
The Sharing Tracker: Using Ideas from Cache
Coherence Hardware to Reduce Off-Chip Memory

Traffic with Non-Coherent Caches

David Tarjan and Kevin Skadron
Department of Computer Science

University of Virginia, Charlottesville, VA 22904

{dtarjan,skadron}@cs.virginia.edu

Abstract—Graphics Processing Units (GPUs) have recently
emerged as a new platform for high performance, general-
purpose computing. Because current GPUs employ deep mul-
tithreading to hide latency, they only have small, per-core caches
to capture reuse and eliminate unnecessary off-chip accesses.
This paper shows that for general-purpose workloads, the ability
to copy cache lines between private caches captures inter-core
temporal locality and provides substantial reductions in off-chip
bandwidth requirements. Unlike hardware cache coherence, a
sharing tracker only needs to track cache lines in the private
caches imprecisely, because it is only a performance hint. This
simplifies the implementation and is so effective at capturing
inter-core reuse that the L2 can be eliminated entirely. The
sharing tracker is motivated by but not specific to the GPU
and could be used in other manycore organizations.

I. INTRODUCTION

Graphics processing units (GPUs) are optimized for high

throughput on workloads with abundant parallelism. They

were once fixed-function hardware for 3D rendering, but

demand for increasing programmability for those applica-

tions has driven GPU architectures to become more general-

purpose, manycore architectures (that just happen to be em-

bedded within a system-on-chip including various 3D-specific

accelerators). The introduction of hardware and software

support for general-purpose programming languages on the

GPU [1], [2], [3] has allowed GPUs to become a viable

platform for throughput-oriented general-purpose computing.

As with other throughput-oriented organizations, GPU cores

have simple pipelines and are deeply multithreaded. Instead of

using hardware for ILP discovery, area is used to maximize

thread parallelism. In this data-intensive era, the principles

of designing for data parallelism, throughput, and latency

tolerance make GPUs a useful platform for drawing more gen-

eral lessons for future, general-purpose, manycore processor

architectures.

D. Tarjan is now with NVIDIA Research

c©2010 IEEE Personal use of this material is permitted. However, permission
to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.
SC10 November 2010, New Orleans, Louisiana, USA 978-1-4244-7558-
2/10/$26.00

GPU cores can share memory, but their caches do not

support hardware cache coherence. In prior generations, only

a subset of memory – that which was declared read-only by

the graphics APIs – was cached. NVIDIA’s new Fermi archi-

tecture [4] introduces a more general-purpose cache hierarchy,

but still does not support hardware cache coherence. Values

in GPU L1s must be kept coherent by software. This can be

achieved by the programmer or the compiler (by flushing when

necessary), and techniques for compiler-controlled software

coherence have been studied for over 20 years (e.g., [5], [6]).

The non-coherent nature of the L1s prevents re-using values

shared among cores, yet sharing is important because many

algorithms require threads to operate on overlapping regions

of data structures. Allowing cores to share the L1 contents of

other cores reduces off-chip bandwidth requirements. Hard-

ware coherence would of course capture reuse [7], [8], and

support for hardware coherence has been studied for decades,

but hardware coherence comes at the expense of considerable

complexity and power dissipation in order to support the

correct semantics.

For large scale systems with hundreds or thousands of

processors with dozens or hundreds of cores each, coher-

ence is of questionable value. In the case of GPUs, since

graphics workloads typically do not benefit from coherence,

it is unlikely that GPUs will add the required hardware in

the near future. The Cell BE [9] is another major general-

purpose architecture that eschewed hardware coherence, and

various multicore organizations for embedded systems also

forgo hardware coherence.

Capturing reuse without hardware-managed coherence

would avoid unnecessary re-loading of shared, read-only data

from memory without the overheads of hardware cache coher-

ence. This requires some alternative means by which a core

finds a cache line on a miss in its private L1 cache. One option

is to have a last level cache (LLC) shared among all the cores.

The drawback to such a design is that an LLC of sufficient size

to support the request streams from a large number of wide

SIMD cores will significantly reduce the chip area available

for the high throughput cores. Inclusive caching (generally

required with the point-to-point interconnect needed with large

numbers of cores) further exacerbates the area overhead of an

LLC.

skadron
Typewritten Text

skadron
Typewritten Text
This is the authors' version of the work. The authoritative version will appear in the Proceedings of SC'10.

skadron
Typewritten Text

skadron
Typewritten Text

skadron
Typewritten Text

skadron
Typewritten Text

Instead, we propose the sharing tracker, which simplifies

the directory from cache coherence approaches for use with

non-coherent cache hierarchies. The key insight is that when

software is responsible for coherence, the directory becomes a

predictor and a mere performance hint. Erroneous predictions

may reduce performance but do not violate memory semantics.

In contrast to full coherence directories, the sharing tracker

is a low-cost structure that can be sized independently of

the overall cache capacity it covers, and does not have the

complexities associated with cache coherence protocols. A

simplified directory-like sharing tracker is able to effectively

capture reuse and fill misses from other private, on-chip

caches. This greatly reduces off-chip accesses. With mem-

ory bandwidth increasingly becoming the limiting factor in

throughput, this can have dramatic performance benefits.

As long as the L1s have sufficient aggregate capacity for

the application’s working set, our results show that an L1-

only organization with sharing tracking matches performance

with the large L2! Eliminating the L2 can reduce cost or permit

integration of additional cores. Adding the sharing tracker to a

manycore CMP with only per-core caches can increase perfor-

mance per mm2 by 35%. It can also increase raw performance

by reducing bandwidth contention. For example, our results

show that the sharing tracker can increase performance by 5

to 12%.

The effectiveness of the sharing tracker with only small,

per-core L1s is chiefly due to two factors. First, with many

cores, the aggregate L1 capacity is impressively large (1 MB

for 32 cores x 32 KB/core). To provide value, an L2 must

be substantially larger than this and capture a larger working

set that the L1s cannot contain. Furthermore, an inclusive

organization, much of the L2 is “wasted” in duplicating the

L1 contents. Second, a latency-tolerant design converts the

the cache from a tool to reduce latency into a tool to con-

serve bandwidth. This means that cache misses have minimal

cost as long as bandwidth is not a bottleneck. Of course,

this requires sufficiently deep multi-threading to hide latency

effectively. The sharing tracker’s value comes from capturing

inter-core reuse that would otherwise have incurred off-chip

accesses. Although motivated by the GPU’s software-coherent

organization and evaluated in that context, the sharing tracker

actually offers the opportunity to reduce coherence costs in

any manycore organization where scalable hardware coherence

protocols are challenging. The sharing tracker could be used

to eliminate coherence altogether (with the compiler managing

coherence), or the coherence hardware could transition into a

simpler mode when coherence is not needed, and therefore

save power.

II. RELATED WORK

As an alternative to hardware cache coherence, which poses

a number of design challenges, software-controlled coherence

has been proposed as a more scalable and lower-cost solution

for cc-NUMA and virtual distributed shared memory (VDSM)

multicomputer organizations. A simple version of software

coherence is for the programmer to manually flush caches

when switching between reading and writing, or to double

buffer, with separate (cached) input and (uncached) output

data structures. This does not present a great burden when the

sharing is infrequent and occurs in well-defined patterns. In

order to support finer-grained sharing, considerable work was

done in the 80s and 90s to enable the compiler to automatically

manage coherence in shared-memory systems [5], [6] and

to reduce the cost of network transactions for VDSM. For

VDSM, the main techniques were to reduce the frequency and

size of updates (e.g. Munin [10]) and reduce the latency of

those updates (e.g. Shrimp [11]). These techniques generally

required operating system support (to manage shared pages)

and potentially hardware support (new network interfaces).

Chip multiprocessors have an advantage in this regard,

because sharing can be managed natively in hardware and all

cores share a common pool of global memory. Other multicore

organizations take advantage of this to eschew hardware

coherence, e.g. RAW [12] and Cell [9]. GPUs take advantage

of shared global memory to optimize the L1 caches for

data that is read-only or exhibits only coarse-grained sharing.

Although details differ, GPU architectures from NVIDIA [13]

and AMD [14] both support similar memory hierarchies; for

more details, see the next section. Briefly, fine-grained read-

write sharing and synchronization objects are expected to be

localized into the PBSM (per-block scratchpad) or accessed

only through global memory. Deep multithreading allows other

threads to hide latency of threads stalled on global-memory

access.

Bakhoda et al. [15] evaluate a multi-level, hardware-

coherent cache hierarchy for GPUs but results are incon-

clusive. Our work proposes an alternative that avoids the

challenges of hardware coherence.

A huge body of work has of course explored conventional

hardware cache coherence organizations (Stenstrom [6] pro-

vides a good overview), and various optimizations can be

built on top of a coherent organization. We briefly mention

work that we believe is most closely related to our line of

investigation.

Chang et al. [7] use cooperative caching to share the

resources of a number of private caches on a single chip.

They use a central coherence engine which replicates the tags

of all private caches. Requests which miss in a core’s private

L2 cache access the coherence engine to check whether the

requested cache line is in an L2 of a different core. They also

add mechanisms for intelligently replicating cache lines and

having evicted cache lines spill to another on-chip cache. The

drawbacks of their technique are that each request needs to

check a large number of tag arrays (as many as there are cores

on the chip minus one), which is a power-hungry process, and

that a single cache line can have copies in multiple L2s, which

wastes space in the coherence engine.

Herrero et al. [8] build on cooperative caching with their

work on distributed cooperative caching. They replace the

replicated L2 tag arrays of the central coherence engine with

a distributed, address-indexed tag array, reducing the number

of tag comparisons any request has to make to determine

whether a copy of its requested cache line exists somewhere

on chip. Our work differs in that the sharing tracker is not

a full coherency directory, substantially reducing the required

hardware and eliminating the complexity of traditional coher-

ence hardware.

Destination Set Prediction [16] assumes a cache-coherent

multi-processor where each core has its own L2 cache, and

each L2 has its own predictor, which predicts which other

core/L2 cache has current ownership of certain cache lines.

Destination set prediction was designed for workloads with

low degrees of sharing between cores, such as commercial

workloads. Our sharing tracker differs from destination set

prediction as it useful for workloads where there can be large

degrees of sharing of cache lines with irregular patterns. The

sharing tracker tracks cache line information at the global

level, while destination set prediction keeps track of which

other cores a given core previously has exchanged cache lines

with.

There has also been considerable work on caches with non-

uniform access latencies [17], [18] (so called NUCA caches).

NUCA caches are built from a large number of memory tiles,

which are addressed by a smart controller, which can move

around cache lines based on recency of access or alter the

degree to which a memory tile is shared between cores. NUCA

caches take a fundamentally different approach from our own,

since they focus on intelligently mapping cache lines based

on address or giving cores a fixed and uniform amount of

sharing with a given set of other cores. The sharing tracker

is purely demand driven, only restricted by the capacity and

associativity of the caches it covers, and does not restrict

sharing between any core anywhere on the chip.

For modeling GPUs, Bakhoda et al. [15]’s simulator GPG-

PUSIM is an execution-driven simulator which can run kernels

compiled to NVIDIA’s PTX assembly format and closely

models a current generation NVIDIA GPU. Our simulator

takes a different, lighter-weight approach, by instrumenting

data-parallel applications and collecting only their data access

traces. Our simulation approach is discussed further in Sec-

tion V.

III. GPU ARCHITECTURE AND MEMORY MODEL

GPUs are optimized to provide high-throughput and to

tolerate frequent long-latency accesses to graphics memory.

This is because graphics workloads typically have a very large

number of independent tasks (hundreds of thousands of trian-

gles and millions of pixels per rendered frame), and data access

patterns with little temporal locality. As a consequence, GPUs

have adopted an architecture similar to the MTA Tera [19].

Each core is heavily multi-threaded and scheduling hardware

decides each cycle which of the many threads to execute. This

is necessary because threads frequently stall due to accesses

to graphics memory, and many threads are needed to keep the

ALU unit of a core reasonably occupied. In addition, each

core uses a SIMD execution model, since graphics workloads

are data parallel, with the same task executed for each vertex

or pixel. A SIMD organization amortizes the area and power

Full tag Core Bitmask
Coherence

Status

Partial tag Core Pointer

Coherence

Directory Entry

Sharing Tracker

Entry

Fig. 1. A cache coherence directory entry consists of a full tag, a bitmask
indicating which cores have copies of a particular cache line and a small
bitfield to track the current coherency state. In contrast, a sharing tracker
entry consists of a smaller partial tag and a pointer to the cache that contains
a particular cache line.

overhead of a core’s front end over many execution back ends,

increasing the total computational power achievable within a

given power and area envelope. Note that, in GPU terminology,

SIMD lanes are referred to as threads and SIMD groups as

warps or wave fronts. We will use the terms thread and warp

throughout this paper.

GPU caches are specialized to deal with different address

spaces and access patterns, which are derived from the high

level graphics APIs [20]. GPUs have long provided caches

for the read-only texture and constant spaces, and with Fermi,

for global read-write data. The question might be asked why

GPUs have any caches for data at all, since they are opti-

mized to tolerate latency. The answer is that GPU caches are

mostly meant as bandwidth savers, to avoid wasting memory

bandwidth on data with locality, and not as a way to decrease

latency of memory accesses.

GPU memory is non-coherent and there are no rules for

ordering stores from a single core. Changes made by one core

will only be guaranteed to be globally visible after a global

memory fence.

As noted above, GPUs employ heavy multi-threading as

a way to tolerate memory latency. When adding traditional

caches, which in this context we define as supporting both

reads and writes and having an access latency substantially

lower than memory latency, there is an interesting balance

between number of warps per core and the size of the per-

core caches. More warps per core increase memory latency

and performance, while increasing cache size for a given warp

count will increase hit rate, decrease average memory latency

and increase performance. But there is the problem that for

a given cache size, increasing the number of warps per core

will put more pressure on the cache, sometimes leading to a

sudden jump in the required off-chip bandwidth due to cache

thrashing and a decrease in performance. While more warps

per core increase performance, this also means increasing the

size of the register file to hold the larger number of threads,

as well as potentially having to increase the size of caches to

prevent thrashing. The best performance per unit of area is not

necessarily with the maximum number of warps per core and

the largest cache, as we will show in Section VII.

IV. ADAPTING COHERENCY HARDWARE

Current GPUs have multiple SIMD cores, with small, per-

core caches. To get better performance with general-purpose

workloads, we want to exploit sharing of cache lines between

cores to reduce the number and latency of off-chip memory

requests. One option would be to add a large, shared, inclusive

LLC, which would naturally capture such re-use. But such a

cache would occupy significant area, which might otherwise

be devoted to more cores.

In traditional CMPs, cache coherence is used to figure out if

there is a copy of a requested cache line in a cache on-chip and

to request a copy. For manycore CMPs, a snoopy coherence

protocol would be problematic because of the rapid rise in

communication volume as the number of cores increases. A

directory protocol is the better choice for such an architecture.

But of course, cache coherence does much more than that,

ensuring that a core receives the most up to date version of a

cache line and that if one core is writing to a cache line no

other core has a valid copy.

This is too much functionality for our purposes, since we

want to only save off-chip bandwidth and improve latency of

memory requests. We want to decompose the functionality of

directory-based cache coherency hardware and keep only the

parts needed for our purposes.

• Tracking the status of cache lines (shared/exclusive/etc)

is not necessary, since the current programming models

of GPUs allow race conditions and reads of stale data.

• Keeping track of all copies of a cache line is not neces-

sary, since we don’t have the constraint that a core must

hold the only copy of a cache line for a write.

• There can be cache lines which are on chip and not

tracked at all. This is allowed since stale copies of

cache lines are allowed. Any copying of cache lines

between cores is simply to save off-chip bandwidth, not

for correctness.

With these relaxations of the requirements versus full cache

coherence, we have derived a new structure from previous

proposals for directory-based cache coherency hardware for

CMPs [7], [8].

We call this new structure the sharing tracker.

A. Sharing Tracker Organization

Figure 1 shows the different units involved in a sharing

tracker look-up. Note that in the following explanation we

refer to all caches as being L2s, but of course the same

mechanism applies if the GPU cores only have private L1

caches. The sharing tracker is organized like a shared cache,

but each entry holds as data only a pointer to a private cache

that contains the specific cache line. Unlike a full distributed

coherence engine [8], the sharing tracker does not need to

track all the cores which have a copy of a given cache line

(which requires a bitmask which grows with the number of

cores) or the current coherence state of a cache line.

When a L2 cache miss occurs, the sharing tracker is

checked, similar to a shared L3 cache (see Figure 2). If there is

Core Core

DL1 IL1 DL1 IL1

L2 L2
1

3

2

sharing tracker

2

Fig. 2. On an L2 miss, the request is sent to the sharing tracker (1). The
sharing tracker is queried like a shared L3 cache. On a hit in the sharing
tracker, it reads out the pointer in its entry and forwards the request to the
appropriate L2 cache (2). If there is an L2 hit, a copy of the cache line is
then forwarded to the original L2 and core (3).

a hit in the sharing tracker, a pointer to the cache holding that

cache line (called the source cache) is read from the sharing

tracker. A request is sent to the source cache. The source cache

then does a normal cache lookup. Note that the lookup will

not necessarily hit since the sharing tracker entry can be out

of date or there was a false positive hit due to the use of a

partial tag. If there is a hit in the source cache, that cache then

forwards the cache line to the requesting cache. The sharing

tracker’s entry is updated to point to the requesting core. If a

cache line is evicted from the private L2 cache of a core, the

sharing tracker is checked for that entry. If the sharing tracker

hits on that cache line AND the core id of the sharing tracker

entry matches the L2 id from whose L2 the cache line is being

evicted, the sharing tracker entry is invalidated. Note that it

is possible that there are one or more copies of the evicted

cache line in other private L2 caches on chip, which are lost

for future sharing purposes if the corresponding entry in the

sharing tracker is invalidated.

Unlike a distributed cache coherency directory [8], the

sharing tracker does not have to return a correct prediction.

Since each prediction is checked through an L2 lookup, false

positives are caught automatically. If there is a miss in the

source L2 cache, the request is sent to the memory subsystem

and the corresponding sharing tracker entry is invalidated. If

the sharing tracker lookup hits and returns the result that the

source cache equals the requesting cache we know immedi-

ately that a false positive has occurred, since the requesting

cache has already done a lookup before sending the request

to the sharing tracker.

We can take advantage of this fact by reducing the size of

tags in the sharing tracker [21] (see Figure 1). As we show

in Section VII, it is possible to substantially reduce the tag

size without unduly reducing the effectiveness of the sharing

tracker. This is especially important for a cache-like structure

such as the sharing tracker where the tag size can be larger

than the data per entry.

V. SIMULATOR

The general goal of our simulation approach is to let us

explore new architectural ideas in the manycore space quickly.

Since we observed that most programs on manycores are

bound by the performance of the memory subsystem and be-

cause the manycore CMPs use very simple core architectures

compared to traditional speculative, out-of-order cores, we

have focused our efforts on the cache and memory subsystem

while modeling instruction execution with the simplest model

possible.

Our custom simulator models a number of SIMD/vector

cores, along with a cache hierarchy and a shared memory

subsystem. We do model the SIMD nature of the memory

references. The cores are modeled as having a constant CPI of

one for all non-memory instructions, private L1 data caches,

and our model assumes that the structures for holding out-

standing memory requests are not a limiting factor. Each core

can have one or multiple warps, and like current GPUs, can

switch among warps on a cycle by cycle basis at no extra

cost. The scheduling algorithm is round-robin, skipping warps

that are waiting on memory requests. The memory reference

traces are collected directly from the native applications,

which are instrumented with calls to our simulator. Direct

instrumentation of native applications to generate traces on

the fly was preferred over gathering and storing large memory

traces. This avoids the I/O and decompression overheads of

normal trace-based simulators. To determine the number of

instruction cycles between memory references, each applica-

tion is inspected manually and the number of arithmetic and

control flow instructions between memory references is passed

to the simulator.

The combination of a simple core model and direct instru-

mentation of native applications allows the simulator to be

very fast (slowdowns of just 10-30x over pure native execution

are the norm) and it can consequently capture the performance

on input sizes which would be prohibitively slow to simulate

otherwise. This is especially important when dealing with a

large number of cores and threads per core.

A. Simulated System

Our simulated system is described in Table I. We assume

a CMP consisting of 32 in-order cores each supporting 32-

wide SIMD execution, all running at 2 GHz, for an overall

maximum execution bandwidth of 2 Teraops. Each core has

a 32KB private data cache, which has 64B cache lines and

is 8-way set associative. We explore whether it makes sense

to add a 256KB, 16-way set-associative L2 cache to each

core (similar to the proposed Larrabee [22]) in terms of area

efficiency or if having smaller cores with only L1 is enough.

For all caches, we model a standard LRU replacement policy.

We experimented with a variety of other replacement policies,

e.g. adaptations of Qureshi’s work [23], [24], with no major

benefit. We assume that it takes 100 cycles to access the

sharing tracker, forward the request to the source cache and

copy a cache line to the requesting core’s cache. All cores

share a 256 GB/sec memory interface, with a memory access

latency of 500 cycles.

Number of cores 32
SIMD width 32

Warps per core 1 - 16
Register File size per warp 4KB

Non-memory CPI 1
Per core L1 I-cache 32KB, 8-way
Per core L1 D-cache 32KB, 8-way

(Optional) per core L2 cache 256KB, 16-way
Line size 64 bytes

L2 hit latency 20 cycles
Hit latency in remote cache 100 cycles

Off-chip bandwidth 256 GB/sec
memory latency 500 cycles

Clock speed 2 GHz

TABLE I
DETAILS OF THE SIMULATED SYSTEM

Size of the physical address space supported 40 bits
size of full tag and valid bit 15 + 1 bits

size of bitmask and coherence state 32 + 2 bits
number of entries needed to cover 8MB of L2 128K

Total size of coherence directory 800KB
size of partial tag and valid bit 10 + 1 bits

size of L2 pointer 5 bits
Total size of sharing tracker covering 8MB 256KB

TABLE II
COMPARISON OF A COHERENCE DIRECTORY TO THE SHARING TRACKER

B. Area Model

To evaluate the trade-off between additional cores or adding

an L2 cache to each core or adding structures such as a sharing

tracker, we need an estimate of the chip area the different types

of structures occupy.

To estimate the area of the SIMD cores, we measured the

sizes of the different functional units of an AMD Opteron

processor in 130nm technology from a publicly available die

photo–this was the best source of area data we were able to

obtain. We could only account for about 70% of the total

area, the rest being x86-specific, system level circuits, or

unidentifiable. We scaled the functional unit areas to 45nm,

assuming a 0.7 scaling factor per generation. The sizes of the

different cores were then calculated from the areas of their

constituent units, scaled by capacity, data path width and port

numbers. We also compared the area estimate of the L1 caches

we derived from the die photo to the area estimate of Cacti

5 [25] and they were within 2% of each other.

We assume that each lane in a SIMD core has a 32 bit data

path and that each thread has a total of 32 32-bit registers,

so that each 32-wide SIMD warp uses 4KB of register file.

We use Cacti 5 [25] to estimate the area of the per-core

256KB, 16-way set associative L2 cache as well as the other

caches and cache-like structures. The area estimates from these

calculations are shown in Table III.

For our calculations of area efficiency in Section VII, we

also need an estimate for all the structures on a chip apart

core type core area
32-wide SIMD, 1 warp 7
32-wide SIMD, 2 warps 7.3
32-wide SIMD, 4 warps 7.9
32-wide SIMD, 8 warps 9.1
32-wide SIMD, 16 warps 11.5

TABLE III
AREA ESTIMATES FOR A DIFFERENT VARIANTS OF A 32-WIDE SIMD

CORE WITH 32KB L1S. FOR CASES WITH PER-CORE 256 KB L2S, AN

ADDITIONAL 4.35 MM2 SHOULD BE ADDED.

structure description area (mm
2)

256 KB per-core L2 4.35
8MB LLC cache 44.65

full distributed coherence directory covering 8MB 3.42
sharing tracker covering 8MB 1.01

Area for inter-core network, IO-pads, etc. 74

TABLE IV
AREA ESTIMATES FOR CACHE-LIKE STRUCTURES AND UN-CORE UNITS.

from the cores themselves. We estimate that the SIMD cores

will occupy 75% of the die area, with the other 25% used

for the inter-core network, IO-pads, memory buffers, etc. We

used the smallest SIMD core for this calculation and assumed,

as elsewhere, that the chip would have 32 cores. The area of

the cache-like structures and the non-core part of the chip are

shown in Table IV.

VI. WORKLOAD

Our chosen application kernels represent a mix of applica-

tion domains and memory access patterns. We have included

a kernel (k-means) which is pure streaming, having no reuse

of data between threads and cores. We do not expect this

kernel to benefit from the sharing tracker, and use it to

make sure the sharing tracker does not hurt such applications.

Another set of kernels (neighbor list generation, Lennard-Jones

force calculation and Gaussian filter) has data reuse between

software threads, but the sharing patterns are mostly between

threads that tend to access nearby data. These threads are often

mapped to the same core and the L1 data caches are enough

to capture most of the data reuse. We expect these kernels to

show only limited benefits from the sharing tracker, as only

a small fraction of memory requests will not hit in the local

cache or go to global memory.

Lastly, we have also included kernels (ray tracing and DNA

sequence alignment) which have both large working sets and

data sharing patterns that are non-regular, meaning that threads

on different cores will share data. We expect these kernels to

show the most improvement out of all kernels.

Table V shows low-level details of all of our kernels.

In HOOMD (Highly Optimized Object Oriented Molecular

Dynamics) [26] version 0.8, the two most computationally

intensive functions in HOOMD are the Lennard-Jones poten-

tial computation and neighbor list generation, which make

up over 95% of the runtime. The neighbor list function

(NL) determines, for every particle, to be taken into account.

Since all particles move during the simulation time frame,

the neighbor list is regenerated every 10 time steps. To avoid

the need to check every particle against every other particle,

particles are sorted into spatial bins in a preliminary step.

The Lennard-Jones function (LJ) calculates the Lennard-Jones

potential for each particle for each time step as a function of its

neighbor list. Both kernels are parallelized by assigning each

particle to a separate thread. We run the standard HOOMD

benchmark simulating a liquid consisting of 64000 particles

at a packing fraction of 0.2 interacting via the Lennard-Jones

force. We simulate the first 600 time steps.

MummerGPU [27] (SA) uses a suffix tree to efficiently

find alignments of short DNA sequences against a reference

genome. The tree is traversed from the root in a data dependent

manner, with each edge holding a variable number of base

pairs that must all match for the traversal to proceed to the next

node. MummerGPU parallelizes its computation by mapping

each input string to a thread. Similar to Schatz et al. [27],

we run SA in the exact matching mode, matching batches

of synthetic snippets of length 25, 50, 200 and 800 base

pairs sampled randomly from the Bacillus anthracis genome

(GenBankID : NC 003997.3) to match against itself. Each

batch contains a total of one million base pairs, with batches

containing longer string containing linearly fewer samples. We

report the average performance over all 4 string lengths.

From the bwfirt ray tracing (RT) framework [28], we use

the provided SimpleBVH ray tracer as our test application.

SimpleBVH decomposes the scene into a bounding volume

hierarchy tree. Each ray traverses the tree to find the object

that it hits in the scene. Bwfirt uses SimpleBVH to do path

tracing through a given scene, letting rays bounce around

a scene multiple times until they hit a light source. We

chose bwfirt because it does not just trace primary rays. We

parallelize SimpleBVH by having each thread trace a different

ray through the scene. This method of parallelization provides

a large number of independent tasks without the need for

any communication among threads until the output of the

final result. As our input, we use the conference scene with

approximately 1 million triangles and set the resolution of the

generated image to 1024 by 1024 pixels.

K-means (KM) mines data sets by grouping data elements

into a desired number of clusters in a way that minimizes

the aggregate distance from cluster centers. We use the

Minebench [29] version, which randomly generates N cluster

centroids, and then iteratively assigns points to the nearest

centroids, calculates new centroids, and repeats until the

number of points switching cluster to another falls below a

pre-specified threshold. We assign each point to a thread for

the distance computation and each centroid to a thread for

the centroid re-computation, and run k-means with 32 clusters

and with the provided input set of roughly half a million data

points, each with 36 features.

For image manipulation, we use a blurring kernel (GF),

which computes the 3 by 3 Gaussian blur for each pixel of the

input image. Each warp is assigned an image tile consisting

of 32 by 32 pixels, with threads being assigned a single row

in the tile. The input is a randomly generated black and white

Kernel Name
instructions memory

per memory op access pattern

Neighbor List Generation (NL) 19 local sharing
Lennard-Jones Force Calculation (LJ) 25 streaming & local sharing

DNA Seq. Align. (SA) 7 complex sharing
Ray Tracing (RT) 15 complex sharing
K-Means (KM) 5 private re-use

Gaussian Filter (GF) 8 2D stencil

TABLE V
NUMBER OF INSTRUCTIONS PER MEMORY OPERATION AND MEMORY REUSE PATTERN FOR EACH KERNEL

image with 2048 by 2048 pixels resolution.

VII. EVALUATION

Our initial investigations showed that reducing the tags to

10 bits showed no noticeable performance drop compared to

full tags. We use 10 bit tags in all the following experiments.

A. Performance Comparison

To evaluate the overall impact of adding the sharing to a

manycore GPU, we first show the performance and bandwidth

improvement possible by adding a sharing tracker to the base

CMP with per-core L2 as described in Section V-A. In this first

experiment, the L2s are maintained. The moderately large per-

core L2s already capture much more of each core’s working

set (despite some duplication of data among L2s) than the

32 KB L1, so we expect modest benefit from adding the

sharing tracker. We compute the unweighted geometric mean

performance and bandwidth across the kernels from Section

VI, where the performance of each kernel in each configuration

has been normalized to the performance of that kernel without

a sharing tracker.

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1 2 4 8 16

warps per core

g
e

o
m

.
m

e
a

n
 r

e
la

ti
v

e
 p

e
rf

o
rm

a
n

c
e

no ST

ST covering
1MB

ST covering
2MB

ST covering
4MB

ST covering
8MB

Fig. 3. Gmean performance using sharing trackers (ST) covering 0 to 8 MB
of L2, normalized to no sharing tracker, as a function of warps per core.

As can be seen in Figures 3 and 4, the sharing tracker can

increase performance between 3 and 12% while reducing the

required off-chip bandwidth by 20 to 45%.

The kernels which benefit the most from the sharing tracker

are those that are bandwidth bound and have significant

sharing of data between threads on different cores. These are

primarily the RT and SA kernels (shown in Figure 8 along

with LJ) which both traverse very large data structures that are

shared between all threads and have complex sharing patterns

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16

warps per core
g

e
o

m
.

m
e

a
n

 r
e

la
ti

v
e

 B
W

no ST

ST covering
1MB

ST covering
2MB

ST covering
4MB

ST covering
8MB

Fig. 4. Gmean off-chip bandwidth.

where widely spaced threads can access the same data. The

KM, GF and NL generation kernels show no performance

improvement. This is expected, as the GF and NL kernels

have only local sharing of data which can be satisfied by each

core’s L2 caches. The KM kernel only shares a very small

array between all threads and each thread touches only its

private data apart from the very small global array, meaning

it has no re-use which cannot be captures by the L1 caches.

0

0.5

1

1.5

2

2.5

1 2 4 8 16

warps per core

re
la

ti
v

e
 p

e
rf

o
rm

a
n

c
e

no ST

ST covering 128KB

ST covering 256KB

ST covering 512KB

ST covering 1024KB

Fig. 5. Gmean performance using sharing trackers covering 0 to 1 MB of
L1, normalized to no sharing tracker.

We now evaluate the performance and bandwidth savings

if each core only has L1 caches. Figures 5 and 6 show

the performance and bandwidth improvements possible by

adding a sharing tracker covering part or all off the L1 data

caches. We can see that both the performance and bandwidth

improvements with a sharing tracker are greater than when

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16

warps per core

re
la

ti
v
e

 B
W

no ST

ST covering 128KB

ST covering 256KB

ST covering 512KB

ST covering 1024KB

Fig. 6. Gmean off-chip bandwidth.

each core has an L2 cache. Performance improves between

50% and 102% relative to the L1-only case without the sharing

tracker, but the more important observation, shown in Figure 7,

is that the L1-only case with sharing tracker performs about

as well as the conventional organization with the large total

L2. The difference to the prior case is due to most kernels’

becoming much more bandwidth and latency bound without

L2. The RT, SA and LJ kernels show bigger improvements,

but the real difference is that the KM and GF kernels now

also improve in performance for some configurations. This

is primarily because these kernels thrash their L1 caches at

higher warp counts. Bandwidth savings are between 38 and

58% for similar reasons. The performance of the smallest

sharing tracker we study, 128K/core, is surprisingly close to

the largest sharing tracker. This is likely because that small

capacity is able to capture much of the short-term reuse among

cores.

0

2

4

6

8

10

12

1 2 4 8 16

warps per core

p
e

rf
o

rm
a

n
c

e
 n

o
rm

a
li

z
e

d
 t

o
 n

o
L

2
 1

w
a

rp

no L2

no L2 128KB ST

no L2 256KB ST

no L2 512KB ST

no L2 1MB ST

L2

L2 1MB ST

L2 2MB ST

L2 4MB ST

L2 8MB ST

Fig. 7. Performance comparison of cores with and without L2s. Performance
is the Gmean across kernels, normalized to the performance of 1 warp per
core and no L2 cache or sharing tracker. The former 5 bars per configuration
are without L2 and the latter 5 bars are with L2. The first bar of each group
uses no sharing tracker.

Clearly the individual L1s (i.e., no sharing tracker) do not

have sufficient capacity to capture each core’s working set.

Next we compare organizations with and without the L2.

Figure 7 compares geometric mean performance across all

kernels normalized to the performance of the configuration

Fig. 8. Performance scaling relative to 1 warp/core for the RT, SA and LJ
benchmarks.

with the smallest chip area, which is one warp per core and

no L2.

We first note that if we compare the performance of cores

with and without L2 cache and no sharing tracker, the relative

performance benefit of L2 grows as we increase the number

of warps per core. This is because more warps per core put

more pressure on the caches, and the L1 starts to thrash for

some kernels at 8 and 16 warps per core. It is very interesting

to note that the small sharing tracker can lift the performance

of the the no-L2 configuration to a level competitive with the

L2 configurations. Performance drops at most a few percent

even if L2 is eliminated! It is not clear how much this is due

to limited long-range temporal locality in our suite of kernels,

and how much due to latency tolerance with sufficient number

of warps. At 16 warps, the L1-only organization with the best

sharing tracker outperforms the conventional organization with

256 KB L2 per core and no sharing tracker, and is within 2.4%

of the configuration with L2 and the largest sharing tracker.

B. Performance/Area Comparison

0

1

2

3

4

5

6

7

1 2 4 8 16

warps per core

P
e

rf
o

rm
a

n
c

e
/A

re
a

no L2

no L2 128KB ST

no L2 256KB ST

no L2 512KB ST

no L2 1MB ST

L2

L2 1MB ST

L2 2MB ST

L2 4MB ST

L2 8MB ST

Fig. 9. Performance per mm
2 for cores with and without L2 caches as we

scale the number of warps per core and the sharing tracker.

Raw performance is not the only metric architects care

about. Figure 9 shows the performance per mm2 of each

configuration. For this calculation we use the area of each

core configuration from Table III and add the fixed overhead

of the non-core part of the chip as shown in Table IV. Here

we can see that in the base case (no sharing tracker), adding

L2 caches to each core makes little sense even without the

sharing tracker below 8 warps per core, as performance per

mm2 of the configurations with and without L2 caches are

within 0 to 7% for 1 to 4 warps per core. At 8 warps per core

that difference grows to 28% and to 50% at 16 warps.

With the addition of the sharing tracker, the performance

per mm2 of the configurations without L2 cache rises much

more than those with L2, making the no-L2 configuration the

top choice. The advantage is 40% with 1 warp, 26% with 2,

39% with 4, 31% with 8 and 28% with 16 warps. Comparing

the configuration with the highest performance per mm2 (16

warps per core and per core L2 caches) without the sharing

tracker to the one with sharing tracker (16 warps per core,

no L2 caches, sharing tracker covering all of the on-chip L1

capacity), we see a 35% improvement.

To more clearly illustrate the benefit of removing the L2’s

from each core we plot the ratio of performance/mm2 for each

configuration with and without L2 caches and with different

sized sharing trackers in Figure 10. To put it in terms of an

equal-area comparison, we estimate that eliminating the L2

saves up to 10% chip area. This can be applied to improve

performance of the no-L2 case, either by integrating more

cores (but odd numbers of cores might be problematic, and

more cores may require more memory bandwidth), or more

warps per core. A good example is the comparison between

4 and 8 warps in Figure 7. The points with 8 warps without

L2 are about 45% better than 4 warps with 8MB L2.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 4 8 16

warps per core

re
la

ti
v
e
 p

e
rf

/a
re

a
 o

f
n

o
-l

2
 v

s
.

l2

no ST

128KB vs.
1MB

256KB vs.
2MB
512KB vs.
4MB
1MB vs.
8MB

Fig. 10. The ratio of the performance per unit area of configurations with
and without per core L2 cache.

VIII. CONCLUSIONS AND FUTURE WORK

GPUs have recently emerged as a new platform for high-

performance computing. Their current cache organization is

optimized for streaming data with little temporal locality and

no sharing between cores, and requires software to manage any

coherence requirements. To efficiently support general-purpose

workloads, better support for temporal reuse is needed. How-

ever, as long as GPUs’ main sales volume remains biased

toward 3D rendering applications, and these do not require

cache coherence, we think it is unlikely that GPU vendors

will add full cache coherence in the near future. Since cache

coherence is challenging to implement at large scales in any

case, software coherence is an appealing option for any large-

scale multiprocessor, and some other organizations, notably

Cell and RAW, have followed this approach.

This paper shows that in a throughput-oriented processor

with effective latency-tolerance mechanisms, a lightweight

alternative (called the sharing tracker) to a full on-chip cache

coherency directory provides all of the benefits of cache

coherence for sharing cache lines among multiple caches on a

chip, with 4 to 20 times less area than a coherent organization.

The sharing tracker allows the L2 to be eliminated entirely

and still boosts performance by 3%. Even in the case where

the L2 organization includes a sharing tracker, the L1-only

organization with sharing tracker only sacrifices 2.4%. This

conclusion of course depends on the working set. Our appli-

cations have short-term working sets that can be captured by

the L1s’ aggregate capacity, and long-term working sets that

even a large L2 cannot contain.

The sharing tracker also reduces off-chip bandwidth by

38–58% compared to a conventional L2 organization, and

increases performance/mm2 by 35% compared to a design

with only per-core caches. In terms of specific equal-area

trade-offs, the sharing tracker can be used to turn area that

would otherwise have been poorly utilized for a large L2

into computational resources, such as providing more warps

per core. Although our results are obtained with a GPU

organization, the success of the sharing tracker in that context

suggests that other throughput oriented architectures should

evaluate a similar approach. Generalizing our approach poses

an interesting direction for future work.

As manycore CMPs increase the number of cores per chip,

the latency of accessing any global structure will worsen, and

the idea of the sharing tracker opens a number of avenues

for future work. One way to deal with this problem is by

replicating resources, but this is expensive for large structures.

We want to investigate whether we can use the fact that the

sharing tracker is small and does not require precise or up-to-

date data, for a design that distributes multiple copies of the

global sharing tracker across a CMP. This can reduce global

on-chip network bandwidth and latency, potentially increas-

ing performance. Another question is whether a hierarchical

sharing tracker, where smaller sharing trackers cover a subset

of cores and can resolve misses before they have to go to

a global sharing tracker, can achieve the same bandwidth

and latency advantages as our replicated sharing tracker. Yet

another question is whether the sharing tracker argues for an

inverted hierarchy in which only a very small L2 is used as

a victim cache for the L1s. Finally, our investigations in this

paper should be repeated with a wider range of applications

and working set sizes.

Acknowledgments

This work was supported in part by NSF grant no. CNS-

0509245 and CNS-0916908. We would also like to thank the

anonymous reviewers for their helpful comments.

REFERENCES

[1] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
, and P. Hanrahan, “Brook for GPUs: Stream Computing on Graphics
Hardware,” in SIGGRAPH, 2004.

[2] A. Munshi, “The OpenCL specification, version 1.0,
document revision 29,” Dec. 2008. [Online]. Available:
http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf

[3] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, 2008.

[4] N. Corp., “Nvidias next generation cuda compute architecture: Fermi,”
Whitepaper, 2009.

[5] H. Cheong and A. Veidenbaum, “A cache coherence scheme with fast
selective invalidation,” in ISCA ’88: Proceedings of the 15th Annual

International Symposium on Computer Architecture, May 1988, pp. 299–
307.

[6] P. Stenström, “A Survey of Cache Coherence Schemes for Multiproces-
sors,” IEEE Computer, vol. 23, no. 6, pp. 12–24, 1990.

[7] J. Chang and G. S. Sohi, “Cooperative Caching for Chip Multipro-
cessors,” in ISCA ’06: Proceedings of the 33rd Annual International

Symposium on Computer Architecture, 2006, pp. 264–276.

[8] E. Herrero, J. González, and R. Canal, “Distributed Cooperative
Caching,” in PACT ’08: Proceedings of the 17th International Confer-

ence on Parallel Architectures and Compilation Techniques, 2008, pp.
134–143.

[9] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy, “Introduction to the cell processor,” IBM Journal of Research

and Development, vol. 49, no. 4/5, 2005.

[10] J. B. Carter, J. Bennett, and W. Zwaenepoel, “Implementation and
performance of Munin,” in In Proceedings of the 13th ACM Symposium

on Operating Systems Principles, Oct. 1991, pp. 152–164.

[11] M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. W. Felten, and
J. Sandberg, “Virtual memory mapped network interface for the shrimp
multicomputer,” in ISCA’94: Proceedings of the 21st International

Symposium on Computer Architecture, May 1994.
[12] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,

M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal,
“Baring It All to Software: Raw Machines,” IEEE Computer, vol. 30,
no. 9, pp. 86–93, 1997.

[13] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla:
A Unified Graphics and Computing Architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39–55, 2008.

[14] Michael Mantor, “Radeon R600, a 2nd Generation Unified Shader
Architecture,” 2007.

[15] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M.
Aamodt, “Analyzing cuda workloads using a detailed gpu simulator,”
in ISPASS’09: Proceedings of the IEEE International Symposium on

Performance Analysis of Systems and Software, 2009, pp. 163–174.
[16] M. M. K. Martin, P. J. Harper, D. J. Sorin, M. D. Hill, and D. A. Wood,

“Using destination-set prediction to improve the latency/bandwidth
tradeoff in shared-memory multiprocessors,” in ISCA ’03: Proceedings

of the 30th Annual International Symposium on Computer Architecture,
2003, pp. 206–217.

[17] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform
cache structure for wire-delay dominated on-chip caches,” in ASPLOS-

X: Proceedings of the 10th International Conference on Architectural

Support for Programming Languages and Operating Systems, 2002, pp.
211–222.

[18] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler, “A
NUCA substrate for flexible CMP cache sharing,” in ICS ’05: Proceed-

ings of the 19th Annual International Conference on Supercomputing,
2005, pp. 31–40.

[19] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield,
and B. Smith, “The Tera Computer System,” in ICS ’90: Proceedings

of the 4th International Conference on Supercomputing, 1990, pp. 1–6.
[20] D. Blythe, “The Direct3D 10 system,” ACM Trans. Graph., vol. 25,

no. 3, pp. 724–734, 2006.
[21] B. Fagin, “Partial Resolution in Branch Target Buffers,” IEEE Trans.

Comput., vol. 46, no. 10, pp. 1142–1145, 1997.
[22] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,

S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan, “Larrabee: a many-core x86 architecture for
visual computing,” ACM Trans. Graph., vol. 27, no. 3, pp. 1–15, 2008.

[23] M. Qureshi, “Adaptive Spill-Receive for robust high-performance
caching in CMPs,” in HPCA’09: Proceedings of the IEEE 15th Interna-

tional Symposium on High Performance Computer Architecture, 2009,
pp. 45–54.

[24] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer,
“Adaptive insertion policies for high performance caching,” in ISCA ’07:

Proceedings of the 34th Annual International Symposium on Computer

Architecture. New York, NY, USA: ACM, 2007, pp. 381–391.
[25] Shyamkumar Thoziyoor and Naveen Muralimanohar and Jung Ho Ahn

and Norman P. Jouppi, “CACTI 5.1,” HP Labs, Tech. Rep. HPL-2008-
20, 2008.

[26] J. A. Anderson, C. D. Lorenz, and A. Travesset, “General Purpose
Molecular Dynamics Simulations fully implemented on Graphics Pro-
cessing Units,” J. Comput. Phys., vol. 227, no. 10, pp. 5342–5359, 2008.

[27] M. Schatz, C. Trapnell, A. Delcher, and A. Varshney, “High-
Throughput Sequence Alignment using Graphics Processing Units,”
BMC Bioinformatics, vol. 8, no. 1, p. 474, 2007. [Online]. Available:
http://www.biomedcentral.com/1471-2105/8/474

[28] M. Raab, L. Grünschloss, J. Hanikaz, M. Finckh, and A. Keller, “bwfirt
reposit ory.” [Online]. Available: http://bwfirt.sourceforge.net/

[29] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and A. Choud-
hary, “MineBench: A Benchmark Suite for Data Mining Workloads,” in
IISWC’06: Proceedings of the 2006 IEEE International Symposium on

Workload Characterization, 2006, pp. 182–188.

