
Nondeterministic Finite Automata in Hardware - the Case
of the Levenshtein Automaton

Tommy Tracy II, Mircea Stan, Nathan Brunelle, Jack Wadden, Ke Wang, Kevin
Skadron, Gabriel Robins

University of Virginia
Charlottesville, VA

[tjt7a, mrs8n, njb2b, jpw8bd, kw5na, ks7h, gr3e]@virginia.edu

ABSTRACT
The Levenshtein Nondeterministic Finite state Automaton
(NFA) recognizes input strings within a set edit distance of
a configured pattern in linear time. This automaton can
be pipelined to recognize all substrings of an input text in
linear time with additional use of nondeterminism. In gen-
eral, von Neumann hardware cannot directly execute NFAs
without significant time or space overhead. A von Neumann
simulation of the Levenshtein automaton incurs exponential
run time overhead in the general case. A common technique
to avoid the simulation overhead is to convert the pipelined
NFA to a DFA, but at the expense of heavy pre-computation
and high space overhead.

In this paper, we introduce a novel technique for execut-
ing a pipelined Levenshtein NFA using Micron’s Automata
Processor (AP), avoiding the run time and space overheads
associated with CPU and GPU implementations. We show
that run time remains linear with the input while the space
requirement of the automaton becomes linear in the product
of the configured pattern length and edit distance. These
properties allow the AP to execute large instances of the
Levenshtein NFA or many small instances in parallel thus
making the automaton a viable building block for future
approximate string applications on the AP.

Keywords
Automata Processor, Levenshtein Automaton, Nondetermin-
istic Finite Automata, Approximate String Matching

1. INTRODUCTION
The pipelined Levenshtein NFA AL(P, d) recognizes strings
that approximately match a search string pattern P . The
closeness of the match is measured by the edit distance d
between the input string and P . This edit distance, also
known as the Levenshtein distance[2], is determined by the
minimum number of primitive character operations required
to convert the input string to P . The primitive character

operations considered are:

Insertions : waoo→ wahoo

Deletions : wahoo→ whoo

Substitutions : wahoo→ yahoo

(1)

Approximate string matching is used in an array of appli-
cation domains including bioinformatics, e.g. motif search
and alignment, and text retrieval, e.g. spell-checking and
search engine applications. Utilizing a Levenshtein automa-
ton is a method of determining approximate string matches
without explicitly calculating the edit distance between the
input string and the search string pattern.

AL(P, d) accepts inputs within edit distance d of P in linear
time with the input. AL(P, d) represents incurred errors and
matches with state transitions. When there is an error, the
type of error is ambiguous; choosing which error results in
the minimum edit distance is made easier with nondetermin-
ism. Each accept state represents a different edit distance
between the input and P . The state representing the mini-
mal edit distance nondeterministicaly reachable on the input
gives its edit distance from the pattern.

AL(P, d) as an NFA is fairly straightforward to pipeline.
Other approximate string matching algorithms have to first
split the input into k-mers before calculating the edit dis-
tance between the k-mers and the search pattern. AL(P, d)
can check all substrings of the input for a near-match in
linear time without the need for hashing or indexing!

Micron’s Automata Processor (AP) is an NFA engine, which
allows software developers to execute NFAs in hardware.
This hardware can simulate NFAs as wide as can fit on the
hardware, and doesn’t have the same scalability limitations
as von Neumann simulation techniques like bit wise paral-
lelism or the associated space explosion incurred by a pow-
erset construction [5]. The ability to execute wide nondeter-
minsm without the associated computation and space over-
head makes the AP a promising platform for the pipelined
Levenshtein NFA.

In this paper we present our novel technique for executing
the pipelined Levenshtein NFA on Micron’s Automata Pro-
cessor (AP). The AP can execute many Levenshtein NFAs
with differing search string patterns concurrently processing
the same input. The rest of the paper will introduce the
Levenshtein NFA, the Automata Processor, the technique

In ASBD'15



5.0

5.1

*

5.2

*

0.0 1.0
w

0.1

*

1.1

* � *

2.0
a

2.1

* �

w

0.2

*

1.2

* � *

a

2.2

* �

w a

*

3.0
h

3.1

* �

*

h

3.2

* �

h

*

4.0
o

4.1

* �

*

o

4.2

* �

o

o

* �*

o

* �*

o

Figure 1: AL(wahoo, 2)

we developed for executing the Levenshtein automaton on
the AP efficiently, results, and finally application-dependent
modifications that can be made to the design.

2. THE LEVENSHTEIN AUTOMATON
The Levenshtein automaton [7] is a NFA configured for a
search string pattern P and max edit distance d , that rec-
ognizes the set of strings that are within edit distance d of
P , meaning the input string can be transformed into P by
at most d single-character operations: insertions, deletions,
and substitutions.

Figure 1 is of a Levenshtein NFA for the search string pat-
tern P=”wahoo” and edit distance d=2. The automaton
encodes the running total of single-character errors in the
row index. If the current input symbol fails to match on the
current search string pattern symbol, the automaton shifts
to a state that is one row upward, indicating a single sym-
bol error. As more errors occur, the active automaton states
will shift further upward until there are no more rows. The
Automaton encodes the current match index of the search
string pattern with the column index. For example, the
first match transitions from the 1st to the 2nd column of
Figure 1 represent a match with the first character of the
match string, ′w′, the second set of transitions for the sec-
ond character ′a′.

Each of the states in Figure 1 has a name that corresponds
to the state’s match index value and the number of errors
incurred so far in the automaton′s reading of the input. At
start state 0.0, the automaton has made no progress towards
the acceptance states. By matching on the first character
′w′, the state 1.0 is activated. If the input string starts
with a non-matching character, it will transition up one row,
indicating an error on the first character. Finally, once all
symbols of the the search string pattern have been accounted
for with matches or edits, the last state of each row is an
acceptance state. Activating an acceptance state indicates
that the input is within the maximum allowed d of P and
also provides the edit distance between input and P based
on the row the acceptance state resides. The Automaton
handles all state transitions with the following rules:

1. All match transitions, are represented as a transition in
the rightward direction. Given the example automaton, the
input string ’wahoo’ would take the following path to an ac-
cept state by only traversing matching transitions:

0.0(start) → 1.0 → 2.0 → 3.0 → 4.0 → 5.0(accept)

2. Any character insertions, are represented as automaton
transitions in the upward direction. As an example, the fol-
lowing path represents the acceptance of the string ’wahoeo’,
where there is a single insertion after the first ’o’ in ’wahoo’:

0.0(start)→ 1.0→ 2.0→ 3.0→ 4.0→ 4.1(insert)→ 5.1(ac-
cept)

3. Any substitutions, where a character in P is replaced
by another symbol in the input, are represented as a di-
agonal ’*’ transition. Our example Levenshtein automaton
would accept the string ’waeoo’, where ’e’ replaces ’h’ using
the following path:

0.0(start)→ 1.0→ 2.0→ 3.1(substitution)→ 4.1→ 5.1(ac-
cept)

4. Finally, any deletions are represented in the Levenshtein
automaton with ε-transitions. These ε-transitions are used
in NFAs to represent ’free’ transitions, where a transition
is made without the need to consume an input symbol. As
an example, the Levenshtein automaton accepts the string
’wah’, because it is 2 deletions from ’wahoo’. The automa-
ton would use the following path to accept this string:

0.0(start)→ 1.0→ 2.0→ 3.0→ 4.1(delete)→ 5.2(delete)(accept)

3. THE AUTOMATA PROCESSOR
Micron’s Automata Processor (AP) is a re-configurable non-
von Neumann MISD processor that can run multiple Non-
deterministic Finite Automata (NFA) concurrently on the
same input stream. The automata are designed in a graph-
ical environment called the AP Workbench that generates
an XML design file in the Automata Network Markup Lan-
guage (ANML). This file is then compiled into a bitstream
that can be processed by the AP hardware[1]. Alternatively,
an AP design can be generated in ANML by a script; we
chose this approach with our solution.

Automata on the AP are composed of a connected, directed
network of State Transition Elements (STEs). These STEs
are activated when the STEs are enabled by a neighboring
STE and the input matches the STE’s assigned 8-bit symbol
class. STEs that represent a starting state are called Start
STEs; those that represent accept states are called Report-
ing STEs. In order to simplify automata designs, the APs
design tools include the macro construct. Developers can
design small, parameterizable automata as macros [8]. We
used this construct to create a set of macros and simplify
the design.

Micron’s current generation AP, called the D480, can runs
at an input symbol rate of 133 MHz, with each chip support-
ing two half-cores. Each half-core contains 96 blocks of 256
STEs each. In total, each D480 chip contains 49,152 STEs,
and each AP PCIe board can contain up to 48 AP chips. [8]

4. LEVENSHTEIN ON THE AP
The Mealy-type NFA representation of the Levenshtein au-
tomaton cannot be executed on the AP in its current form.
The architecture requires that the automaton be a Moore-



Figure 2: Moore-type Levenshtein Implimentation
without ε-transitions

type machine, where transitions are triggered on state val-
ues. In addition, the AP cannot recognize ε-transitions
(those which consume no input). These limitations required
us to develop a mapping technique for converting the Mealy-
type Levenshtein automaton with ε-transitions to an NFA
that the AP can execute. In this section we present our tech-
nique that we have generated a script for and the overhead
that we incur to fulfill it. We also introduce a set of macros
that our script uses to simplify the design of a Levenshtein
automaton.

4.1 Mealy vs. Moore
A Moore-type state machine [4] is a finite-state machine with
triggers on the machines′s states. A transition is taken from
state A to state B, if state A is active and if state B is
designated to trigger on the input symbol. A Mealy-type
state machine [3] is a finite-state machine with triggers on
the transitions. Instead of having a separate state for each
possible input symbol, a single Mealy-type state could have
multiple transitions into it with differing input triggers. This
allows a Mealy-type Machine to be more compact than a
Moore-type Machine. Figure 1 is a Mealy-type machine di-
agram.

The Automata Processor′s architecture can only realize Moore-
type Machine designs. We converted the Levenshtein au-
tomaton to a Moore-type Machine by creating super states
which we realize as macros as shown in Table 1. Each STE
in a super state macro represents both possible input sym-
bols to that state: a search string symbol match, or an error,
represented with ’*’. The ’*’ character represents all sym-
bols in the APs alphabet, so these transitions are also taken
in the case of a match. This is not a problem because the re-
sulting active set explosion isn’t a complication for the AP’s
architecture. Each super state macro has two input and two
output ports connected to their respective STEs. In addi-
tion, all outgoing transitions from the original Mealy-type
state must be duplicated for each STE in the super state;
therefore each output port will have identical transitions.

Figure 2 shows the resulting super states after converting
the Mealy-type machine to a Moore-type machine. The

bottom-most row and left-most column do not contain su-
per states, because they only have one transition into each of
these states. All other states are represented with two STEs
with identical outgoing transitions. This figure only contains
match, insertion, and substitution transitions to simplify the
diagram. ε-transitions cannot be represented as STEs with
ε-match symbols; we will address ε-transitions next.

4.2 Epsilon-Transitions
Another limitation of the AP is the lack of support for ε-
transitions. Many Mealy-type NFAs use the ε-transition to
reduce the complexity of a design. We will present a series
of macros to solve this problem.

For internal transitions, we can handle ε-transitions by...
Roy and Aluru[6] handle ε-transitions by connecting all states
that have outgoing ε-transitions to the states that have the
associated incoming ε-transition. This method works for in-
ternal states, but does not account for ε-transitions from
starting states or ε-transitions to accept states. We broke
the Leavenshtein automaton’s ε-transitions into three cate-
gories: starting state ε-transitions, accept state ε-transitions,
and internal ε-transitions.

We classified all states that could be reached with ε-transitions
from the starting state 0.0 as starting super states. Those
states that were reachable and had a match transition were
called late-start match super states to indicate that they
serve as starting states that match on P , but after one or
more deletions. We created a macro called the Late Start
Match Block that represents both states in the super state,
where the match STE is a starting STE. In the case of start-
ing with an error other than a deletion, we introduced a
Starting Error Block macro. In this macro we have the er-
ror state serve as the starting STE. Because this error incurs
a row penalty, the first Starting Error Block macro is on the
second row.

To account for deletions from the end of the search string
pattern, we created Simple Error Report Blocks. These
blocks report on a symbol or error match, and represent
the acceptance of the input string. In the case of Figure 1,
only the last states in each row served as accept states. This
was fine for a machine with ε-transitions, because deletions
were accounted for by these transitions from lower rows. To
have the same functionality without ε-transitions we had
to collapse the ε-transitions to form report diagonals. Re-
port diagonals represent all possible deletions from the end
of the Search String Pattern. For this reason, our resulting
AP executable Levenshtein automaton had several more re-
port elements to account for those diagonals; one for each
state that was within ε-transitions from an accept state in
the original design.

Finally, the last case of ε-transitions that we needed to han-
dle was internal ε-transitions that originated from states
that were neither starting states, nor accept states. To do
this, we devised an iterative algorithm to account for all
deletions possible from each given state. For example, to
account for all deletions from the bottom-left most state in
Figure 2 we used transitions that skipped one column and
matched on the second row to represent a deletion and a
match. We then created a transition from that same state



to one column over and an error match on the 3rd row to
account for a deletion and a mismatch. The algorithm then
continues for larger automata to include multiple deletions
followed by a match or error. It should be noted that we
did not account for deletions followed by insertions, because
that is equivalent to a single substitution.

4.3 Construction Algorithm
In this section we present the technique we used to con-
struct Figure 3, a Moore-type Levenshtein NFA without ε-
transitions to execute on the AP given an arbitrary search
string pattern P and an edit distance d . The one limitation
that our algorithm imposes is that the d be less than the
length of P . Intuitively, this seams a reasonable stipulation
because if d were the same as the length of P , the empty
string would be an acceptable input to the Automaton, ef-
fectively producing a useless machine. We break this section
into steps to clarify each component of the algorithm.

1. In this step, we construct the bottom row of the Lev-
enshtein automaton. The first block in the bottom row is
the Starting Match Block, a starting macro that matches on
the first character of P . This is then connected to a chain
of Simple Match Blocks until d blocks from the end of the
row. All blocks after this index serve as Reporting Match
Blocks because they represent early Reports due to poten-
tial deletions at the end of an otherwise perfect matching
input pattern. As an example, the string ”wah” would be
accepted by the Automaton because it is two deletions from
”wahoo”. ”waho” and ”wahoo” would also be accepted on the
bottom-most row of the automaton.

2. These Reporting Match Blocks represent the first block
on the deletion diagonals (reachable by ε-transitions). As
the row index increases, representing more cumulative er-
rors, fewer deletions can be accounted for at the end of the
search string pattern to be within d, therefore reducing the
number of Reporting Match Blocks until the top-most row
only has a single Reporting Match Block. The right-most
Reporting Match Block on the bottom row represents an
edit distance of 0, the diagonal originating at the 2nd to
last STE from the end represents an edit distance of 1, and
so on. We can use this information to assign edit distance
values to each of the Reporting Match Blocks.

3. The Late Start Match Blocks are placed in a diagonal
from the Starting Match Block. These blocks represent early
deletions, where the first 1 to d characters of the Match
String are deleted. As expected, as the number of early
deletions increases, so does the row index, for errors, and
the column count, for the matching P index.

4. The Simple Starting Error Block is placed one column be-
fore and one row up from the Starting Match Block. If there
are errant insertions before P , it is necessary to account for
these with this block. This block is then connected to a ver-
tical chain of Error Match STEs that go up to the last row.
This column represents all possible insertions allowed before
the Match String.

5. Next, the Starting Error Block is placed on the next
row above the Start Match Block. This block represents
the first mismatching character (replacement of ’W’) in the

input string. To account for the possibility of deletions and
then mismatches, this block also has a diagonal of Starting
Error Blocks to account for these deletions in the upper-right
direction.

6. Finally, the rest of the blocks in the design are Simple
Error Blocks. These blocks neither serve as starting nodes
nor reporting nodes.

The blocks are connected in the same way as the Mealy-
type design for all but ε-transitions; we used the previously
discussed start STEs, early reporting STEs, and iterative
deletion transitions to account for these transitions. To au-
tomate this algorithm, we developed a script for generating
an AP-compatible Levenshtein NFA given any input string
match pattern and max edit distance. We made all starting
STEs in the design ’start on all’ STEs. This meant that
every starting STE would be active for all symbols in this
input; this resulted in a pipelined Levenshtein NFA that de-
termines approximate string matches with all substrings of
the input, but still in linear time!

5. SCALABILITY
Because the Automata processor can run multiple NFAs con-
currently on the same input, scalability is important when
considering the performance of the AP. It is important that
the number of STEs required is minimized so that the AP
hardware can execute as many automata concurrently as
possible. In this section we will determine the number of
STEs required to realize a Levenshtein automaton, and the
number of Levenshtein automata we can execute at one time
on the AP.

d represents the maximum edit distance.
L represents the length of the match string pattern P .

STEtotal = d + L + (2 ∗ L ∗ d)

STEreporting = (d + 1)2

These equations indicate that the number of STEs required
to construct a Levenshtein NFA scales with the product of
the configured pattern length L and the maximum edit dis-
tance d, and that the number of reporting STEs is O(d2).
Considering that for most bioinformatics applications the
edit distance is kept relatively low at 5 or less, these re-
sults indicate a scalable design. We determined that a single
AP core can hold an Automaton configured with a pattern
length of size 2730 and edit distance of 4. When considering
a relatively modest pattern size of 100 with an edit distance
of 4, a single AP core has the capacity for 27 parallel au-
tomata.

In the case of an application that requires executing the
automaton on many different search string patterns, more
than the capacity of the available AP hardware, it is possible
to use soft re-configurations (reload match symbols) to swap
on new search string patterns. As long as d and the length
of P do not change, the same AP design can be used.



Table 1: Levenshtein Macros
Macro Name Levenshtein Macros Description

Starting Match Block

- Starting STE
- Matches on first character of search string
pattern.

Simple Starting Error Block

- Starting STE
- Matches on error values.
- Accounts for errors in the beginning of an
input string.

Simple Match Block

- A single STE matches on a character in
the matching string.
- This macro is used on the bottom row,
where no errors occur.

Reporting Match Block

- This block is the same as the simple
match block, except it reports on a match.

Late Start Match Block

- Starting STE
- This macro accounts for inputs with be-
ginning deletions, where the input string
starts late.
- This macro has two states: one that trig-
gers on a matching character, and another
on an error.

Starting Error Block

- Starting STE
- Matches on all characters.
- Used to accept input strings with starting
errors.

Simple Error Block

- This block has two STEs: one to match
on the match string character, the other to
match on an error.
- This block neither starts no accepts.

Simple Error Report Block

- This block has two accepting STEs: one
for a match, the other for an error.

Figure 3: AP-Executable AL(”wahoo”, 2)



Figure 4: A reduced size Levenshtein Automaton

6. FUNCTIONAL MODIFICATIONS
Our illustrated design determines if any subset of the input
string is within edit distance d of P , and reports if so, as well
as reporting the indicated edit distance of the matching in-
put string. This design can be extended to include additional
functionality like variable scoring, where different primitive
operations have differing costs associated with them. This
is particularly useful for bioinformatics applications where
edit operations occur with differing probabilities. Another
enhancement we can make is reducing the size of the Lev-
enshtein NFA by removing early insertion and late deletion
states. This allows us to reduce the number of STEs re-
quired to instantiate a single Levenshtein automaton, but
at the expense of determining the input’s Levenshtein score.

6.1 Scoring
Variable edit scoring has potential applications in bioinfor-
matics. It allows a programmer to assign different costs to
the edit operations accounted for by the NFA. To explain
this enhancement, we will consider insertions. Our design
assigns a cost of one error to insertions, deletions, and sub-
stitutions. If we wanted to double the cost of an insertion,
we could adjust our upward direction transitions from in-
stead of connecting to the next immediate row, connect to
the row two rows up. This would account for an insertion
cost of 2. This same strategy could be used for any of the
other edit operators. The limitation here is that the cost
would need to be an integer value.

6.2 Levenshtein Reduction
The Levenshtein NFA recognizes an input string by trigger-
ing a reporting STE. This STE has an edit distance asso-
ciated with it, depending on which diagonal it is on. The
bottom-right-most row has an accept state with edit dis-
tance 0, because the entire pattern has been matched with
no errors; the second row has an edit distance 1 assigned
to it, because one error has been discovered in the traversal
of the input to the accept state. If the edit distance metric
is not of importance it is possible to reduce the size of the
Levenshtein NFA to accept on only max edit distance accept
states. This works because if a string X is a perfect match
of P , X with one deletion is within edit distance 1 of P .
In this way, it is possible to account for all possible strings
by only accepting the worst-case edit distance and ignoring
prefixes and suffixes.

Figure 4 shows the reduced version of AL(”wahoo”, 2). It is
the same automaton but with removed early insertion states
and late insertion states. What is clear is that only d+ 1 re-
porting states are required, because only worst-case reports

are necessary. For this reason, the last reporting element
diagonal serves as the last state in each of the rows. This
modification to the Levenshtein automaton has a small im-
pact on the over-all size of the automaton, but if many are
used in parallel, this may have a non-negligible impact on
the capacity of the hardware.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a technique for executing a
pipelined Levenshtein NFA on Micron’s Automata Proces-
sor. We found that preserving the automata’s nondeter-
minism resulted in a scalable design on the AP. We also
presented several modifications that could be made to the
design to account for variable edit costs as well as a modifi-
cation for reducing the size of the automaton at the expense
of determining edit distance.

The Levenshtein automaton has potential in the field of
bioinformatics, and with the introduction of the AP, that
potential can finally be unlocked. Future work includes com-
paring the execution of AL(P, d) on the AP versus the DFA
and simulated versions on a CPU and GPU. Finally, we will
implement a short read aligner from AL(P, d) and compare
our results to the state of the art CPU and GPU aligners.

8. ACKNOWLEDGMENTS
We would like to thank Micron for their cooperation with
this and many other AP projects. We would also like to
acknowledge the help that we got from the Center for Au-
tomata Processing (CAP) at the University of Virginia.

9. REFERENCES
[1] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal,

and H. Noyes. An efficient and scalable semiconductor
architecture for parallel automata processing. Parallel
and Distributed Systems, IEEE Transactions on,
25(12):3088–3098, Dec 2014.

[2] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. Doklady Akademii
Nauk SSSR, 10(8):845âĂŞ848, Feb 1966.

[3] G. H. Mealy. A method for synthesizing sequential
circuits. Bell System Technical Journal, The,
34(5):1045–1079, Sept 1955.

[4] E. F. Moore. Gedanken-experiments on sequential
machines. Automata studies, 34:129–153, 1956.

[5] G. Navarro. A guided tour to approximate string
matching. ACM Comput. Surv., 33(1):31–88, Mar.
2001.

[6] I. Roy and S. Aluru. Finding motifs in biological
sequences using the micron automata processor. In
Parallel and Distributed Processing Symposium, 2014
IEEE 28th International, pages 415–424, May 2014.

[7] K. U. Schulz and S. Mihov. Fast string correction with
levenshtein automata. International Journal on
Document Analysis and Recognition, 5(1):67–85, 2002.

[8] K. Wang, M. Stan, and K. Skadron. Association rule
mining with the micron automata processor. In
Proceedings of the 29th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2015.




