52] M. S. Hrishikesh, Doug Burger, Norman P. Jouppi, StepWé Keckler, Keith 1.
Farkas, and Premkishore Shivakumar. The optimal Logic IDppt Pipeline Stage
is 6 to 8 FO4 Inverter Delays. BCA '02: Proceedings of the 29th annual interna-

tional symposium on Computer architectu2€02.

[53] Michael Huang, Jose Renau, and Josep Torrellas. Eftffgyrent Hybrid Wakeup
Logic. InISLPED '02: Proceedings of the 2002 International Symp@san Low

Power Electronics and Desig2002.

[54] Jaehyuk Huh, Changkyu Kim, Hazim Shafi, Lixin Zhang, QoBurger, and
Stephen W. Keckler. A nuca substrate for flexible cmp caclagisfy. InICS '05:
Proceedings of the 19th annual international conferenc&opercomputingpages

31-40, 2005.

[55] Enginipek, Meyrem Kirman, Nevin Kirman, and José Martinez.eJeusion: Ac-
commodating Software Diversity in Chip Multiprocessors 34th International

Symposium on Computer Architectu2807.

[56] Tim Johnson and Umesh Nawathe. An 8-core, 64-threadhittRower Efficient

Sparc Soc. INSSCC’07 pages 2-2, 2007.

[57] Norman P. Jouppi. Cache Write Policies and PerformahtéSCA '93: Proceed-
ings of the 20th annual international symposium on Compaitehitecture pages

191-201, 1993.



Bibliography 130

[58]

[59]

[60]

[61]

[62]

[63]

[64]

J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Mi@&g, and D. Shippy. In-
troduction to the cell processdBM Journal of Research and Developmgtfi(4/5),
2005.

R. Kalla, Balaram Sinharoy, and J.M. Tendler. IBM Powérhip: A Dual-Core
Multithreaded ProcessoMicro, IEEE, 24(2):40-47, Mar-Apr 2004.

Ujval J. Kapasi, Scott Rixner, William J. Dally, Brucédhailany, Jung Ho Ahn,
Peter Mattson, and John D. Owens. Programmable Streamd8aysdEEE Com-

puter, pages 54—62, August 2003.

R.E. Kessler, E.J. McLellan, and D.A. Webb. The Alph&@4 Microprocessor
Architecture. InICCD '98: Proceedings of the 16th International Confererme

Computer Design1998.

Changkyu Kim, Doug Burger, and Stephen W. Keckler. Aagt/e, non-uniform
cache structure for wire-delay dominated on-chip cache®ASPLOS-X: Proceed-
ings of the 10th international conference on Architectw@bport for programming

languages and operating systemages 211-222, 2002.

Changkyu Kim, Simha Sethumadhavan, M. S. Govindaryd\Ranganathan, Divya
Gulati, Doug Burger, and Stephen W. Keckler. Composablatiwgight Processors.

In 40th International Symposium on Microarchitectt2€07.

L. Kohn, G. Maturana, M. Tremblay, A. Prabhu, and G. ZyriEhe visual instruc-
tion set (vis) in ultrasparcCompcon '95.Technologies for the Information Super-

highway’, Digest of Paperspages 462—-469, Mar 1995.



Bibliography 131

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Gurhan Kucuk, Oguz Ergin, Dmitry Ponomarev, and Kandws$&. Distributed
reorder buffer schemes for low power. IRCD '03: Proceedings of the 21st Inter-

national Conference on Computer Desi@03.

R. Kumar, N.P. Jouppi, and D.M. Tullsen. Conjoined-€@hip Multiprocessing.
In 37th International Symposium on Microarchitectusages 195-206, 2004.

Rakesh Kumar, Dean M. Tullsen, Parthasarathy RanganatNorman P. Jouppi,
and Keith I. Farkas. Single-ISA heterogeneous multi-cochitectures for mul-
tithreaded workload performance. ®ist International Symposium on Computer

Architecture page 64, 2004.

Erik Lindholm, John Nickolls, Stuart Oberman, and Jdontrym. Nvidia tesla:
A unified graphics and computing architectuleEE Micro, 28(2):39-55, 2008.

Gabriel H. Loh. The Cost of Uncore in Throughput-OreshtMiany-Core Proces-
sors. InWorkshop on Architectures and Languages for Throughputiégtjons,
2008.

Milo M. K. Martin, Pacia J. Harper, Daniel J. Sorin, Makk Hill, and David A.
Wood. Using destination-set prediction to improve therlaygbandwidth tradeoff
in shared-memory multiprocessors. IBICA '03: Proceedings of the 30th annual

international symposium on Computer architectyrages 206-217, 2003.

C. McNairy and R. Bhatia. Montecito: A Dual-Core, DuHttead Itanium Proces-
sor. Micro, IEEE, 25(2):10-20, March-April 2005.

Jiayuan Meng, David Tarjan, and Kevin Skadron. Levergdlemory Level Paral-
lelism Using Dynamic Warp Subdivision. Technical ReportZ®9-02, University
of Virginia, 2009.



Bibliography 132

[73] Francisco J. Mesa-Martinez, Joseph Nayfach-Battieamd Jose Renau. Power
Model Validation Through Thermal Measurements. 3#th International Sympo-

sium on Computer Architecturg007.
[74] Michael Mantor. Radeon R600, a 2nd Generation Unifiealdeh Architectur, 2007.

[75] Pierre Michaud, André Seznec, and Stéphan JourdamExploration of Instruc-
tion Fetch Requirement in Out-of-Order Superscalar Psmrss Int. J. Parallel

Program, 29(1):35-58, 2001.

[76] Gordon E. Moore. Cramming more components onto integreircuits Electronics

Magazine 38(8), 1965.

[77] A. Munshi. The OpenCL specification, version 1.0, doemtnrevision 29, Dec.
2008.

[78] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale NttPRunahead Execution:
An Alternative to Very Large Instruction Windows for Out-Gfrder Processors. In
9th International Conference on High Performance Computerhitecture page

129, 2003.

[79] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memikd a. Choudhary.
MineBench: A Benchmark Suite for Data Mining Workloads Workload Charac-

terization, 2006 IEEE International Symposium pages 182-188, 2006.

[80] John Nickolls, lan Buck, Michael Garland, and Kevin 8kan. Scalable parallel
programming with cudaQueue 6(2):40-53, 2008.

[81] NVIDIA. NVIDIA CUDA Compute Unified Device Architectus Programming
Guide. Technical report, NVIDIA Corporation, Feb. 2007 r&fen 0.8.



Bibliography 133

[82]

[83]

[84]

[85]

[86]

[87]

[88]

Stuart Oberman, Greg Favor, and Fred Weber. Amd 3dneualirtology: Architec-
ture and implementation$EEE Micro, 19(2):37-48, 1999.

Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Kenséfi, and Kunyung
Chang. The Case for a Single-Chip MultiprocessorABPLOS-VII: Proceedings
of the seventh International Conference on Architectutgdirt for Programming

Languages and Operating Systempages 2—11, 1996.

John D. Owens, David Luebke, Naga Govindaraju, MarkridarJens Krger,
Aaron E. Lefohn, and Timothy J. Purcell. A Survey of Gendtalpose Compu-
tation on Graphics Hardware. Eurographics 2005, State of the Art Repopages
21-51, August 2005.

A. Peleg and U. Weiser. Mmx technology extension to theliarchitectureMicro,

IEEE, 16(4):42-50, Aug 1996.

M.K. Qureshi. Adaptive Spill-Receive for robust higlerformance caching in
CMPs. InHigh Performance Computer Architecture, 2009. HPCA 20B&H 15th

International Symposium opages 45-54, 2009.

Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, SintarSteely, and Joel Emer.
Adaptive insertion policies for high performance cachimySCA '07: Proceedings
of the 34th annual international symposium on Computerigecture pages 381—

391, New York, NY, USA, 2007. ACM.

Matthias Raab, Leonhard Griinschloss, Johannes Hanidanuel Finckh, and

Alexander Keller. bwfirt.



Bibliography 134

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

Amir Roth. Store Vulnerability Window (SVW): Re-Exetton Filtering for En-
hanced Load Optimization. 182nd International Symposium on Computer Archi-

tecture 2005.

Richard M. Russell. The cray-1 computer systeBommun. ACM21(1):63-72,
1978.

N. Sakran, M. Yuffe, M. Mehalel, J. Doweck, E. Knoll, add Kovacs. The Im-
plementation of the 65nm Dual-Core 64b Merom ProcesS§wlid-State Circuits
Conference, 2007. ISSCC 2007. Digest of Technical PapEEE linternational

pages 106-590, Feb. 2007.

T. Sakurai and A.R. Newton. A simple MOSFET model focait analysisElectron
Devices, IEEE Transactions pB8(4):887—-894, Apr 1991.

Pierre Salverda and Craig Zilles. Fundamental Peréoree Challenges in Hori-
zontal Fusion of In-Order Cores. Itth International Conference on High Perfor-

mance Computer Architecturpage ?7?, 2008.

Peter G. Sassone, Jeff Rupley I, Edward Brekelbauniyri@bH. Loh, and Bryan
Black. Matrix Scheduler Reloaded. B4th International Symposium on Computer

Architecture 2007.

Toshinori Sato, Yusuke Nakamura, and Itsujiro Aritaevigiting direct tag search
algorithm on superscalar processorsniRroc. of Workshop on ComplexityEffective

Design, held in conjunction with ISCAZ83001.

Michael Schatz, Cole Trapnell, Arthur Delcher, and Aabh Varshney. High-
Throughput Sequence Alignment using Graphics Processiits.UBMC Bioin-
formatics 8(1):474, 2007.



Bibliography 135

[97]

[98]

[99]

[100]

[101]

[102]

[103]

Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsitithael Abrash, Pradeep
Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, ROheit, Roger Es-
pasa, Ed Grochowski, Toni Juan, and Pat Hanrahan. Larrabe®ny-core x86

architecture for visual computindACM Trans. Graph.27(3):1-15, 2008.

Simha Sethumadhavan, Rajagopalan Desikan, Doug BuZharles R. Moore, and
Stephen W. Keckler. Scalable Hardware Memory Disambiguoatdr High ILP

Processors. 186th International Symposium on Microarchitectysage 399, 2003.

Andr&#233; Seznec, Stephen Felix, Venkata Krishnang &iannakis Sazeides.
Design Tradeoffs for the Alpha EV8 Conditional Branch Pec#ali. In29th Interna-

tional Symposium on Computer Architectysages 295-306, 2002.

Tingting Sha, Milo M. K. Martin, and Amir Roth. Scalabbtore-Load Forwarding
via Store Queue Index Prediction. 38th International Symposium on Microarchi-

tecture pages 159-170, 2005.

Tingting Sha, Milo M. K. Martin, and Amir Roth. NoSQ: &e-Load Communica-
tion without a Store Queue. BBth International Symposium on Microarchitecture

pages 285-296, 2006.

Timothy Sherwood, Erez Perelman, Greg Hamerly, aratiE?alder. Automatically
Characterizing Large Scale Program Behaviorl0th International Conference on
Architectural Support for Programming Languages and OfiagaSystemspages
45-57, 2002.

Shyamkumar Thoziyoor and Naveen Muralimanohar and Ho Ahn and Norman

P. Jouppi. CACTI 5.1. Technical Report HPL-2008-20, HP L. 20€8.



Bibliography 136

[104] Dezso Sima. The Design Space of Register Renamingnigees. IEEE Micro,
20(5):70-83, 2000.

[105] Aaron Smith, Jim Burrill, Jon Gibson, Bertrand Mah¥ick Nethercote, Bill Yoder,
Doug Burger, and Kathryn McKinley. Compiling for EDGE Artéctures. ImMth

International Symposium on Code Generation and Optinoma#006.

[106] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumisiultiscalar processors.
In ISCA '98: 25 years of the international symposia on Compatehitecture (se-

lected papers)pages 521-532, New York, NY, USA, 1998. ACM.

[107] B. Stackhouse, S. Bhimiji, C. Bostak, D. Bradley, B. tKHaeier, J. Desai, E. Fran-
com, M. Gowan, P. Gronowski, D. Krueger, C. Morganti, and @y&r. A 65 nm
2-Billion Transistor Quad-Core Itanium Process®elid-State Circuits, IEEE Jour-

nal of, 44(1):18-31, Jan. 20009.

[108] Per Stenstrom. A Survey of Cache Coherence SchemauitiprocessorsCom-

puter, 23(6):12—24, 1990.

[109] B. Stolt, Y. Mittlefehldt, S. Dubey, G. Mittal, M. Lee]. Friedrich, and E. Fluhr.
Design and Implementation of the POWERG6 MicroprocesSalid-State Circuits,
IEEE Journal of 43(1):21-28, Jan. 2008.

[110] Samuel S. Stone, Justin P. Haldar, Stephanie C. Tsaa;méi W. Hwu, Zhi-Pei
Liang, and Bradley P. Sutton. Accelerating Advanced MRI dRestructions on
GPUs. InCF '08: Proceedings of the 5th conference on Computing feositpages
261-272, 2008.



Bibliography 137

[111] Samantika Subramaniam and Gabriel H. Loh. Fire-amidyét: Load/Store Schedul-
ing with No Store Queue at All. 189th International Symposium on Microarchi-

tecture pages 273-284, 2006.

[112] M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshidarale N. Patt. Accelerat-
ing critical section execution with asymmetric multi-carehitectures. IASPLOS
'09: Proceeding of the 14th international conference onhitectural support for

programming languages and operating systepages 253—-264, 2009.

[113] David Tarjan, Michael Boyer, and Kevin Skadron. Fedien: Very low overhead
Out-of-Order Execution.ACM Transactions on Architecture and Code Optimiza-

tion, accepted pending major revisions.

[114] David Tarjan, Michael Boyer, and Kevin Skadron. Fedie@n: Out-of-Order Exe-
cution using Simple In-Order Cores. Technical Report C87201, Dept. of Comp.
Sci., Univ. of Virginia, Aug. 2007.

[115] David Tarjan, Michael Boyer, and Kevin Skadron. Fedien: Repurposing Scalar
Cores for Out-of-Order Instruction Issue. Proceedings of the 45th annual Con-

ference on Design Automation (DA@pges 772-775, 2008.

[116] S. Thakkur and T. Huff. Internet streaming simd exiens. Computey 32(12):26—
34, Dec 1999.

[117] Marc Tremblay and J. Michael O’Connor. UltraSparc I:FAur-Issue Processor

Supporting MultimedialEEE Micro, 16(2):42-50, 1996.

[118] Jessica H. Tseng and Krste Asanovic. RingScalar: A @exity-Effective Out-of-
Order Superscalar Microarchitecture. Technical Repoif-RISAIL-TR-2006-066,
MIT CSAIL, Sep. 2006.



Bibliography 138

[119] L.W. Tucker and G.G. Robertson. Architecture and mapions of the connection
machine.Computey 21(8):26—-38, Aug 1988.

[120] Elliot Waingold, Michael Taylor, Devabhaktuni Srighna, Vivek Sarkar, Walter
Lee, Victor Lee, Jang Kim, Matthew Frank, Peter Finch, RajBarua, Jonathan
Babb, Saman Amarasinghe, and Anant Agarwal. Baring It Albtftware: Raw

Machines.Computey 30(9):86—-93, 1997.

[121] Hongtao Zhong, Steven A. Lieberman, and Scott A. MahlExtending Multicore
Architectures to Exploit Hybrid parallelism in Single-&#a&d Applications. Irl3th

International Conference on High Performance Computehfecture 2007.



	Introduction
	CMOS Scaling and its Implications for Processor Architecture
	Motivation for Chip Multi-Processors (CMPs)
	Why Asymmetric Manycore CMPs?
	A Short Primer on SIMD
	GPUs as an Example of Modern SIMD Architectures
	Tradeoffs between Multithreading and Cache Size
	Contributions of this Dissertation

	Related Work
	Power-Efficient Out-of-Order Structures
	Combining Cores
	SIMD Hardware
	Diverge on Miss
	Sharing Tracker

	Lightweight Out-of-Order Execution
	CMP Architecture Tradeoffs
	Minimal Branch Prediction
	Consumer-Based Issue Queue
	Replacing the Load/Store Queue with the Memory Alias Table
	Simulation Setup
	Results
	Conclusion

	Federation
	Background
	Out-of-Order Pipeline
	Simulation Setup
	Results
	Federating 2-way Cores
	Conclusions and Future Work

	Diverge on Miss
	Introduction
	Background on SIMD Divergence Handling
	Diverge on Miss
	Limiting Thread Divergence
	Hardware Overhead
	Experimental Setup
	Evaluation
	Conclusion

	Sharing Tracker
	Introduction
	GPU Cache Architecture and Memory Model
	Adapting Coherency Hardware
	Simulator
	Evaluation
	Conclusions and Future Work

	Conclusions
	Challenges for Manycore Architecture Research

	Bibliography

