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Abstract

In the context of massively parallel processors such as Graphics Processing Units (GPUs), an emerging

non-volatile memory – STT-RAM – provides substantial power, area savings, and increased capacity

compared to the conventionally used SRAM. The use of highly dense, low static power STT-RAM

in processors that run just few threads of execution does not seem attractive because of several

times slower write latency, which can relatively impair the performance of the system. However,

hundreds to thousands of threads executing in parallel in high-throughput GPUs hide the long write

latency of STT-RAM through fine-grained multithreading.

In this thesis, evaluation of possibility of STT-RAM for the shared memory in GPUs was

done. Performance, energy and area were evaluated across various configurations of shared memory

capacity, banks and ports across a set of benchmarks displaying different characteristics. Results

show performance degrades only up to 2% on average for an STT-RAM write latency, which is

four times that of SRAM write latency. Performance is even increased by 20% on average when

the denser STT-RAM is used to increase shared memory capacity, banks and ports. The energy

savings are up to 17% and area savings up to 50%. The evaluation helps understand the trade-offs

involved in the use of STT-RAM in GPUs. In the process, a few configurations were identified

which encourage their use. To better understand the low impact of high shared memory latency on

GPU’s performance, a theoretical analysis was done.
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Glossary

• “An arithmetic logic unit (ALU) is a digital circuit that performs arithmetic and logical

operations. The ALU is a fundamental building block of a processor, and even the simplest

microprocessors contain one for purposes such as maintaining timers. The processors found inside

modern central processing units and graphics processing units (GPUs) accommodate very powerful

and very complex ALUs; a single component may contain a number of ALUs.” [27]

• Each bank in a multi-banked memory is a separate array that can be accessed independent of

the others.

• Benchmarks, or workloads, are computer programs (applications) used to evaluate the perfor-

mance of a processor.

• A bottleneck is “a phenomenon where the performance or capacity of an entire system is limited

by a single or limited number of components or resources.” [28]

• A cache “is a component that stores data so that future requests for that data can be served

faster. The data that is stored within a cache might be values that have been computed earlier or

duplicates of original values that are stored elsewhere. If requested data is contained in the cache

(cache hit), this request can be served by simply reading the cache, which is comparatively faster.

Otherwise (cache miss), the data has to be recomputed or fetched from its original storage location,

which is comparatively slower. Hence, the more requests can be served from the cache the faster

the overall system performance is.” [29]

• A clock cycle (or clock period, cycle) is a discrete time intervals which determine when events

take place the computer hardware. It is the inverse of clock rate, or frequency, of the processor. [25]

• Processor execution time for a program = Processor clock cycles for a program × Clock cycle time

Clock rate, or frequency = 1 / Clock cycle time

1
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• “CMOS refers to both a particular style of digital circuitry design, and the family of processes

used to implement that circuitry on integrated circuits (chips).” CMOS process is a method of

semiconductor device fabrication which is used to create CMOS (Complementary metal-oxide-

semiconductor) integrated circuits (silicon chips). [30]

• The core is “the part of the processor that actually performs the reading and executing of

instructions. Single-core processors can process only one instruction at a time. A multi-core

processor is composed of two or more independent cores.” [31]

• Data-level parallelism (DLP) is the characteristic of a program where the same set of instruc-

tions can be concurrently executed on different data.

• An execution unit is usually implemented as a pipeline, which is the splitting “the processing

of a computer instruction into a series of independent steps, with storage at the end of each step.”

• “A basic pipeline is broken into five stages (and units) with a set of registers between each stage:

Instruction fetch Unit fetches the instruction from memory or cache, where it is stored

Instruction decode and register fetch interprets the instruction, and fetches the required data

Execute the operation specified by the instruction is performed

Memory access memory is accessed if needed

Write back either execution unit output, or a value loaded from memory is written into registers.”

[34]

• “Ferromagnetism is the spontaneous magnetization of small regions of a material that exists

even in the absence of an external field of induction.” [11]

• “Magnetic anisotropy is the direction dependence of a material’s magnetic properties. A

magnetically isotropic material has no preferential direction for its magnetic moment in zero field,

while a magnetically anisotropic material will align its moment to an easy axis.” [35]

• “The magnetic moment is the quantity that determines the torque (force about a pivot) that a

magnetic field will exert on it.” [36]

• Magnetization is the magnetic moment per unit volume.

• Performance of a processor depends on the amount of time it takes to execute a particular

workload or set of workloads. If processor A executes a workload in lesser time than processor B,

then processor A is said to provide better performance.

• Runtime, or execution time, of a workload is the time from the start to finish of its execution.
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• “In atomic physics, the electron magnetic dipole moment is the magnetic moment of an electron

caused by its intrinsic property of spin.” [33] It is not associated with its orbital motion. [26]

• “In the solution to the Schrodinger equation for the hydrogen atom, three quantum numbers arise

from the space geometry of the solution and a fourth arises from electron spin. No two electrons

can have an identical set of quantum numbers according to the Pauli exclusion principle , so the

quantum numbers set limits on the number of electrons which can occupy a given state. The

different quantum numbers: (1) R(r) Principal quantum number, (2) P(θ) Orbital quantum number,

(3) F(φ) Magnetic quantum number, (4) Spin quantum number” [42]. The two different orientations

associated with spin quantum numbers, +1/2 and −1/2, are called “spin up” or “spin down”.

• A thread is “a separate process with its own instructions and data. A thread may represent a

process that is part of a parallel program consisting of multiple processes, or it may represent an

independent program on its own.” [13]

• Thread-level parallelism (TLP) is the characteristic of a program where multiple threads can

execute concurrently (i.e. at the same time).

• Static random access memory (SRAM) is “a type of semiconductor memory. SRAM does

not need to be periodically refreshed. It is volatile in the conventional sense that data is eventually

lost when the memory is not powered” [39]. It is a fast, but less dense memory than DRAM, Flash,

STT-RAM, used to implement register files, caches, and other on-chip memory.

• Dynamic random access memory (DRAM) is “a type of random access memory that stores

each bit of data in a separate capacitor within an integrated circuit. Since real capacitors leak charge,

the information eventually fades unless the capacitor charge is refreshed periodically. Because of this

refresh requirement, it is a dynamic memory as opposed to SRAM and other static memory.” [32]

• A lane of a processor contains an execution unit and is able to perform one operation per cycle.

• In memory arrays with single ports, only one address can be read or written at a time. In

multi-ported memory arrays, reads and writes equal to the number of ports on different addressed

can be performed at a time.

• Scratchpad memory (SPM), “also known as scratchpad, scratchpad RAM or local store in

computer terminology, is a high-speed internal memory used for temporary storage of calculations,

data, and other work in progress.” [38]
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• Scoreboarding is a method for “dynamically scheduling a pipeline so that the instructions can

execute out of order when there are no conflicts and the hardware is available. In a scoreboard,

the data dependencies of every instruction are logged. Instructions are released only when the

scoreboard determines that there are no conflicts with previously issued and incomplete instructions.

If an instruction is stalled because it is unsafe to continue, the scoreboard monitors the flow of

executing instructions until all dependencies have been resolved before the stalled instruction is

issued.” [37]

• A vector processing unit is an array of processing units, where one instruction operates on an

array of data also called a vector. [40]



Chapter 1

Introduction

One technique of increasing processor performance is scaling CMOS semiconductor technology to

smaller processes and increasing frequency, thereby decreasing time taken to process instructions.

However, the performance increase, a fraction of original runtime, does not justify the complex,

power hungry units used to perform out-of-order execution, super-scalar issue/execution, branch-

prediction, speculation, etc. Another technique is to take advantage of the thread-level or data-level

parallelism that applications exhibit, by providing the processor with more cores. These cores can

be comparatively slower, but can speed up programs by executing many threads in parallel.

Multicore processors (composed of a few cores) and many-core processors (composed of a few

hundred cores) like GPUs have demonstrated this point recently by providing more throughput per

unit area for lesser power. While multicore processors are well suited for applications exhibiting

thread-level parallelism, with several concurrent threads, many-core processors can tremendously

boost performance for data-level parallel applications with thousands of threads. Many-core

processors like the Graphics Processing Units (GPUs) usually provide up to hundreds of times

increase in performance for data-parallel applications than single-core processors[22]. A few types

of applications GPUs can provide this kind of performance for, are physics simulations, atmospheric

simulations, bioinformatics applications, cryptography applications, image, audio, video processing;

graphics, raytracing, computational finance, digital signal processing. These belong to an emerging

set of data-parallel applications that are becoming increasing important.

Single-Instruction-Multiple-Data (SIMD) is a class of computers that provide high performance

benefits for data-parallel applications, as the same operations are simultaneously applied to different

5
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data at the same time. Based on this taxonomy, the term single-instruction-multiple-thread (SIMT)

is used to describe the model of execution in which each data has a thread associated with it,

maintaining its own state. Tens of thousands of these threads execute in parallel on the GPU.

Not all data-parallel applications obtain hundreds of times speedup on the GPU. The main

hardware limitations causing this are the relatively small (1) on-chip and main memory capacity,

compared to the number of cores on-chip, and (2) bandwidth to and from the CPU. For SIMD/SIMT

applications with high levels of parallelism, tens of thousands of threads operate on tens of thousands

of data elements in a single clock cycle. Here, memory is certainly a bottleneck, as it is limited to

around 32 bits per thread every 2 cycles for fast on-chip memories: register and shared memory. For

communication among all threads of an application global memory is used, whereas shared memory

is used for threads belonging to a block.

An ideal memory system would be of unlimited capacity, and would be fast, providing data

immediately when the processor requires it [13]. As applications and the data they operate upon

get larger, it becomes impossible to fit them in a memory accessible within one clock cycle. Using

a memory hierarchy provides faster access to programs with stronger locality of reference, and

is an economical option. The first level of memory being the fastest with the smallest capacity

(and expensive), the second slightly slower with a higher capacity, and so on, with the last level of

memory being the slowest with the largest capacity (also the cheapest). It is not difficult to see that

this trades away performance. To meet the demands of emerging applications one way of surely

increasing performance is by increasing on-chip memory.

In increasing on-chip memory capacity one would be increasing die size, and thereby all the

costs associated with it. Most on-chip memory is implemented in SRAM, whose memory cell area

is 146F 2 [16]. 1 Increasing the number of SRAM memory cells is expensive, for a relatively small

increase in capacity, while dissipating a lot of static power. An alternative memory technology

that seems viable is DRAM. While DRAM provides high density with cell size 6F 2 [16], it is heavy

on power consumption. Not only does it need to be refreshed frequently to retain data, it also

dissipates a lot of static power.

1Where ’F’ stands for size of the smallest feature on the die. ’F’ is usually also the CMOS process used in
manufacturing the die (e.g. 32nm).
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Power is important

Another approach to increase memory is scaling to smaller CMOS process. Thus, increasing the

number transistors available without increasing the die area. However, as SRAM and DRAM leakage

power issues become even more pronounced at deep sub-micron feature sizes. Hence, they are not

that suitable for scaling because as technology is scaled down, power per transistor scales slower

than transistor size [15], meaning that power density increases.

A new class of memory technology called Non-Volatile Memory (NVM) seems appropriate.

NVMs such as Phase-Change Memory (PCM), Magnetoresistive RAM (STT-RAM), NAND and

NOR Flash offer higher density i.e. higher capacity per unit feature size than SRAM. In addition,

the read latencies/access times are in the order of nanoseconds, comparable to SRAMs. One of the

attractive features of NVM technology is its near-zero leakage power.

Moore’s Law was initially an observed trend. Chip companies now target doubling the transistors

on a chip approximately every two years. This is enabled by scaling down of CMOS processes, hence

the reduction of transistor size. Chip manufacturers relied on increasing clock rate and single-thread

performance, by making feature sizes smaller according to Moore’s Law. Then power dissipation

became significant enough that parallelism was used to keep scaling performance.

Power dissipated or consumed by a chip has two components Dynamic Power and Static Power,

as shown in Equation (1.1)[18]. We can reduce dynamic power by reducing switching activity of

the transistors (A). Reducing leakage power becomes challenging, as it is dissipated as long as power

is on [24].

As device size is scaled down, operating voltages scale down (to reduce strength of electric field

and dynamic power). Threshold voltages have to decrease too to keep performance, according to

Equation (1.2) [18]

TotalPower = A · C · V 2 · f + V · Ileak (1.1)

where A is the number of transistors actively switching, C is the capacitance of the transistors, V is

the operating voltage, f is the frequency.
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f ∝ (V − Vth)α/V (1.2)

where Vth is the threshold voltage.

Reduction in the threshold voltage (Vth) (around even 65mV [24]) exponentially increases leakage

current between the source and drain in transistors, even when they are OFF. Hence, leakage

power is becoming a major issue in CMOS circuits as technology scales below 90nm [24]. This

dissipation caused by leakage current takes place when transistors are active as well as inactive;

whereas dynamic power is caused when transistors are active. Reducing power dissipation impacts

performance, packaging, reliability, environmental impact, and heat removal costs [41]. One way to

reduce on-chip power is to reduce power associated with memory. On-chip SRAM memories have

large sections that are idle for relatively long periods of time. Thus, they dissipate considerable

amounts of static power [8]. It is not only important to reduce power dissipation, but also power

density. This influences cooling of the chip, cost of cooling, (which on insufficient cooling will lead to

reliability problems, and ultimately failure of device), and packaging. With all these issues in sight,

NVMs like STT-RAM are a great alternative. Not only do they eliminate majority of leakage power

loss, they also aid in implementing very fine-grained complete local power shut-down (ultimate

power-gating), and for logic-in-memory (where memory is distributed over a plane of logic) [23].

Along with leakage in memory, power density too is reduced, preventing hotspots.

In modern GPUs shared memory capacity is limited. Shared memory is a scratchpad, an

addressable memory (like the global or main memory), as fast as registers (when there are no

bank conflicts), which is a widely used for optimizing memory access in GPUs. STT-RAM offers

the possibility of increasing shared memory capacity without increasing die size and potentially

allowing the same block of threads to do more work with more data, or complete work faster by

potentially having all (or most of) the required data on the scratchpad. This also allows for effective

implementation of double buffering - so that the next thread block to start can be streaming in

its data while the current one is computing. It also allows for having more processing elements for

same area and shared memory capacity - providing more computing power per unit area.
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The hypothesis is that using STT-RAM for shared memory in GPUs can save energy and area,

and that GPUs can hide the long write latency of STT-RAM. The contributions of this thesis are

(1) evaluation of using STT-RAM for the GPU shared memory in terms of performance, area and

energy, and (2) a theoretical analysis of dependence of performance on shared memory access time.

Various configurations for shared memory capacity per GPU multiprocessor, the number of banks

per shared memory, and the number of ports per bank are explored, and configurations which

provide similar or better performance, energy and area than SRAM are identified. It was found that

using STT-RAM for shared memory in GPUs provides energy savings up to 17% and area savings

up to 50% with performance at 98% to 120% on average, relative to the baseline. It was concluded

that GPUs can hide long access latencies of STT-RAM with little performance loss. Performance

can be improved by increasing the number of banks or increasing capacity while staying around

energy and area budgets specified by the SRAM baseline system. The thesis itself is divided into

the following sections and presented in that order: background and related work, methodology,

results, and conclusion.



Chapter 2

Background and Related Work

2.1 Graphics Processing Units

Graphic Processing Units (GPUs) have traditionally been specialized co-processors for rendering

graphics. At the heart of the architecture is the concept of many cores processing a very high

number of threads at any given instance of time i.e., throughput. From being able to compute

only graphics specific applications, GPUs have in recent years enabled computing general purpose

applications exhibiting high amounts of parallelism. Although GPUs have been used in parallelizing

graphic applications, writing and executing non-graphic applications on GPUs became considerably

easier with the introduction of frameworks like CUDA and OpenCL. In this thesis we consider the

NVIDIA GTX 285 of the GT200 architecture, for evaluation (Figure 2.1).

2.1.1 Architecture and Working of the GPU

CUDA stands for Compute Unified Device Architecture, and it defines the programming model and

instruction set architecture for general purpose GPU platform. An application to be executed on the

GPU is written using CUDA language extensions to C or Fortran 1. The GPU is a co-processor, and

the execution of an application using the GPU originates on the CPU. When an application running

on the CPU arrives at a point requiring the GPU, a call is made to the GPU driver, invoking

either data transfer to/from the GPU or a kernel launch on the GPU. Kernels are functions of the

applications which are executed on the GPU. Each kernel specifies the data and number of threads

1The NVIDIA GPU also executes applications written in other languages or API like OpenCL and DirectCompute.

10
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it will use for execution. The data which a kernel operates on has to be explicitly copied from the

CPU to the GPU for computation, and copied back from the GPU to the CPU after computation.

A kernel usually uses tens of thousands of threads , and the GPU executes the same kernel on all of

the threads, and the data is usually different for each thread. This type of architecture is called

Single-Instruction-Multiple-Thread (SIMT). SIMT is different from Single-Instruction-Multiple-Data

(SIMD) in that SIMT maintains a thread context for each data element. All the threads of a kernel

comprise a grid, which are further organized into equal sized thread blocks. These thread blocks can

contain anywhere from 1 to 512 threads. [19] [21]

The GPU comprises a global work distribution unit, a memory hierarchy, and several multi-

processing cores called Streaming Multiprocessors (SMs) 1. The global work distribution unit, or

the global block scheduler, is responsible for scheduling thread blocks in a load-balanced manner

across all the SMs. The SMs contain eight lightweight, in-order execution units called Streaming

Processors (SPs) each, a total of 240 SPs across the GPU. Groups of 32 threads called a warp are

scheduled for concurrent execution on the eight SPs. A maximum of 32 such warps, or 1024 threads,

can concurrently execute on an SM. 30 such SIMT SM cores execute a maximum of 32 x 30 warps

concurrently across the entire GPU. The GPU usually has tens of thousands of threads executing

on it at any given point of time.

2.1.2 The Memory Hierarchy

GPUs have on-chip memories such as the register file, shared memory and constant cache in an SM.

Texture caches shared amongst three SMs and a global L2 (Figure 2.2), and an off-chip DRAM.

What is called the global memory that is visible to all threads of a kernel resides in the off-chip

DRAM. A thread’s local memory is visible to only itself, and this too resides in the off-chip DRAM.

Constant memory and texture memory resides in the off-chip DRAM, and is cached by the constant

and texture caches respectively. Shared memory is visible to all the threads of a block and resides

on the on-chip scratchpad present on each SM. The shared memory has a separate address space

which is disjoint from the main memory, as opposed to the single main memory used by global

memory, texture and constant caches [19] [21]. Global, local, and shared memory are the read/write

memories, while the constant and texture memories are read-only. Global and local memory accesses

1There are 30 SMs in GT200, and 15 SMs in Fermi
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.
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Figure 2.2: Streaming Multiprocessor (SM). Source:Lindholm et al. [19]
.

are 400-600 clock cycles, and are not cached in the GT200 architecture, while being cached in the

Fermi architecture2. To use global memory bandwidth efficiently, if memory accesses by threads

belonging to a half-warp take place, the separate memory accesses are ’coalesced’ into a single

memory request. [19] [21]

The register file is 64kB in size, and is divided into 16 banks for high concurrent access. The

shared memory is 16kB and 48kB in size, in the GT200 and Fermi architectures respectively. It too

is divided into 16 banks, and when a warp accesses shared memory, the request is sent in two groups

of 16 accesses each [3]. The constant and texture caches are 8kB and 24kB in size, respectively. The

L2 cache is 256kB and 768kB in GT200 and Fermi architectures, respectively.

2The Fermi architecture was recently introduced. Though its basic architecture is similar to GT200, Fermi has
more SPs per SM, providing L1 caches for SMs, and supports concurrent execution of multiple kernels among other
differences.
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2.1.3 Streaming Multiprocessor

Three SMs comprise a Texture/Processor Cluster [19], also called Thread Processing Cluster, (TPC)

[17], and share an SM controller and common texture cache. A single SM consists of eight arithmetic

logic units (ALUs) and multiply-add (MAD) units which operate on single precision floating point,

one fused multiply-add unit for double-precision floating point, two special-function units which

perform transcendental functions, interpolation, reciprocal and other uncommon functions, one

multithreaded instruction fetch and issue unit, one instruction cache, one read-only constant cache,

and one read/write shared memory. See Figure 2.2.

The SM schedules the warps in a loose round-robin style, i.e. fine-grained multithreading [3]. In

fine-grained multithreading every cycle execution switches to a new warp, skipping stalled threads

[13]. Hence, whenever there is a long latency memory operation, that warp is taken out of the SM’s

scheduling pool until the memory operation completes.

The execution units (ALU, MAD, SFU) run at twice the frequency of fetch, issue, registers

and shared memory, which run on the slower core clock. To execute each instruction the ALU and

MAD units take 4 fast clock cycles, the FPU takes 32+ fast clock cycles, the SFU takes 16-32 fast

clock cycles. Together, one ALU and one MAD unit represent a streaming processor (SP). These

functional units can be executed in parallel. Although, single and double-precision units share logic,

only one can be executing at any particular time.

The SM schedules and executes threads in groups of 32 threads called a warp, on the 8 SPs. A

maximum of 8 blocks of threads, or 1024 threads gets scheduled on an SM for execution. All the

threads of a warp execute in lock-step executing the same instruction. So, a warp waits until all its

threads have finished execution and the next instruction is fetched. [17] [19]

As stated previously, a warp waits till all its threads finish execution. So, a warp waits on

branches a particular thread might take. Hence, the divergent paths at branches are serialized.

More diverging paths means corresponding decrease in performance.

2.1.4 Shared Memory

The shared memory in each SM is a scratchpad memory. Scratchpads are local memories that are

fast and directly addressable, with no tag array. It has the same access latency as the register file
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when there are no bank conflicts. The shared memory is divided into 16 banks. Each successive

32-bit word is assigned to a successive bank. Each bank can be accessed simultaneously providing

higher memory bandwidth. A memory request consisting of n addresses are mapped to n distinct

banks which are accessible simultaneously. Suppose two addresses of a memory request map to

the same bank, a bank conflict occurs and the two addresses are now accessed serially, one after

the other. Therefore, a memory request is split into as many conflict-free requests as needed. This

decreases the bandwidth as many times as the separate requests. As the warp size is 32 and number

of banks are 16, shared memory requests of a warp is split into groups two corresponding to the

first and second halves of the warp. Hence, bank conflicts do not occur between threads belonging

to the different halves of a warp [21].

Having a shared memory enables quicker access to data, which reduces the need for global

memory accesses. Intuitively, one would want to keep all of the data required by the threads of an

SM on the shared memory and obtain performance benefits. However, scratchpads are only 16-48kB

in size. This is one of the main factors limiting the amount of data that can be processed either at

any given instance, or by a single thread block [19]. A shared memory variable is only visible to

threads belonging to a block. The number of threads per block is therefore restricted by the limited

memory resources of a processor core. The number of blocks an SM has in its scheduling pool at

any given time is referred to as the number of active blocks, [19] depends on how much of resources

like registers per thread and shared memory per block is available on the SM.[19].

To use the shared memory, data needs to be copied from global memory to shared memory via

explicit instructions. So, data is loaded to registers and then to shared memory. If data computed

on shared memory is needed by threads from other thread blocks or by the CPU, it is first copied

explicitly to the global memory.

It is desirable to increase the number of active blocks on an SM as it would increase performance

by masking latency. Though, it might cause contention in some memory bound workloads. For

example, consider a non-memory-bound application using only double precision values: the 16KB

shared memory can accommodate at most 2K double precision values. If this could be increased,

fewer global memory accesses would be required to obtain data for processing. This implies that

the same thread block can now spend more time dedicated to processing. This shows that there

exists a need for a higher capacity memory within the fixed area and power constraints.
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2.2 STT-RAM

The previous sections discussed how the next generation of GPUs with more number of cores (hence

concurrency) need higher memory capacity. The next generations of GPUs will move into deep

sub-micron processes in a few years. Therefore, in order to avoid power wall, they need to dissipate

and consume lesser power too. This work looks at leakage power in memory, as SRAM’s leakage

power is a serious issue beyond 32nm.

This need for a dense and lower power memory technology is addressed by a new class of memory

technology called Non-Volatile Memory (NVM). NVMs are memories which can retain the data

stored in them even when the power source is removed. Many NVMs such as Phase-Change Memory

(PCM), Magnetoresistive RAM (STT-RAM), NAND and NOR Flash offer higher density i.e. higher

capacity per unit area than SRAM. In addition, the read latencies of these NVMs are in the order

of nanoseconds comparable to SRAMs (flash is in microseconds). One of the attractive features

of NVMs are its low leakage power. This thesis proposes replacing the SRAM shared memory in

GPUs with a magnetoresistive STT-RAM to tackle the issue of providing higher capacity for a

given area budget. STT-RAM, or spin transfer torque random access memory, stores the data in

form of magnetic moments, and is written and read by passing a spin-polarized current through it.

STT-RAM provides increased density, which can be taken advantage of in many ways. The extra

capacity provided by STT-RAM, of same area as SRAM, could be used for double buffering where

the next thread block to be executed can stream in its data while the current one is computing. Or,

instead of increasing the scratchpad size, more processing elements could be accommodated in the

same area without increasing the shared memory capacity.

STT-RAM is a magnetoresistive memory that employs Magnetic Tunnel Junctions (MTJs)

as memory elements exhibiting two distinct resistances corresponding to 0 and 1 states. MTJs

consist of two layers ferromagnetic (FM) material sandwiching a layer of insulating material. One

of the two FM layers has its magnetization, or magnetic moment fixed. The other FM layer, called

the free layer, can change its magnetization direction. Hence, stores the data bit in form of the

orientation of magnetization of relative to a fixed magnetization. The orientation of the changeable

magnetization relative to the fixed one can be in two stable states: parallel and anti-parallel,

giving two corresponding different resistances. A bit is stored in an MTJ through current-induced
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magnetization switching known as the spin transfer torque (STT) effect. The stored data is read by

passing a sensing current through the MTJ, indicating its resistance state.

2.2.1 Tunneling Magnetoresistance and the Magnetic Tunnel Junction

The tunneling magnetoresistance (TMR) effect is observed in magnetic tunnel junctions (MTJ).

MTJ structure is very similar to the GMR structure. The difference is that MTJ uses an insulating

spacer layer (Eg. Al203, MgO), called the tunnel barrier, instead of the metallic one used by GMR

structures.

In parallel (P) magnetizations electrons in FM layer will find more empty states to tunnel

through the barrier than anti-parallel (AP) magnetizations. Effectively making the resistance of the

MTJ low in parallel magnetizations and high in anti-parallel magnetizations [20]. The conducting

capability or resistance of the MTJ is defined by the magnetoresistance ratio (MR),

MR =
(RAP −RP )

RP
=

∆R
RP

(2.1)

where RAP is the resistance of the MTJ in antiparallel state, RP is the resitance of the MTJ in

parallel state, and ∆R is the difference in resistances of parallel and anti-parallel magnetizations of

the FM layers.

The output voltage of the MTJ structure is given by,

∆V = k.J.∆R.A (2.2)

where k is the efficiency, J is the current density, A is the cross-sectional area through which current

flows. From Equation (2.2) we can see that in order to have a readable output voltage it is necessary

to have a high ∆RA, which corresponds to high MR [20]. MTJ structures can have MR as high as

1010% [4].

2.2.2 Current-driven Magnetization Switching

This section explains how the magnetization of the free layer is changed with a spin-polarized

current. Consider the case where the magnetizations of layers between two ferromagnetic layers
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(a) (b) 

Figure 2.3: (a) Depiction of the spin transfer torque (STT) effect, where the spin polarized current
passing from one ferromagnetic layer to another through a spacer layer, switches the magnetization
of a second layer through transfer of angular momentum. (b) STT effect applied to the writing an
STT-RAM cell. While one direction of current induces parallel state of magnetization in second
layer relative to the first, the opposite direction induces a anti-parallel magnetization. The parallel
and anti-parallel states corresponding to ’0’ and ’1’ data respectively. Source: Chappert et al. [4]

.

(FM1 and FM2) are opposite. When a current of s-orbital electrons are passed from FM1 through

to FM2, the FM1 layer acts as a spin polarizer and polarizing the average spin moment of the

electrons along its magnetization. Upon reaching layer FM2 the s-d exchange interaction occurs and

the average spin moment of the electrons are now directed along the magnetization of layer FM2.

This results in the loss of the transverse components of the spin angular momentum of the s-orbital

electrons. Since, total angular momentum is conserved in the system (as no external forces are

acting), the spin is transferred to the magnetization of layer FM2, causing a torque to act on the

FM2 layer aligning its magnetization along the average spin of the s-orbital electrons which is along

the magnetization of layer FM1. Thus ’switching’ the magnetization of FM2, due to spin transfer

torque. The amount of torque per unit area is directly proportional to the density of a current of

polarized s-orbital electrons (which cause the spin transfer). This means that the writing current is

reduced as cross-sectional area of the structure is reduced [4]. This phenomenon is illustrated in

Figure 2.3.
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The critical current density needed for magnetization switching at zero temperature [20] is given

by,

Jc0 =
2e
h̄

α

η
MStF

(
±Hext +HK + 2πMS −

HK⊥
2

)
(2.3)

where e is the electron charge, h̄ is the reduced Plank’s constant, α is the damping constant, η is the

spin transfer efficiency, MS is the saturation magnetization of the free layer, tF is the thickness of

the free layer, Hext is the externally applied magnetic field, HK is the in-plane uniaxial anisotropy

field and HK⊥ is the out-of-plane perpendicular anisotropy field of the free layer. Hence, the

corresponding current is given by,

Ic0 = Jc0.A (2.4)

where Jc0 is current density and A is the cross-sectional area of the free layer. From Equation (2.3)

and (2.4) we can see how the critical current density Jc0 and current Ic0 can be reduced. Apart

from varying material properties like MS and η, having a smaller free layer size (A tF ) gives smaller

Ic0. As thickness of free layer is very small, varying area of free layer has a greater impact on Ic0.

2.2.3 Switching Regimes

Based on analytical and numerical estimations three switching modes dependent on current pulse

widths have been identified for the free layer in an MTJ structure. Thermal Activation - where

a long current pulse (> 10ns) is applied cause magnetization switching which is a thermally

activated process. This switching process is determined by thermal agitations, and is independent

of initial conditions. Precessional Switching - where a short current pulse (< 3ns) is applied to

cause magnetization switching which is nearly independent of the thermal agitation during the

switching process; though, it is dependent on the initial thermal distribution. Dynamic Reversal -

where current pulses intermediate to that of Thermal Activation and Precessional Switching modes

cause dynamic reversal magnetization switching. These current pulses are the speed of operation

of practical STT-RAMs. This mode is both precessional and thermally activated process which

depends on initial thermal distribution and thermal agitation during the switching process [6].



Chapter 2 Background and Related Work 20

 

Figure 2.4: Switching modes corresponding to current pulse width: thermal activation, dynamic
reversal, and precessional switching. Source: Diao et al. [6]

.

Consulting Figure 2.4 we assume a 5ns current pulse width under dynamic reversal regime for the

magnetization switching of the MTJ free layer, as it neither has the very high switching current

density of precessional switching, or very long switching speed of thermally activated regime. This

is the write speed of solely the MTJ. The extra STT-RAM array access times, address decoding etc,

is assumed to be 0.3ns as explained in the Methodology section.

2.2.4 STT-RAM Cell

The process of the spin-transfer-torque based writing of a STT-RAM cell is shown in Figure 2.3.

Electrons flowing from the thick ’polarizing’ layer to the thin free layer favor a parallel orientation

of the magnetizations: if the initial state is antiparallel, then beyond a threshold current density

JC the free layer will switch. When the electrons flow from the free to the polarizing layer, the

effective spin moment injected in the free layer is opposed to the magnetization of the polarizing

layer, writing an antiparallel configuration beyond the threshold current density.
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Figure 2.5: The 1T/1MTJ STT-RAM cell, consisting of an MTJ, a transistor to access the MTJ
device, and bit line, word line and source line used for reading and writing the device by controlling
the access transistor. Source: Hosomi [14]

.

 

Figure 2.6: Schematic of the STT-RAM cell array. Source: Hosomi [14]
.
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2.2.5 Related Work

Guo et al. [12] developed an architectural technique that targets power-efficient, scalable micro-

processor design. They use STT-RAM memory technology for this purpose. Their key idea is

implementing power and performance critical hardware resources like register files, caches, memory

controllers, FPUs using scalable, leakage-resistant RAM arrays and lookup tables (LUTs) designed

with STT-RAM. To deal with long write latency of STT-RAM they incorporate write-buffers, which

allow the long-latency write to complete locally within each subbank, without going through the

H-trees, or the interconnect between elements of the memory array. For STT-RAM used in register

files, caches, TLB, and memory controller queues, they modify a standard SRAM array to include

buffers for subbanks.

Combinational logic and functional units like front-end thread scheduler, decode, next-PC

generation logic, FPU, and memory controller scheduling logic use specialized STT-RAM array

based LUTs employing 2-bit differential current-mode logic (DCML) and extend it to 3-input LUT.

They develop a detailed model to evaluate latency, area and power trade-offs depending on LUT size.

They find that increasing size of the transistors leads to savings in power trading off performance

and area.

Their main argument is that a single LUT can replace around 12 CMOS cells, especially while

implementing complex combinational logic such as FPUs. Area is really traded off when STT-RAM

LUTs are used, by a factor of 5.6x. Though the leakage power savings are 5.8x. They show that

power consumption and leakage savings of LUT based circuits improve dramatically as complexity

of logic increases. Their evaluation is in the context of FPGAs, which do use LUTs heavily. Hence,

traditional processors might not benefit much from STT-RAM LUT implementation.

Their baseline is SRAM for register files, L1 and L2 caches, and incorporates STT-RAM LUTs.

For performance evaluation they used different configurations: 1) register file implemented in

STT-RAM, L1 and L2 are also in STT-RAM with same capacity as CMOS - this gave 89% baseline

performance 2) register file is moved to CMOS - this gave 93% baseline performance 3) L1 and L2

were enlarged keeping the same area budget as CMOS - this gave 1.02% baseline performance 4) for

the same area budget as CMOS L2 capacity is increased, and L1 is moved to STT-RAM - this gave

1.02% baseline performance. Their microprocessors are barrel-processors, which employ fine-grain
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multithreading. They do not evaluate the contribution of fine-grained multithreading in hiding

STT-RAM latency separately. Hence, it is difficult to ascertain how much latency hiding is due to

the subbank buffers, and how much due to the fine-grain multithreading nature of the processor

they use. In their power evaluation they find that STT-RAM configurations that maintain same

cache sizes as CMOS reduce total power by 1.7x (while degrading performance by 7%), and increase

in cache capacity under same area budget increase power by 1.2x (while improving performance by

2%).

Dong et al. [9] developed an STT-RAM cache model, and used that to evaluate implementation

of different levels of the memory hierarchy in STT-RAM. Based on that model, STT-RAM, SRAM

and DRAM are compared for performance, area and energy. Also, 3D stacking of STT-RAM is

evaluated. For the design of the STT-RAM cell, they first bound the area of the cell by bounding the

current required for the write operation. As critical current will increase exponentially for writing

pulses shorter than 10ns, they assume that as MTJ write latency value.They use HSPICE model to

determine W/L ratio of the STT-RAM cell driving a current of 216uA, which they obtained by

scaling all MTJ-parameters from 180nm technology to 90nm technology. To simplify the model they

approximate the MTJ to be a static resistor. They also determine dynamic read/write energies

for the STT-RAM cell. The STT-RAM cell values are then used in CACTI to obtain values for

STT-RAM arrays of 4MB-16MB.

SRAM, DRAM array values for area, performance and delay are compared to that of STT-RAM.

STT-RAM cell area is found to be 25% of SRAM cell area, and 70% more than DRAM cell area.

The read latencies for SRAM, DRAM and STT-RAM are found to be very close. SRAM leakage

power per unit area is 9.33x of STT-RAM, and DRAM leakage power per unit area is 3.14x of

STT-RAM. Then the cache hierarchy design of replacing the SRAM/DRAM L2 with 3D stacked

STT-RAM L2 is evaluated.They find that STT-RAM L2 performs 13% better than same size SRAM

L2. Though increasing STT-RAM size further leads to dramatic increase in delay as interconnect

delay starts to dominate. DRAM was found to perform 10% worse than STT-RAM of same size.

According to their simulations, STT-RAM L2 can save 89% more power than SRAM L2 and 70%

more than DRAM L2.

Desikan et al. [5] explore STT-RAM as an on chip main memory by 3D stacking it on the

processor. This study proposes having STT-RAM on chip as a fast accessible alternative to having
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an off-chip main memory whose access latency is hundreds of cycles. They propose STT-RAM as a

high-bandwidth low latency technology and do not touch on the latency issue any further. This

limits their findings to 3D on-die integration of STT-RAM

STT-RAM in GPUs Al Maashri et al. [2] focus on 3D stacking of texture and Z caches.

Hence, they evaluate GPUs in the context of graphics applications and do not really address the

use of GPUs for general purpose computing. They address the latency problem by 3D stacking

STT-RAM over the GPU. The reasoning behind this being that 3D stacking allows shorter wires

and hence reduced latencies. Their primary evaluation identifies texture and Z caches as highest

impacted by hit rate when they change the organization of streamer, texture, Z, color write caches

in GPUs. They replace all SRAM with STT-RAM to save on leakage power when cache size increase

beyond 512kB. Read and write speeds for STT-RAM are not specified. From results there is up to

20% degradation in performance. They note that this is not beneficial to applications which require

performance, and is more suitable to power conserving ones. However, they do not explore replacing

the SRAM shared memory with an STT-RAM based one.



Chapter 3

Methodology

3.1 Architectural Simulation with GPGPU-Sim

To evaluate implementing the GPU shared memory in STT-RAM, the GPGPU-Sim microar-

chitectural simulator [3] was chosen. GPGPU-Sim provides a functional and timing model for

microarchitecture for GPUs with general compute capability. GPGPU-Sim models timing for the

SMs, SPs, on-chip memory, interconnection network, memory controllers, and graphics DRAM. It

does not model timing for CPU execution or data transfer to and from the CPU. Hence, GPGPU-Sim

just reports the number of cycles applications take to execute on the GPU [1].

GPGPU-Sim models the CUDA parallel thread execution (PTX) instruction set. It can run

unmodified CUDA applications, as it uses the CUDA compiler nvcc to convert the CUDA application

code into host CPU C code and GPU PTX instructions. However, instead of using CUDA API

library that interfaces applications with the GPU, the simulator employs a customized library that

emulates the CUDA API. The customized version contains stub functions which makes calls to

GPGPU-Sim instead of the GPU. [1]

GPGPU-Sim provides many configurable parameters such as number of shader cores, warp

size, number of threads, number of registers, shared memory size, constant cache size, texture

cache size, DRAM bandwidth and number of access ports [1]. By changing the shared memory

capacity, the number of shared memory banks, or access ports, modeling performance for various

configurations of shared memory is possible. Hence, identification of favorable STT-RAM shared

memory configurations can be done.

25
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Figure 3.1: GPGPU-Sim Compilation Flow. (GPGPU-Sim uses the term shader cores for SMs.)
Source: Bakhoda et al. [3]

3.2 STT-RAM Shared Memory

In this study, the STT-RAM Shared Memory element is taken to be MTJ characterized by Diao

et al. [7]. The MTJ implements dual MgO barriers, with a resulting critical switching current

density Jc0 of 1.0MA/cm2. This MTJ structure has a TMR of 70%, and dimensions of 120 nm x

240 nm. The STT-RAM Shared Memory is in the 32nm CMOS process.

The three operating regimes identified by Diao et al. [6] are considered for the write operation,

to determine switching current Jc, and switching time, or write latency. In the thermal activation

regime, the switching current density is Jc = 0.75×Jc0, while having a comparatively long switching

time tsw, i.e. tsw > 10ns. In the dynamic reversal regime, the switching current density is

Jc = 1.5× Jc0, while having a relatively shorter switching time tsw, i.e. 3ns < tsw < 10ns. In the

precessional switching regime, the switching current density is Jc = 5 × Jc0, while having a very

short switching time tsw, i.e. tsw < 3ns . In order to keep the switching current as low as possible

without having very long write latencies of tens of clock cycles, the MTJ is selected to operate in

the dynamic reversal switching regime, with Jc = 1.5MA/cm2 and switching time tsw = 5 ns. [6]

The MTJ’s access transistor should have width corresponding to the amount of switching current.
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To drive a current of 432µA, the access transistor’s size is determined as 6.1F × 3F = 18.3F 2, from

transistor current specifications in CACTI. The write energy per bit, calculated as writing current

times write time times supply voltage (Focus C Tables,ITRS [16]), is 2.06 pJ/bit.

For the read operation, the latency is taken to be the speed of SRAM read access. This is

consistent with the STT-RAM cell parameters assumed and with other studies performed [9] [12].

The sensing voltage for the read operation is chosen as 0.46V, to keep the probability of read disturb

around 10−20 with read current IRD = 0.2× Ic0. [10]

3.3 Modifications to GPGPU-Sim

The conventional shared memory in the GPU is implemented in SRAM. SRAM access times are

smaller than the clock cycle time (0.3ns [16]). Nevertheless, the clock cycle time, which is usually

more than SRAM access time, determines the completion of the access. In GPGPU-Sim shared

memory reads and writes are modeled to take one clock cycle to complete [21]. According to

NVIDIA, shared memory operations are the same latency as register file access if there are no bank

conflicts.

As the core clock cycle is 1.54ns, the delay for STT-RAM array access is taken to be 0.3ns for

read operations, and 5.3ns for write operations. As 5ns is MTJ switching time, and the array access

times are assumed to be 0.3ns. Giving a total of 5.3ns for write accesses. Therefore an STT-RAM

shared memory access time in terms of clock cycles is 1 clock cycle for read, and four clock cycles

for write operations. Implementing the shared memory in STT-RAM required write latencies of

more than one clock cycle to be incorporated in GPGPU-Sim. As the core clock cycle is 1.54ns,

the delay for STT-RAM array access is taken to be 0.3ns for read operations, and 5.3ns. As 5ns is

MTJ switching time, and the array access times are assumed to be 0.3ns. Giving a total of 5.3ns for

write operations. Therefore an STT-RAM shared memory access time in terms of clock cycles is 1

clock cycle for read, and four clock cycles for write operations. Implementing the shared memory in

STT-RAM required write latencies of more than one clock cycle to be incorporated in GPGPU-Sim.

To model the STT-RAM shared memory and obtain performance data for the chosen benchmarks,

we incorporated the latency of shared memory writes depending on relative difference between
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SRAM and STT-RAM latencies. A write to shared memory is not marked as completed until the

number of clock cycles corresponding to the STT-RAM write latency have passed.

3.3.1 Baseline

The baseline configuration chosen for the evaluation was a GPU with 30 SMs, 16kB SRAM shared

memory, 16 banks, 1 read-write port per bank, 16kB register file, 1024 active threads / SM, 1.3Ghz

shader (fast) clock. The execution units run on the fast clock, at 1.3GHz. The core clock which

drives the shared memory and register files runs at half the speed of the fast clock, at 650MHz.

This is a representation of the GT200 GPU architecture (e.g., GTX 285).

3.4 Benchmarks and their Characteristics

Performance of an application depends on the amount of parallelism it has, the processor speed and

architecture, and the amount and availability of resources. For highly parallel applications running

on a processor with hundreds of execution units, amount and availability of resources becomes an

important factor in determining performance. In a GPU, whether a block of threads gets scheduled

on an SM for execution is determined by its shared memory usage per block, register usage per

thread, number of threads per block, texture memory usage, constant memory usage, and how much

of these resources is available on a particular SM. For example, consider a block of 128 threads

using 8kB of shared memory. Though a maximum of 1024 threads can concurrently execute on an

SM, the number of blocks - each consisting of 128 threads - that can be executed in this case is

only two, as only 16kB shared memory capacity 1 is available on an SM. Hence, limitation of that

resource poses a bottleneck for performance of that application.

The following are the characteristics of which show a benchmark’s usage of resources relevant to

the study:

1. Shared memory usage - limits number of threads that can concurrently execute on an SM

2. Percentage of shared memory writes - as shared memory write latency is high, the greater the

shared memory writes, the shared memory bank is unavailable for a larger amount of time

116kB shared memory per SM on GT200 architecture. The Fermi architecture has up to 48kB shared memory
capacity per SM.
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3. Percentage of shared memory reads - when shared memory write latencies are several clock

cycles, having more shared memory accesses (reads or writes) results in loss of performance as

shared memory requests have to wait before a bank in use is freed

4. Register usage per thread - as the number of physical registers available is finite, high register

usage results stalls which affects performance

5. Number of threads - defines the throughput of the application

6. Percentage of memory instructions - global memory accesses are 400-600 clock cycles. Since

there are no caches, the more there are global memory accesses, the less the access latencies

can be overlapped with execution, posing a bottleneck for system performance

7. Runtime - time taken for the execution of a particular benchmark is presented for comparison

with other benchmarks’ runtimes, and ultimately leakage energy

As it can be seen from Figure 3.2 that different benchmarks exhibit different characteristics,

which shows the diversity of the benchmark set. Henceforth, all shared memory reads and writes

will be referred to as reads and writes, unless explicitly stated otherwise.
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Figure 3.2: Each benchmark is characterized by threads per block, shared memory size utilized per
block, registers used per thread, percentage of memory instructions, percentage of shared memory
reads and writes and runtime. Each characteristic is normalized against its average across all
benchmarks. The plots show that the set of benchmarks display diversity.
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SRAD

Structural grid applications involve the decomposition of the computation into highly spatial sub-

blocks such that any change to one element depends on its neighbors. SRAD (Speckle Reducing

Anisotropic Diffusion) is an example of a structural grid application. It is essentially a diffusion

algorithm for ultrasonic and radar imaging applications that uses partial differential equations. It

processes the images by identifying and removing locally correlated noise known as speckles without

destroying important image features. Since SRAD is a structural grid application with computations

over sets of neighboring pixels, it takes advantage of the on-chip shared memory.

Needleman-Wunsch

Needleman-Wunsch is a dynamic programming application which solves an optimization problem

by storing and reusing the results of its sub problem solutions. Needleman-Wunsch is a global

optimization method for the alignment of sequences typically used for protein and DNA sequences.

The pairs of sequences are organized in a 2D matrix and the algorithm is carried out in two steps.

In the first step the sequence values are populated in the matrix from top left to bottom right.

To get the optimal alignment, the pathway with the maximum score is obtained where a score is

the value of the maximum path ending at that cell. This benchmark exploits the advantages of

shared memory as each data element is used four times to calculate the values of four different

elements. Data elements on the same diagonal in a thread block are concurrently executed, while

thread blocks on the same diagonal within the entire matrix are executed in parallel.

MatrixMultiply

The implementation of matrix multiply uses shared memory blocking, where the size of the block is

256 elements.

NQueen

The N-Queen solver tackles a classic puzzle of placing N queens on a NxN chess board such that

no queen can capture another. It uses a simple backtracking algorithm to try to determine all

possible solutions. The search space implies that the execution time grows exponentially with N.

Our analysis shows that most of the computation is performed by a single thread, which explains

the low IPC.

StoreGPU

StoreGPU is a library that accelerates hashing-based primitives designed for middle-ware. The
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benchmark consists of a sliding-window implementation of the MD5 algorithm for an input file of

size 192KB. The off-chip memory traffic is minimized by using the fast shared memory.

3.5 Power and Area Evaluation with CACTI

To evaluate power and area of the STT-RAM shared memory array, we use the CACTI model with

parameters like access transistor current, cell area and sense voltage set to STT-RAM specific values.

CACTI is a tool which provides a model to determine cache and memory access time, area, leakage,

and dynamic power. It models delay, power and area of these major components: decoder, wordline,

bitline, sense amplifier, comparator, multiplexor, output driver, inter-bank wires for memory and

caches made of SRAM and DRAM arrays. The peripheral circuitry STT-RAM arrays use are similar

to those used in SRAM arrays (as shown in Figure 2.6. Hence, CACTI can be used to estimate

area, and approximate energy for STT-RAM arrays.

In CACTI the structure of the memory consists of banks, consisting of data and tag arrays,

which can be accessed simultaneously. The data or tag array is made up of sub-arrays which support

a single access. Four sub-arrays make a mat. CACTI performs an exhaustive search on different

number of subarrays i.e., different number of vertical and horizontal partitions of the data or tag

array.

The STT-RAM memory array read access starts when the address is inputed to decoder, then

wordline in data array is activated, the source line is kept low and the bitline is precharged to

voltage VRD not high enough to cause a read disturb, the bitline then discharges through the cell,

a reference bitline is simultaneously discharged using a reference cell, these are input to a sense

amplifier and sensing is performed. The same sequence of operations are performed for the write

access, except that after wordline is activated, to write a ’1’ the bitline is kept low and source line is

driven high, and to write a ’0’ the bitline is driven high while the source line is kept low.

In CACTI, the scratch-ram type memory which is direct-mapped and with no tag-array is used

to model shared memory. Power and area for various configurations of capacity, banks and ports

is obtained. For static or leakage power calculations, power consumed by peripheral circuitry and

access transistors of the STT-RAM cell that in the ’off’ state while reading or idling are taken
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Figure 3.3: Percentage of leakage energy, dynamic read and write energy of the benchmarks for an
SRAM shared memory.

into consideration. The MTJ does not leak any power. For dynamic power calculations, peripheral

circuity and access transistor power consumption is taken in consideration.

The baseline SRAM cell area is assumed to be 146F 2, while the STT-RAM cell area is assumed

to be 18.3F 2. STT-RAM access transistors with operating current 432µA is assumed. For the

interconnect, semi-global wires which are smaller and consume lesser power with more delay than

global wires are considered.
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Results

First we present performance results for all the benchmarks, then area and energy evaluations.

Finally, to visualize trade-offs, performance, area and energy results will be put together in the

context of various configurations of shared memory capacity, number of banks per shared memory,

number of ports per bank, frequency of shared memory access, shared memory area and static and

dynamic energy.

The list of configurations: abbreviations and full-forms used is presented in Table 4.1. All SMs

contains one shared memory array, and each array consists of several banks, and each of those

banks can have 1 or more ports. For the sake of simplicity, henceforth, reference to shared memory

capacity pertains to one SM, number of banks pertains to one shared memory array, and number of

ports pertains to one bank.

Abbreviation Full-form
16kB 16b 1p 16kB shared memory capacity per SM,

16 banks per shared memory, 1 port per bank
16kB 16b 2p 16kB shared memory capacity per SM,

16 banks per shared memory, 2 port per bank
16kB 32b 1p 16kB shared memory capacity per SM,

32 banks per shared memory, 1 port per bank
64kB 16b 1p 64kB shared memory capacity per SM,

16 banks per shared memory, 1 port per bank
64kB 16b 2p 64kB shared memory capacity per SM,

16 banks per shared memory, 2 port per bank

Table 4.1: List of abbreviations and their full forms.

34
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4.1 Performance

STT-RAM access latency varies with the design parameters of the MTJ. Design parameters of the

MTJ include structural properties such as the thickness and area of the free layer, and material

properties such as the saturation magnetization and spin transfer efficiency, offering a variety of

design possibilities. These designs usually offer substantial power savings, at the cost of performance.

These issues are studied in the context of GPUs, by implementing the fast shared memory in

STT-RAM. To see the trend of the latency’s effect on performance, shared memory access latency

is varied from 2-40 times relative to SRAM as speedup was measured across all the benchmarks

via simulation the results are shown in Figure 4.1 through Figure 4.5. SRAD’s performance is

degraded by less than 1% up to 59%.NW’s performance is degraded by less than 1%-7%. MatMul’s

performance is degraded by less than 1% up to 57%. NQU’s performance is degraded by less than

1% up to 48%. STO’s performance is degraded by less than 1% up to 59%. For STT-RAM write

latency 4 times SRAM write latency (4 clock cycles). SRAD experienced a degradation of 2%, NW

1%, MatMul 16%, NQU 1%, and STO 2%.These results related to each benchmark’s number of

shared memory instructions per set of active warps. The greater the number of shared memory

instructions in a benchmark’s set of active warps, the more vulnerable it is to shared memory access

latency. The reason the correspondence is not exact is due to the fine-grained multithreading of all

the active warps on an SM. Every issue cycle, the warp scheduler selects ready warps and issues

them to the SPs in ’loose’ round robin policy [3]. Warps which are non-ready, like those with threads

waiting on long memory accesses, are taken out of the scheduling pool till the access is completed,

enabling the SM to hide long latency operations and provide throughput.

From this point onwards all evaluations assume STT-RAM write latency equal to 4 clock cycles,

which is 4 times SRAM write latency. STT-RAM read latency is assumed to be 1 clock cycle, which

is the same as SRAM read latency.
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Figure 4.1: Speedup of benchmark SRAD relative to baseline when (a) shared memory latency
is varied; then keeping latency constant at 4 clock cycles (b) shared memory capacity is varied
(c) number of banks per shared memory (or SM) is varied keeping capacity constant at 16kB (d)
number of ports per bank is varied while keeping banks at 16.
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Figure 4.2: Speedup of benchmark NW relative to baseline when (a) shared memory latency is
varied; and keeping latency constant at 4x (b) number of banks per shared memory (or SM) is
varied keeping capacity constant at 16kB (d) number of ports per bank is varied while keeping banks
at 16 and capacity at 16kB. The number of threads in NW are very low (96 per SM). Implying a
low frequency
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Figure 4.3: Speedup of benchmark MatMul relative to baseline when (a) shared memory latency
is varied; and keeping latency constant at 4x (b) shared memory capacity is varied (c) number of
banks per shared memory (or SM) is varied keeping capacity constant at 16kB (d) number of ports
per bank is varied while keeping banks at 16 and capacity at 16kB.
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Figure 4.4: Speedup of benchmark NQU relative to baseline when (a) shared memory latency is
varied; and keeping latency constant at 4x (b) shared memory capacity is varied (c) number of
banks per shared memory (or SM) is varied keeping capacity constant at 16kB (d) number of ports
per bank is varied while keeping banks at 16.
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Figure 4.5: Speedup of benchmark STO relative to baseline when (a) shared memory latency is
varied; and keeping latency constant at 4× (b) shared memory capacity is varied (c) number of
banks per shared memory (or SM) is varied keeping capacity constant at 16kB (d) number of ports
per bank is varied while keeping banks at 16.
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4.2 Theoretical analysis with performance equation

To theoretically analyze performance of the benchmarks, we developed the equations shown below.

Equation (4.1) and Equation (4.2) identify execution time as the sum of both the runtime of

the benchmarks and the clock cycle time multiplied by memory stall cycles, and are taken from

Hennessey and Patterson [13].

Memory stalls are caused by different levels of the memory hierarchy. As shown below in

Equation (4.3), the number of memory stall cycles for each memory of the hierarchy is a product

of the number of memory accesses per instruction times access latency.

Execution T imeSM =

= (SM Clock Cycles+Memory Stall Cycles)

× Clock Cycle T ime (4.1)

Execution T imeSM =

= InstructionCount× (Clock Per Instructionruntime

+
Memory Stall Clock Cycles

Instruction
)

× Clock Cycle T ime (4.2)

Execution T imeSM =

= InstructionCount× (CPIruntime

+
GlobalMemory Accesses

Instruction

×GlobalMemory AccessLatency

+
SharedMemory Accesses

Instruction

× SharedMemory AccessLatency)

× Clock Cycle T ime (4.3)
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The SM performs loose-round-robin scheduling, somewhat like an out-of-order processor. Hence,

there will be overlapping of execution and memory access. Therefore, only Non-overlapped Access

Latency contributes to the total execution time, as shown in Equation (4.4).

Execution T imeSM =

= InstructionCount× (CPIruntime

+
GlobalMemory Accesses

Instruction

×GlobalMemory Non−overlappedAccessLatency

+
SharedMemory Accesses

Instruction

× SharedMemory Non−overlappedAccessLatency)

× Clock Cycle T ime (4.4)

The Non-overlapped Access Latency can be said to be the access penalty times the non-overlapped

fraction of the memory access. The greater the non-overlap of accesses to a memory, the greater the

corresponding penalty incurred, as shown in Equation (4.5).

ExecutionT imeSM =

= InstructionCount× (CPIruntime

+
GlobalMemory Accesses

Instruction

×GlobalMemory AccessLatency

×GlobalMemory AccessNon−overlapFraction

+
SharedMemory Accesses

Instruction

× SharedMemory AccessLatency

× SharedMemory AccessNon−overlapFraction)

× Clock Cycle T ime (4.5)

The non-overlapped fraction of shared memory accesses increases as the latency of shared memory

write increases. This is because shared memory is occupied for a longer time for writes, and
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Figure 4.6: Dependence of Theoretical and Experimental Speedup on Shared Memory Write Latency

other shared memory access cannot take place. Although non-shared-memory instructions can

be executed in parallel with shared memory accesses, the data-dependency between instructions

can start limiting this parallelism. Hence, increasing the write latency increases the degree of

non-overlap; or, non− overlapped fraction ∝ sharedmemory write latency.

In Execution Time with SRAM Shared Memory, as shown in Equation (4.6), stalls due to shared

memory were not accounted for, as access to shared memory is as fast as register access, when there

are no bank conflicts. Accounting for bank conflicts had less than 1% impact on execution time.

Figure 4.6 compares the average simulated speedup across all benchmarks with the theoretical

speedup calculated as shown in Equation (4.6).

Speedup =
Execution T imewithSRAM SharedMemory

Execution T imewithSTT−RAM SharedMemory
(4.6)

In results shown in Figure 4.6, the average fraction of global and shared memory accesses across

all benchmarks is 23%, and 18%, respectively. The latency of global memory access is taken to be
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Figure 4.7: Runtimes for various configurations.

600 clock cycles [21], while latency of shared memory access is varied from 1 to 40 clock cycles . The

percentage of overlap of global memory accesses is taken to be 70% for both SRAM and STT-RAM

shared memory. Whereas, the percentage of overlap of shared memory access in SRAM shared

memory is taken to be 99%, as shared memory access is as fast as register access except when bank

conflicts occur. Three values of overlap of STT-RAM shared memory access are considered 80%,

85%, 90%. It can be seen in Figure 4.6, that the degree of overlap is 80% from 1× to around 13×

shared memory write latency, 85% from 14× to 29×, and 90% 30× .

4.2.1 Exploring Various Configurations

To evaluate performance, energy and area trade-offs various configurations of STT-RAM shared

memory are evaluated. The runtimes of all benchmarks for the chosen configurations is presented in

Figure 4.7.
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Figure 4.8: Runtimes for various configurations normalized to SRAM.

4.3 Area

The area of shared memory, implemented in STT-RAM, was determined using CACTI, as described

in the methodology section. The area of STT-RAM memory with 16kB 16b 1p configuration is

0.57x the area of the baseline SRAM. Adding one extra port per bank resulted in 2.12x the area

of the baseline, while adding 16 extra banks per shared memory resulted in only 0.86x area of

baseline. Increasing the capacity by four times increased the area to 0.98x of the baseline, making

the STT-RAM shared memory four times denser than the baseline. Adding an extra port per bank

to the above configuration resulted in 3.22x baseline area.

A steeper rise in area is encountered when the number of ports is increased than when capacity

is increased for the same number of banks, because adding ports involves laying out new bitlines and

associated peripheral circuitry, the area increases substantially as ports are increased. Increasing the

number of banks for the same capacity involves adding more block decoders and interconnect; the

resulting area increase is around 27% going from the 16kB 16b 1p to the 16kB 32b 1p configuration.
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Out of the five configurations explored, three of them — 16kB 16b 1p, 16kB 32b 1p, and 64kB 16b

1p — have areas within the budget set by the baseline SRAM 16kB 16b 1p configuration.

4.4 Energy

The energy consumption for STT-RAM shared memory was obtained using CACTI, as mentioned

in the methodology section. Figure 4.9 and 4.10 show the energy, area and capacity results for

STT-RAM shared memory. The values obtained are normalized to the SRAM baseline, which is 16

kB of shared memory, 16 banks and 1 port. SRAM values are represented by a horizontal black line

at y=1 in Figure 4.9 and 4.10.

Figure 4.9(a) shows results for 16kB 16b and 1p of STT-RAM shared memory. Using STT-RAM

for this configuration shared results in only 35% leakage power, 45% read energy, 60% area and

425% write energy, relative to SRAM. Introducing an extra port leads to substantial increase in

leakage power, dynamic read and write energies, and area, as seen in Figure 4.9(b). This is because

adding a port involves adding peripheral circuitry for the extra bitlines, and an access transistor per

port of a memory cell. The overhead, in terms of energy or area, for adding 16 extra banks is just a

few percent more compared to configuration shown in Figure 4.9(a). Adding a bank involves adding

peripheral circuitry like decoders for each bank, whereas adding ports involves adding peripheral

circuitry per bitline.

Figure 4.10(a) shows results for 64kB 16b 1p of STT-RAM shared memory. For this configuration,

leakage power is 80%, read energy is 50%, write energy is 460%, while area is the same as baseline

SRAM, for a factor of four increase in capacity. From Figure 4.10(b) we can see that adding ports

substantially increases area and energy due to the extra peripheral circuitry.

The total energy consumed by each benchmark for various configurations of shared memory

is shown in Figure 4.11. If we assume a total energy and area budget set by the baseline SRAM,

we can see that configurations 16kB 16b 1p, 16kB 32b 1p, and 64kB 16b 1p fall within or just

around it, for benchmarks SRAD, NW and MM. These benchmarks have a high ratio of read to

write accesses, and the write energy percentage is 10% or less of the total energy consumed by each

application. Hence, the high write energy due to STT-RAM is compensated by lowered leakage and

read energies. From SRAM data we know that STO and NQU have as many reads as writes, with
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Figure 4.9: Configurations of 16kB shared memory capacity per SM: (a) 16 banks per SM and 1
port per bank, (b) 16 banks per SM and 2 ports per bank, (c) 32 banks per SM and 1 port per bank.
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Figure 4.10: Configurations of 64kB shared memory capacity per SM: (a) 16 banks per SM and 1
port per bank, (b) 16 banks per SM and 2 ports per bank.
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Figure 4.11: Total energy consumption of various configurations for all the benchmarks.

low leakage energy. Hence, for these benchmarks, the high write energy of STT-RAM results in four

to six times higher total energy consumption for any configuration.

4.4.1 Breakdown of Total Energy for the Configurations

The following section discusses leakage power, read and write energy for each of the benchmarks.

The benchmarks’ energy consumptions reflect their characteristics. Leakage energy depends on the

runtime of the benchmark, while read and write energies depend on the number of reads and writes.

Figure 4.13 shows the energy consumption of SRAD. Leakage energy consumption of SRAD for

16kB 16b 1p configuration is 0.38x of the baseline, while read and write energies are 0.58x and 4.2x

of baseline. Adding an extra port results in 1.27x leakage energy, 1.49x read energy and 5.43x write

energy compared to the baseline. With 16 extra banks, for 16kB 32b 1p configuration, leakage is

0.86x of baseline. For the 64kB 16b 1p configuration, leakage energy is 0.82x with read and write

energies of 0.56x and 4.65x of baseline. Adding an extra port to the above configuration resulted in

2.18x leakage, 1.81x read and 6.13x write energies relative to the baseline. The number of reads in

SRAD is nearly 7 times the number of writes, hence read energy is a biggest component of the total

energy consumption of SRAD. However, the write energy is nearly equal to the read energy for 16kB
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Figure 4.12: Total energy consumption of various configurations for all the benchmarks, normalized
to SRAM.

16b 1p, 16kB 32b 1p, and 64kB 16b 1p, yet resulting in total energy consumption of 0.89x, 1.04x,

and 1.08x of the baseline, which can be said to be around the energy budget set by the baseline

SRAM. The other two configurations, 16kB 16b 2p and 64kB 16b 2p, consume around 2x the energy

of the baseline, mainly due to the extra port.

The energy breakdown of benchmark NW for different configurations is shown in Figure 4.14.

NW has the longest runtime among the benchmarks and thus consumes the most leakage energy.

The number of reads and writes is fairly low (Figure 3.2), so the respective energies are not increased

as substantially as in other benchmarks. By reducing the leakage energy and read energy, the total

energy of the 16kB 16b 1p configuration is 0.93x relative to the baseline SRAM. Adding 16 extra

banks results in 1.22x of the total energy of the baseline. Increasing the capacity by a factor of four

in configuration 64kB 16b 1p increases the total energy consumption by 1.26x. While increasing the

ports to 2 per bank, increases the total energy by 1.9x and 2.59x for 16kB 16b 2p and 64kB 16b 2p,

respectively, relative to the baseline.

Figure 4.15 shows the energy breakdown for the MM benchmark. As MM is a benchmark that

runs for a shorter time compared to the average benchmark runtime 3.2, the leakage energy is also

relatively less. MM’s number of reads are 16 times the number of writes. Therefore, its dynamic
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Figure 4.13: Leakage energy (LE), dynamic read energy (DRE) and dynamic write energy (DWE)
of various configurations for the SRAD benchmark.
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Figure 4.14: Leakage energy (LE), dynamic read energy (DRE) and dynamic write energy (DWE)
of various configurations for the NW benchmark.
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Figure 4.15: Leakage energy (LE), dynamic read energy (DRE) and dynamic write energy (DWE)
of various configurations for the MatMul(MM) benchmark.

energy consumption is dominated by read energy. In the 16kB 16b 1p, 16kB 32b 1p and 64kB

16b 1p configurations, although write energy is ∼4x higher for STT-RAM, leakage energy and

ready energy decrease to consume less total energy relative to the baseline. For 16kB 16b 2p and

64kB 16b 2p, increasing ports to two per bank increases write energy by 30%, while read energy is

increased three times compared to the single port configurations. This results in high read energy,

and therefore high total energy for these configurations.

Figure 4.16 shows the energy breakdown for the NQU benchmark. While having a comparatively

short runtime, NQU also has a fairly low number of reads and writes. In the total energy breakdown

of NQU for the baseline SRAM (3.3), it can be seen that leakage, read and write energies are almost

the same. Though leakage and read energy are decreased in the single port configurations 16kB

16b 1p, 16kB 32b 1p and 64kB 16b 1p, the 4-5x increase in write energy increases the total energy

consumption of NQU by 55% - 87% compared to the baseline.

The STO benchmark’s total energy consumption breakdown is presented in Figure 4.17. STO

has the highest number of writes (four times the average) compared to other benchmarks (Figure
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Figure 4.16: Leakage energy (LE), dynamic read energy (DRE) and dynamic write energy (DWE)
of various configurations for the NQU benchmark.

3.2). STO has comparatively long runtimes too, although the energy consumed by writes dominates

the total energy consumption even for the SRAM shared memory. Although leakage and read energy

were decreased for the single port configurations, total energy consumption of STO for 16kB 16b 1p,

16kB 32b 1p and 64kB 16b 1p is 2.66x, 2.69x and 2.94x of the baseline, respectively. Adding an

extra port per bank further increases the energy to 3.7x and 4.33x of the baseline.
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Figure 4.17: Leakage energy (LE), dynamic read energy (DRE) and dynamic write energy (DWE)
of various configurations for the STO benchmark.
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Chapter 5

Conclusion

In this thesis we have explored the use of STT-RAM for shared memory in GPUs, to study the

impact of its latency, area and energy consumption. An equation was developed to estimate the

performance of GPUs as a function of shared memory latency. Since the performance depends both

on how much memory access and instruction execution overlap,and on the memory access latency,

it was found that shared memory latencies which are up to 4 times slower for write access, resulted

in only 2% percent loss of performance on average.

Five configurations of STT-RAM shared memory differing in capacity, number of banks per

shared memory, and number of ports per bank were studied in detail. Except for the configuration

with 16 kB capacity, 16 banks, and 1 port, which takes a hit in performance of 2%-16%, all other

configurations resulted in higher performance than the baseline. More specifically, 1% to 21% more

than the performance of the baseline SRAM system. All the STT-RAM configurations with a single

port per bank occupy a smaller area than the baseline SRAM. The configurations with two ports

per bank have two to three times the area of baseline.

The total energy consumed by benchmarks SRAD, NW and MM is less than the baseline, for

one or more configurations. STO is write energy dominated, and STT-RAM’s high write energy

increases the total energy consumption of the benchmark. NQU also suffers from a large number of

writes, hence the increase in write energy results in an increase in total energy consumed by the

benchmark.

Because of the higher density of STT-RAM, for three out of five benchmarks it is possible to

increase the capacity or number of banks to obtain a higher performance in spite of the higher access

57
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latency, within the area and energy budgets set by the baseline SRAM shared memory system.For

the more write-bound benchmarks, the substantial increase in write energy results in higher total

energy consumption. Having two ports per bank increases the area and energy of shared memory

significantly, whereas the same performance can be obtained by increasing the number of banks and

keeping energy consumption and area relatively low.

Compared to earlier works on non-volatile memory in GPUs, more specifically STT-RAM,

this work evaluates using STT-RAM based shared memory for performance, energy and area,

and identifies favorable configurations. New workloads can be written, or existing ones can be

modified, to make use of the increase in shared memory capacity with STT-RAM. The benchmarks

were evaluated without any modifications to them, as it was beyond the scope of this work. For

configurations with 16kB capacity 16 banks and 1 port per bank, and 16kB capacity 32 banks and 1

port per bank, the decrease in area was not large enough to study the effects of adding more SMs

to the GPU.

For the reasons stated above, STT-RAM is a viable option for implementing the GPU shared

memory. The area savings with STT-RAM shared memory area up to 50%. The high write energy

of STT-RAM needs to be addressed by development of MTJs with lower switching current densities,

even if it means higher switching time. Incurring a performance hit is acceptable, as the performance

lost can be recovered by increasing the number of banks or increasing capacity while staying around

energy and area budgets specified by the SRAM baseline system. Therefore, we were able to verify

that GPUs are effective for hiding long access latencies. And that it possible to save up to 17% total

energy by taking a performance hit, or stay around a few percent of energy budget and increase

performance.
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