
Real-World Design and Evaluation of Compiler-Managed GPU Redundant
Multithreading ∗

Jack Wadden Alexander Lyashevsky§ Sudhanva Gurumurthi† Vilas Sridharan‡ Kevin Skadron

University of Virginia, Charlottesville, Virginia, USA
†AMD Research, Advanced Micro Devices, Inc., Boxborough, MA, USA

§AMD Research, Advanced Micro Devices, Inc., Sunnyvale, CA, USA
‡ RAS Architecture, Advanced Micro Devices, Inc., Boxborough, MA, USA

{wadden,skadron}@virginia.edu

{Alexander.Lyashevsky,Sudhanva.Gurumurthi,Vilas.Sridharan}@amd.com

Abstract
Reliability for general purpose processing on the GPU

(GPGPU) is becoming a weak link in the construction of re-
liable supercomputer systems. Because hardware protection
is expensive to develop, requires dedicated on-chip resources,
and is not portable across different architectures, the efficiency
of software solutions such as redundant multithreading (RMT)
must be explored.

This paper presents a real-world design and evaluation of
automatic software RMT on GPU hardware. We first describe
a compiler pass that automatically converts GPGPU kernels
into redundantly threaded versions. We then perform detailed
power and performance evaluations of three RMT algorithms,
each of which provides fault coverage to a set of structures
in the GPU. Using real hardware, we show that compiler-
managed software RMT has highly variable costs. We further
analyze the individual costs of redundant work scheduling, re-
dundant computation, and inter-thread communication, show-
ing that no single component in general is responsible for
high overheads across all applications; instead, certain work-
load properties tend to cause RMT to perform well or poorly.
Finally, we demonstrate the benefit of architectural support
for RMT with a specific example of fast, register-level thread
communication.

1. Introduction
As data centers and the high-performance computing (HPC)
community continue to adopt GPUs as "throughput proces-
sors," the graphics-specific nature of these architectures has
evolved to support programmability [30]. Alongside new fea-
tures, greater performance, and lower power, higher reliability
is becoming increasingly important in GPU architecture de-
sign, especially as we approach the exascale era. An increase
in radiation-induced transient faults due to shrinking process
technologies and increasing operating frequencies [8,27], cou-
pled with the increasing node count in supercomputers, has
promoted GPU reliability to a first-class design constraint [2].

To protect against transient faults, CPUs and GPUs that run
sensitive calculations require error detection and correction.

∗This work was performed while Jack Wadden was a co-op in AMD
Research.

Structure Size Estimated ECC Overhead
Local data share 64 kB 14 kB
Vector register file 256 kB 56 kB
Scalar register file 8 kB 1.75 kB
R/W L1 cache 16 kB 343.75 B

Table 1: Reported sizes of structures in an AMD Graphics Core
Next compute unit [4] and estimated costs of SEC-DED ECC
assuming cache-line and register granularity protections.

These capabilities typically are provided by hardware. Such
hardware support can manifest on large storage structures as
parity or error-correction codes (ECC), or on pipeline logic
via radiation hardening [19], residue execution [16], and other
techniques. However, hardware protection is expensive, and
can incur significant area, power and performance overheads.
To illustrate the potential cost of hardware protection in a mod-
ern GPU, Table 1 shows estimated SEC-DED ECC overheads
based on common cache line and register ECC schemes and
the reported sizes of memory structures on an AMD Graphics
Core Next (GCN) compute unit (CU) [4]. Each CU would
need 72kB of ECC, a 21% overhead.

Not only is hardware protection expensive, it is inflexible
and not needed for some workloads. While many HPC work-
loads, such as scientific and financial applications, demand
high precision and correctness, rendering applications can be
inherently fault-tolerant. Such applications display tens of
mega-pixel frames per second, and isolated or transient er-
rors generally are not even observable [26]. GPUs need to
serve both communities. Multiple versions of a processor can
be designed to satisfy these diverse reliability needs, but this
complicates design cycles, and can be prohibitively expensive
for the vendor or consumer. Furthermore, users may need the
same product to serve diverse workloads (e.g., in virtualized
clusters).

The expense and varied requirements for reliability in GPUs
motivate the design of GPUs with flexible reliability solutions
that provide economical and tunable power, performance, and
reliability trade-offs. This motivates the exploration of soft-
ware reliability on GPUs to provide low-cost, portable, and
flexible fault protection, and of compiler solutions to automate
the burden of design and implementation of reliability.

978-1-4799-4394-4/14/$31.00 c© 2014 IEEE

skadron
Typewritten Text
This is the author's version of the final manuscript. The authoritative version appears in the digital library, under Proceedings of ISCA 2014.

To our knowledge, no prior work has explored automatic
software RMT transformations for GPU kernels or the per-
formance trade-offs of GPU RMT with different coverage
domains. We focus on detection because it needs to run con-
tinuously and is therefore performance critical. The choice of
recovery techniques (e.g. checkpoint/ restart or containment
domains [7]) is orthogonal. Compiler-managed software GPU
RMT automatically provides transient fault detection within
the targeted coverage domain and also allows evaluation on
existing hardware.

The key contributions of the paper and the findings of our
study are:
• We design and develop three RMT algorithms, each of

which provides fault coverage for a set of structures in
the GPU, and implement them in a production-quality
OpenCLTM compiler.

• We carry out detailed performance and power analyses of
these algorithms for a set of kernels from the AMD OpenCL
SDK benchmark suite on an AMD RadeonTM HD 7790
GPU. We use hardware performance counters and carefully
designed experiments that isolate the various overheads
of RMT, including redundant work scheduling, redundant
computation, and inter-thread communication.

• Our analysis reveals that RMT performance varies over a
wide range, from slight speed-ups to large slow-downs. We
present several insights into workload and hardware char-
acteristics that determine performance. In general, we find
that no single aspect of RMT (e.g., inter-thread communi-
cation) fully explains the performance of RMT across all
workloads; however, certain workload properties tend to
cause RMT to perform well or poorly.

• We find that RMT does not cause an appreciable increase
in the average power consumption of the GPU. Therefore,
the energy usage of a GPU will be driven mainly by the
execution time of RMT-ized kernels.

• We explore the potential benefits of going beyond
the OpenCL specification and evaluate the use of an
architecture-specific feature to optimize RMT performance,
namely register-level swizzling for fast thread-to-thread
data exchange. We find that this optimization provides
significant performance improvements for several kernels,
thus motivating further research into hardware techniques
to improve RMT performance on GPUs.

2. Related Work
Redundant multithreading on the CPU is a well-researched
area, and automatic solutions have been proposed for both
simulated hardware [11, 18, 23, 24, 32] and software [14, 17,
21, 28, 34, 36]. Wang et. al. [34] uses automatic compiler
transformations to create fully redundant threads on the CPU,
managing both communication and synchronization of op-
erations that exit the SoR. On existing hardware, utilizing a
software queue for communication, their technique saw over-
heads of 4-5x. State-of-the-art CPU redundancy techniques
offer impressively low overheads [28, 36]. However, these

techniques double node level memory capacity requirements
and rely on spare execution resources to execute redundant
processes, which may be scarce when running parallel appli-
cations on server or HPC systems.

Newer research into reliability solutions for GPUs re-targets
the large body of CPU error-detection work to the GPU’s
unique programming model abstractions and architecture.
Simulated hardware extensions have been proposed as low-
cost reliability solutions [15, 20, 29]. Software techniques
that provide reliability for GPUs generally suffer from large
execution overheads [9]. To improve on these performance
overheads, state that has a high probability of propagating
faults to program output can be selectively protected [35].

An initial exploration of software GPU RMT by Dimitrov et
al. [9] showed promise for executing redundant code efficiently
on GPUs. The paper implemented full duplication as well as
two more sophisticated techniques, R-Scatter and R-Thread,
with detection performed on the CPU after kernel execution.
These techniques applied to older VLIW architectures and/or
were hand-coded, limiting their practical usefulness.

Our techniques differ from prior work in several ways. First,
with ECC becoming a standard off-chip DRAM feature, we
assume protection in storage and transfer to off-chip resources
and target an on-chip protection domain. Second, as GPUs
become first-class computing citizens, the model of checking
results on the CPU will not be feasible (e.g., as GPUs become
capable of directly communicating to I/O). Therefore, we fo-
cus on detection on the GPU itself. Third, hardware itself is
expensive to implement, inflexible, and necessitates evaluation
in GPU simulators that may not reflect proprietary hardware.
Therefore, we focus our attention on software-only GPU relia-
bility solutions that can be implemented and evaluated on real
hardware.

Finally, selective replication solutions allow for a nonzero
transient fault rate within the domain of fault protection, and
the level of protection can depend on application-specific be-
havior. In data centers and large supercomputers, allowing
any faults within a "reliable" domain is unacceptable because
it prevents guarantees about correctness in the entire system.
This is an important, but often overlooked, subtlety; fault de-
tection via RMT enables both processor vendors and designers
of software frameworks to reason about and account for unpro-
tected structures. We therefore focus our attention on efficient
fully redundant solutions and do not consider probabilistic
protection.

3. Background
3.1. Fault Modes
Processors created with traditional manufacturing processes
are vulnerable to both permanent (hard) and transient (soft)
faults in logic. Permanent faults manifest as stuck-at bits.
They can be caused by process variation, thermal stress, or
oxide wear-out, and may develop over time as a combination
of these phenomena. Permanent faults can be mitigated by
using burn-in, a technique to eliminate early permanent faults,

before a processor enters its useful lifetime [19]. Periodic
stress tests also can be applied during the useful lifetime of
hardware to determine if permanent faults have developed [12].
Therefore, we focus on mitigating transient faults.

Transient faults can be caused by crosstalk, voltage viola-
tions, and other electromagnetic interference, but are typically
associated with the effects of high-energy particles, usually
neutrons [8]. Although they do not inject charge, neutrons that
strike a chip have the potential to create secondary, ionizing
radiation. If enough charge is injected into a transistor’s dif-
fusion region to overcome the device’s critical charge, it may
drive the wrong value temporarily; these temporary upsets in
a transistor’s state are called single-event upsets (SEUs) or,
if more than one transistor is affected, single-event multi-bit
upsets (SEMUs) [19]. If an SEU occurs directly within a
storage cell on-chip, the incorrect value may persist. If an
SEU occurs in combinational logic, it may propagate incorrect
values to storage cells. SEUs that are captured and committed
to program output are called silent data corruptions (SDC).
3.2. OpenCL Programming Model
This work focuses on implementing RMT in GPU kernels writ-
ten in OpenCL [30]. OpenCL is an open standard for parallel
and heterogeneous computing that targets multicore CPUs and
GPUs. In OpenCL, a computation is divided between the host
application on the CPU and a kernel program that runs on a
parallel accelerator called the device. To launch a kernel, the
application developer designates a group of threads or work-
items to execute on the device; this collection of executing
threads is referred to as the global N-dimensional range, or
NDRange. Each work-item in a global NDRange executes the
same kernel program, and shares a global address space.

The work-items in a global NDRange are subdivided into
work-groups that have the ability to share a local scratchpad
memory space. Work-items from one work-group are prohib-
ited from accessing the local memory of another work-group
even if it is physically possible on the device architecture. On
GPUs, local memory generally has the added advantage of
being low-latency relative to global memory. Work-groups
can guarantee synchronization among constituent work-items
by executing a local barrier instruction. Ordering among
work-items in different work-groups is not guaranteed by the
OpenCL standard, and therefore must be implemented explic-
itly if desired.

Within a work-group, each work-item has a private memory
space that is inaccessible to other work-items. If executing on
single-instruction/multiple-data (SIMD) architectures such as
GPUs, work-items are grouped into wavefronts that execute
in lockstep on the same SIMD unit. How wavefronts execute
on SIMD units is discussed in the following subsection.
3.3. AMD GCN Compute Unit Architecture
While our proposed techniques are generalizable to any archi-
tecture, we have implemented and evaluated our designs on
GPUs with AMD’s GCN CU architecture. AMD GPUs based
on the GCN CU architecture provide a certain number of CUs

for computation that varies from product to product. Figure 1
shows a high-level block diagram of a single GCN CU. Each
CU has four 16-wide SIMD units capable of executing a single
64-wide vector instruction over 4 cycles. Each CU also has
its own 64-kB register file, capable of supporting up to 256
64x32-bit vector general-purpose registers (VGPRs). Each
CU also has 64-kB of LDS, a low-latency scratchpad memory
where OpenCL local memory is allocated.

LDS R/W L1$

L2$
SRF

SU

VRF

SIMD

IF
/S

C
H

ED

ID

VRF

SIMD

VRF

SIMD

VRF

SIMD

Compute Unit (CU)

Figure 1: AMD Graphics Core Next compute unit [4]: instruc-
tion fetch (IF), scheduler (SCHED), instruction decode (ID), 8-
kB scalar register file (SRF), scalar unit (SU), 64-kB vector reg-
ister file (VRF), SIMD functional units (SIMD), 64-kB local data
share (LDS), 16-kB L1 read/write cache (R/W L1$)

When an OpenCL program executes, work-groups are
scheduled onto individual CUs. Multiple work-groups can
be scheduled onto a single CU if enough LDS and registers
are available. Once a work-group(s) is scheduled onto a CU,
instructions from wavefronts are issued to SIMD units. The
number of wavefronts that can issue instructions on a particu-
lar SIMD depends on the presence of available resources. For
example, if a wavefront requires 64 VGPRs, only three other
wavefronts could potentially issue instructions to that SIMD
unit. As many as 10 wavefronts can be scheduled onto a single
SIMD unit at any given time.

Each CU also includes one scalar unit (SU) to improve
SIMD execution efficiency. When possible, the compiler iden-
tifies computations on data common to all threads in a wave-
front and executes such instructions on a single data value.
Each SU has an 8-kB scalar register file (SRF) that also can
affect the number of wavefronts that can execute.

3.4. Redundant Multithreading on the GPU
All methods to detect an unwanted change of state ultimately
rely on some sort of redundancy. This can either be encoded
versions of state or full duplication.

Fully replicated state is said to be within a sphere of repli-
cation (SoR), and is assumed to be protected. Hypothetically,
two faults could create simultaneous identical errors in re-
dundant state, but this is considered sufficiently unlikely to
be ignored. All values that enter the SoR must be replicated
(called input replication) and all redundant values that leave
the SoR must be compared (called output comparison) before
a single correct copy is allowed to leave [18].

RMT accomplishes replication by running two identical
redundant threads–a producer and consumer–on replicated
input. Whenever state needs to exit the SoR (e.g., on a store to
unreplicated global memory), the producer sends its value to

the consumer for checking before the consumer is allowed to
execute the instruction. Hardware structures outside the SoR
must be protected via other means.

The OpenCL hierarchical thread programming model al-
lows for thread duplication at different granularities. Naively,
entire kernel launches can be duplicated into primary and sec-
ondary kernels, and the resulting output can be compared by
the host application [9]. If an output mismatch is detected
by the host, both redundant copies of the kernel must be re-
executed. If we cannot afford full naive duplication, then we
must duplicate computation either between OpenCL work-
items within a work-group, which we call Intra-Group RMT,
or across entire OpenCL work-groups, which we call Inter-
Group RMT.

4. Compiler Implementation
We adapt the automatic compiler transformations of Wang et
al. and apply them to the GPU OpenCL programming model.
We modify a production-quality OpenCL kernel compiler
toolchain [33] to automatically transform OpenCL kernels into
RMT programs for error detection. The compiler toolchain
consists of three main components. The high-level com-
piler converts OpenCL kernels into LLVM compiler frame-
work intermediate representation (IR) code [1]. The LLVM
layer optimizes and converts the LLVM IR to an architecture-
independent GPU intermediate language. A backend-compiler
further optimizes and compiles the intermediate language into
a architecture-specific GPU program.

We implement our compiler transformation as an LLVM
optimization pass in the LLVM layer of the compiler toolchain.
This choice gives us enough control to remain general across
architectures that adhere to OpenCL specifications and allows
us to ensure correct protection semantics. A low-level imple-
mentation in the shader compiler would have a high level of
control with respect to efficiency and coverage, but would be
applicable only to a small set of target architectures. However,
a low-level implementation also may allow us to implement
fine-grained, architecture-specific improvements. We examine
this trade-off in Section 8.

While our OpenCL compiler extension makes automatic
transformations to OpenCL kernels, we do not provide auto-
matic transformations for host code. In practice, the host-code
modifications necessary to support RMT were small and did
not justify the added engineering effort for this research.

5. Evaluation Methodology
Tested Benchmarks: We applied our automatic kernel trans-
formations to 16 kernels from the AMD OpenCL SDK sample
suite [5] and verified correct execution by using each appli-
cation’s built-in verification capabilities. When allowed by
the application, input sizes were scaled to the maximum size
at which all versions of our transformations were able to run.
For all benchmarks that allow input scaling, we were able to
saturate the test GPUs CUs with work-groups, ensuring a high
level of utilization and a fair evaluation.

SI
M

D
A

L
U

V
R

F
L

D
S

SU SR
F

ID IF
/S

C
H

E
D

R
/W

L
1$

Intra-Group+LDS 3 3 3
Intra-Group-LDS 3 3

Table 2: CU structures protected by Intra-Group RMT. Because
the LDS is software managed, we can choose to include it or
exclude it from the SoR. Other structures shared in SIMD com-
putation are not protected.

Performance and Power Evaluation: All experiments were
conducted on a commodity AMD Radeon HD 7790 GPU with
12 CUs. GPU kernel times and performance counters were
gathered using AMD’s CodeXLTM tool version 1.2 [3]. Kernel
runtimes were averaged over 20 runs of each application. Be-
cause the GPU’s dynamic frequency-scaling algorithms may
inconsistently affect the runtimes of our experiments, clock
frequencies were fixed at the maximum rated commercial val-
ues: 1-GHz core frequency and 1.5-GHz memory frequency.

Power was measured by reading an on-chip power monitor
that estimates average ASIC power [10] at an interval of 1ms.
These measurements then were averaged over the runtime
of the kernel to estimate total average power. Because the
reported power estimation is actually an average of instanta-
neous power calculated using a sliding window, meaningful
results could not be gathered from applications with short
kernel runtimes.

6. Intra-Group RMT
Intra-Group RMT replicates state and computation by dou-
bling the size of each work-group and then creating redundant
work-item pairs within the larger work-group using OpenCL’s
work-item identification numbers. Because OpenCL allows
work-items within a work-group to communicate via local
memory, we can use the local data share to implement output
comparisons between work-items. Because local memory is
software-managed and redundant work-items within a work-
group share a local address space, we can choose either to
include or exclude its allocation from the SoR. Therefore, we
divide Intra-Group RMT into two flavors: Intra-Group+LDS,
in which LDS allocations are duplicated explicitly, therefore
including LDS in the SoR, and Intra-Group-LDS, in which
LDS allocations are not duplicated, therefore excluding LDS
from the SoR. Each SoR, specific kernel modifications, and
performance of both Intra-Group RMT flavors are discussed
below.

6.1. Sphere of Replication
Table 2 shows the high-level CU structures protected by Intra-
Group RMT. Because OpenCL allocates separate registers
for each redundant work-item, the entire vector register file
(VRF) is protected for both Intra-Group RMT flavors. We also
guarantee that each work-item will execute computation in its
own SIMD lane, and therefore all SIMD functional units are

protected. Because Intra-Group+LDS doubles the allocation
of the LDS and replicates all reads and writes to separate LDS
memory locations, the LDS is also protected.

The scalar register file (SRF) and scalar unit (SU) are not
included in the SoR. Because the SU exists to compute known
shared values for an entire wavefront, if we replicate computa-
tion within a wavefront, we will not replicate scalar computa-
tion in the SU or registers in the SRF.

Similarly, instruction fetch, decode, and scheduling logic
are not protected by Intra-Group RMT. Redundant work-items
share this logic because they exist within a single wavefront.
Because of the SIMD nature of the architecture, replicating
computation among "multiple data" within a wavefront does
not protect the "single instruction" state that defines it. Be-
cause memory requests from redundant work-item pairs to
global memory also can be shared, we conservatively assume
that the entire cache hierarchy also must be excluded from the
SoR.

6.2. Kernel Modifications

Work-Item ID Modifications: All automatic RMT kernel
transformations first rely on doubling the number of work-
items (accomplished by the host), and then modifying their
ID numbers to create a pair of identical, redundant work-
items. Because these ID numbers are the only way work-items
can distinguish computation uniquely in OpenCL, work-items
that report the same ID numbers, even if they are distinct,
will execute the same computation, although with different
registers.

To create redundant work-items, we mask the lowest bit
of each work-item’s global ID. We then save this bit so that
work-items can distinguish themselves as either producers or
consumers of redundant computation. This also guarantees
that redundant work-items will execute in the same wavefront
on the GPU, which is important to ensure synchronization.
Other OpenCL values, such as a work-item’s local ID within a
work-group, also require similar transformations.
Including LDS in the SoR: If we choose to include LDS in
the SoR (Intra-Group+LDS), we double its allocation and map
redundant loads and stores to their own duplicated locations. If
we choose to exclude LDS from the SoR (Intra-Group-LDS),
we maintain its original allocation, but now must insert output
comparisons for every store to the structure.
Communication and Output Comparison: For both Intra-
Group+LDS and Intra-Group-LDS, we must allocate a local
memory communication buffer in the LDS so that redundant
work-items can communicate results. We then identify all
instructions where values may exit the SoR and insert code
to coordinate output comparisons. For Intra-Group+LDS, we
define this to be every operation that potentially modifies off-
chip global memory (i.e., all global stores). For Intra-Group-
LDS, we also add each local store to this list. Handling of
other operations that leave the SoR is left for future work.

Just before a store exits the SoR, the producer work-item

is made to communicate both the address and value operands
of the store. The consumer work-item then reads these values
from the communication buffer and compares them with its
private versions. If the values differ, we have detected an error;
if identical, the consumer work-item is allowed to execute the
store, and redundant computation continues.

6.3. Performance
Figure 2 shows the measured performance overheads for both
Intra-Group RMT flavors normalized to the runtime of the
original kernel. Because each Intra-Group RMT kernel in-
troduces its own unique pressures on resources within a CU
and on the entire GPU, and each RMT flavor reflects those re-
source pressures in a unique way, we see diverse performance
overheads across all kernels.

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

B
in
S

B
O

B
it
S

B
lk
Sc
h

D
C
T

D
W
T

FW
T

FW M
M N
B PS

Q
R
S R SC SF

U
R
N
G

Sl
o

w
d

o
w

n

Intra-Group+LDS

Intra-Group-LDS

Figure 2: Performance overheads of Intra-Group+LDS and
Intra-Group Global-LDS normalized to the runtime of the origi-
nal kernel. Performance varies wildly depending on the kernel,
and RMT flavor.

Intra-Group flavors perform either well, with overheads be-
tween 0% and 10%, or poorly, with overheads at or greater
than 100%. SimpleConvolution (SC) performs better than the
original version. This phenomenon seems impossible at first
glance, but a few possible reasons are discussed in the follow-
ing subsection, namely a reduction in resource contention and
a reduction in wavefront divergence.

6.4. Analysis
Using performance counters, we were only able to explain
some performance behaviors. Therefore, we selectively re-
moved RMT modifications to see if there were any consistent
factors that contributed to slow-downs. We analyzed slow-
downs caused by communication, redundant computation, and
the enhanced size and resource requirements of Intra-Group
RMT work-groups. Our findings are discussed below.
Hiding Computation Behind Global Memory Latency:
Initially, by analyzing performance counters, we found one
main metric–the proportion of time spent executing memory
operations relative to vector ALU operations, or "memory
boundedness"–explained why some applications did well and

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

O
ri

gi
n

al

LD
S+

LD
S-

O
ri

gi
n

al

LD
S+

LD
S-

O
ri

gi
n

al

LD
S+

LD
S-

O
ri

gi
n

al

LD
S+

LD
S-

O
ri

gi
n

al

LD
S+

LD
S-

O
ri

gi
n

al

LD
S+

LD
S-

O
ri

gi
n

al

LD
S+

LD
S-

O
ri

gi
n

al

LD
S+

LD
S-

O
ri

gi
n

al

LD
S+

LD
S-

O
ri

gi
n

al

LD
S+

LD
S-

O
ri

gi
n

al

LD
S+

LD
S-

O
ri

gi
n

al

LD
S+

LD
S-

O
ri

gi
n

al

LD
S+

LD
S-

O
ri

gi
n

al

LD
S+

LD
S-

O
ri

gi
n

al

LD
S+

LD
S-

O
ri

gi
n

al

LD
S+

LD
S-

BinS BO BitS BlkSch DCT DWT FWT FW MM NB PS QRS R SC SF URNG

P
o

rt
io

n
 o

f K
er

n
el

 R
u

n
ti

m
e

 VALUBusy MemUnitBusy WriteUnitStalled

Figure 3: Kernel time spent executing vector ALU operations (VALUBusy) and the proportion of time spent executing memory
fetch (MemUnitBusy) and store (WriteUnitStalled) operations. Kernels that have low RMT overheads tend to be memory-bound.

-20%

0%

20%

40%

60%

80%

100%

LD
S+

LD
S-

LD
S+

LD
S-

LD
S+

LD
S-

LD
S+

LD
S-

LD
S+

LD
S-

LD
S+

LD
S-

LD
S+

LD
S-

LD
S+

LD
S-

LD
S+

LD
S-

LD
S+

LD
S-

LD
S+

LD
S-

LD
S+

LD
S-

LD
S+

LD
S-

LD
S+

LD
S-

LD
S+

LD
S-

LD
S+

LD
S-

BinS BO BitS BlkSch DCT DWT FWT FW MM NB PS QRS R SC SF URNGO
ve

rh
e

ad
 A

d
d

e
d

 to
 K

e
rn

e
l R

u
n

ti
m

e

Doubling Size of work-groups Adding Redundant Computation Adding Communication

Figure 4: Relative overheads of components of Intra-Group RMT kernels. Each bar represents the additional slow-down added by
each successive augmentation to the original kernel. Negative contributions indicate a speed-up over the previous modification.

others did poorly. Figure 3 shows the proportion of time each
kernel spent executing vector ALU operations (VALUBusy) or
memory operations (MemUnitBusy, WriteUnitStalled). Many
kernels that spent most of their time executing global mem-
ory operations relative to computation were able to hide the
costs of redundant computation and communication, and had
relatively low runtime overheads. BinarySearch (BinS), Biton-
icSort (BitS), FastWalshTransform (FWT), SC, and SobelFil-
ter (SF) all are bound by memory traffic, and have runtime
overheads of 10% or less.

In all situations in which Intra-Group RMT overheads were
high but kernels spent a large proportion of their time execut-
ing memory operations (DCT and MM), kernels also reported
spending a large proportion of their time executing vector ALU
operations. This indicates that if under-utilization of compute
resources exists, software GPU RMT is able to exploit it with-
out hardware modifications. However, if a kernel already
heavily utilizes SIMDs or LDS bandwidth, Intra-Group RMT
incurs a relatively high overhead regardless of whether the
kernel is memory-bound.

Performance counters gave us some evidence to explain the
overheads of some kernels, but were not able to account for
the overheads of all kernels. For example, DwtHaar1D (DWT)
and Reduction (R) are both memory-bound, but do not have
low overheads. To gain more insight into performance, we
selectively removed three portions of the full RMT transfor-
mation (communication, redundant computation, and doubled
work-group sizes), isolating each piece’s relative contribution

to total overhead. Figure 4 shows the relative contributions of
each. As suggested by performance counters, DWT and R are
able to hide the cost of redundant computation, but must pay
a high price for communication and the doubled size of each
work-group.

BinomialOption (BO) is a particularly interesting exam-
ple, because the Intra-Group-LDS version removes the cost
of redundant computation, but trades it for an equally large
communication penalty. In reality, the runtime of BO is not
bound by vector computation or global memory operations,
but rather by a high number of local memory accesses. Be-
cause Intra-Group-LDS excludes LDS from the SoR, we halve
the number of LDS writes per work-group, greatly decreasing
the cost of redundant computation. However, because each of
these writes exits the SoR, we must insert output comparisons
via the LDS for each, proportionately increasing the cost of
communication.
Costs of Inter-work-item Communication: By removing
the explicit communication and comparison of values between
redundant work-items, we were able to measure the relative
contribution of inter-work-item communication with respect
to the total cost of RMT. Figure 4 shows the results of remov-
ing all inter-work-item communication from the Intra-Group
RMT algorithms. For a few applications, communication is
a very significant portion of the costs of RMT. In BO, DWT,
PrefixSum (PS), and R, communication can account for more
than half of the total overhead.

In the case of Intra-Group-LDS, communication costs can

be especially expensive for two reasons. First, there simply
may be a higher number of output comparisons necessary be-
cause we must communicate values on both global and local
stores. Second, for local stores, both communication and the
protected local store occur via the LDS. Therefore, the cost of
communication cannot be hidden behind a higher-latency op-
eration, as is the case in Intra-Group+LDS. Whenever the cost
of communication is high relative to the cost of the protected
store, communication is expensive.
Costs of Doubling the Size of Work-groups: Typically,
Intra-Group RMT causes large scheduling inefficiencies be-
cause doubling the size of each work-group will at least halve
the number of work-groups that can be scheduled onto any one
CU. Additionally, RMT modifications may require the com-
piler to allocate even more registers than the original kernel,
which can cause a further decrease in the number of work-
groups that can be scheduled. Because LDS is also a fixed
resource per CU, adding the communication buffer or includ-
ing a work-group’s LDS allocation in the SoR (in the case of
Intra-Group+LDS), can have similar effects.

To isolate these effects, we artificially inflate the resource
usage of the original application to reflect that of the larger
work-groups of the RMT version. Results are shown in Figure
4. This modification can be thought of as "reserving" space for
redundant computation of larger work-groups without actually
executing redundant work-items. We accomplish this by run-
ning the original application with the same amount of local
memory or VGPRs required by the RMT version, whichever
had limited scheduling in the Intra-Group version.

Results indicate that for most benchmarks, when work-
group scheduling already is constrained by LDS or VGPR
usage, additional resources required by RMT cause a 15-40%
overhead. Kernels that suffer from some sort of resource
bottleneck mostly suffered from a scarcity of VGPRs, but
applications limited by LDS tended to suffer more. For ex-
ample, LDS over-allocation is responsible for more than half
of MM’s Intra-Group+LDS RMT overhead, while the Intra-
Group-LDS version (limited by VGPR usage) suffers a much
smaller penalty. Both Reduction and URNG see similar reduc-
tions in scheduling overhead because the Intra-Group-LDS
version allocates far less LDS.
Explaining Speed-ups: By doubling the number of wave-
fronts within a work-group while keeping global memory
traffic per work-group approximately the same, Intra-Group
flavors essentially halve the memory traffic handled by each
CU. This can eliminate bottlenecks in the L1 cache and other
structures in the shared memory hierarchy, causing a perfor-
mance boost. A reduction in contention for both the scalar
and vector SIMD units also may contribute to speed-ups of
individual groups. This is most likely a consequence of the
greedy nature of scheduling that prioritizes high utilization
while ignoring runtime contention for resources within a CU.
Kernels that saw performance increases after doubling the size
of the work-groups, shown in Figure 4, are evidence of this

60	

62	

64	

66	

68	

70	

72	

74	

BO	 BlkSch	 FW	

Es
#
m
at
ed

 P
ow

er
 (W

) Original	
Intra-‐Group+LDS	
Intra-‐Group-‐LDS	

Figure 5: Average power of three SDK workloads with long-
running kernels. Peak power is shown as positive whiskers.

phenomenon.
A reduction in the penalty for work-item divergence is an-

other possible performance enhancement that may result from
Intra-Group RMT flavors, as first documented by [25]. If a
single work-item in a wavefront misses in the cache, the entire
wavefront must stall until the proper values can be fetched.
The instruction scheduler also may issue memory requests
from wavefronts that exhibit little locality, causing thrashing
in the L1 cache. These issues can be mitigated by shrinking
the effective wavefront size so that a cache miss has a smaller
penalty. By creating redundant work-item pairs within wave-
fronts, we accomplish just that. Kernels that saw performance
increases after adding redundant computation, shown in Figure
4, are evidence of this phenomenon.

6.5. Power Analysis
Figure 5 shows the average and peak estimated chip power for
BO, BlkSch, and FW. These benchmarks were used because
they had kernel runtimes long enough to register meaningful
measurements. Because the total work-item count in our Inter-
Group implementation currently is limited by the size of global
memory, we were not able to scale these benchmarks to gather
meaningful results for Inter-Group versions of kernels, and so
power results are not presented in that evaluation.

Although RMT executes twice as many work-items, all
three benchmarks show a small (less than 2%) increase in
average power consumption relative to the original application.
This is not surprising; if RMT is not taking advantage of
under-utilization on the GPU, dynamic power should remain
roughly the same. In such cases, the same amount of work is
performed with or without RMT, although half of it may be
redundant. BlkSch, which for these input sizes has a less than
10% runtime overhead, shows a large peak power increase
relative to the original kernel, but on average only increases
power consumption by about 1W.

More surprising is FW, which has a negligible power in-
crease but also shows minimal runtime overhead for these
larger input sizes, hiding the extra RMT work behind stalls.
Our original concern was that taking advantage of under-
utilized resources would cause a proportional increase in
power consumption, but FW obviously does not follow this
logic. Figure 3 shows that although the RMT version of FW

increases the amount of time spent executing ALU operations,
the kernel is so memory-bound that this extra time remains
a small proportion of overall execution. Therefore, power
consumption should not change appreciably. This result is
analogous to Amdahl’s law: we should expect that even a
large increase in power consumption during a small propor-
tion of the computation should not have a large impact on
average power.

Although RMT transformations will have a unique effect
on power consumption for each benchmark, our preliminary
conclusion is that the total energy consumption of each appli-
cation will be dominated by runtime overheads rather than an
increase in power, especially when considering total applica-
tion runtime and whole-system power.

6.6. Summary
The primary findings from our analysis of Intra-Group RMT
are:
• Kernels bottlenecked by global memory operations perform

well on Intra-Group RMT because the cost of redundant
computation can be hidden behind this latency.

• Communication is expensive whenever the cost of commu-
nication is high relative to the cost of the protected store
because the access to the protected store cannot mask the
latency of communication.

• RMT exacerbates pressure on shared resources such as
VGPRs and LDS. Therefore, kernels that are bottlenecked
on shared resources will see high overheads due to RMT.

• Intra-Group RMT can cause accidental performance im-
provements by reducing wavefront divergence, cache thrash-
ing, and over-utilization of other shared CU resources.

• Average power consumption is not affected appreciably by
Intra-Group RMT; therefore, total energy consumption will
be proportional to the runtime overhead in each kernel.

Intra-Group RMT overheads vary highly depending on ker-
nel behavior and are difficult to predict. Therefore, automatic
RMT should be applied in development to help the program-
mer further tune software for the best RMT performance. Pro-
grams should be tuned to avoid bottlenecks on shared compu-
tation resources. Furthermore, our study suggests that RMT
performance could be improved by more efficient register al-
location in the compiler, and by allowing hardware or the
compiler to adjust wavefront size for a given application.
7. Inter-Group RMT
Inter-Group RMT replicates work by doubling the number
of work-groups in the global NDRange and then assigning
redundant work-item pairs in separate work-groups based
on OpenCL’s work-item identification numbers. Because
OpenCL prohibits work-items in different work-groups from
sharing the same LDS address space, we must implement
output comparisons in the global memory hierarchy.

7.1. Sphere of Replication
Table 3 shows the structures that are included in the SoR for
Inter-Group RMT. Because redundant threads execute within

SI
M

D
A

L
U

V
R

F
L

D
S

SU SR
F

ID IF
/S

C
H

E
D

R
/W

L
1$

Inter-Group 3 3 3 3 3 3 3

Table 3: CU structures protected by Inter-Group RMT. Be-
cause redundant work-items exist in separate wavefronts,
most structures on the CU exist within the SoR.

separate work-groups, we know that all scalar instructions will
be duplicated, and allocated their own set of scalar registers.
Unlike Intra-Group RMT, we therefore can consider the entire
SU, including the SRF, inside the SoR. We also are guaranteed
that vector instructions will be duplicated because redundant
threads are guaranteed to be in different wavefronts. Therefore,
the instruction fetch, scheduling, and decode logic of each CU
can be considered inside of the SoR, as well as the VRF and
SIMD units. We can also include the LDS in the SoR because
each work-group is given its own allocation. Similar to the
SRF and VRF, LDS is divided among groups until it, or the
SRF or VRF, becomes a limiting resource.

While these structures are guaranteed to be inside the SoR,
memory requests to the R/W L1 cache still may be unprotected
by Inter-Group RMT because two groups can be scheduled
on the same CU and they may or may not share the same
L1 cache. If this occurs, requests from both groups can be
fulfilled from the same line in the L1. Because we cannot
eliminate this situation, we conservatively assume that the L1
cache is outside the SoR.

7.2. Kernel Modifications
Adding Explicit Synchronization: For Intra-Group RMT,
we can guarantee ordering of communication because redun-
dant work-items executed in lockstep within the same wave-
front. However, in OpenCL, no global synchronization is guar-
anteed between work-items in different work-groups. There-
fore, we must introduce explicit synchronization to coordinate
communication between work-items.
Work-item ID Modifications: Because we never can guaran-
tee scheduling of an equal number of producer and consumer
groups, we may end up introducing deadlock if we rely on
a work-group’s given ID for producer/consumer distinction.
For example, if all scheduled groups are consumers, they will
starve while waiting for producer groups to communicate re-
dundant values. To avoid deadlock, a work-item from each
newly executing work-group acquires and increments a global
counter. This counter acts as a new work-group ID, allowing
us to control work-group producer/consumer assignment to
avoid deadlock.

Similar to the Intra-Group RMT algorithms, each work-item
also needs to save the lowest bit of the acquired work-group
ID (the producer/consumer distinguishing flag) and then mask
the lowest bit to create identical redundant work-group pairs.
This flag determines which work-groups within a redundant

pair will be a producer or consumer of redundant values for
output comparison.

Once all work-items have acquired their new work-group
IDs, they need to create new global work-item ID numbers to
match up with the acquired work-group ID’s position in the
global NDRange.

Unlike Intra-Group RMT, we do not need to remap any
local ID numbers or group size queries because each local
NDRange is identical in size and dimensionality to the original
computation. Also, because each work-item calculates a new
global ID, we do not need to adjust existing global ID queries;
instead, we replace all of their uses with the new calculated
work-item ID values.
Coordinating Communication and Output Comparisons:
Inter-Group RMT communication between work-items is
more expensive than Intra-Group RMT communication be-
tween work-items. Because separate work-groups cannot
share a local address space, we allocate communication buffers
in global memory, which greatly increases inter-work-item
communication latency. After each group is set up for redun-
dant execution, we identify every place the data exits the SoR
and insert output comparison code. For Inter-Group RMT,
data exits the SoR whenever any operation accesses the global
memory hierarchy.

To synchronize output comparisons between between redun-
dant work-items in different work-groups, we use a two-tiered
locking system. First, a work-item in the producer work-group
that wants to store out to global memory waits for a particular
communication buffer to become available. Once a buffer has
been acquired, that work-item stores its potentially incorrect
values on the buffer and signals the work-item in the con-
sumer work-group to read these values. Once the consumer
work-item reads this signal, it reads the values from the com-
munication buffer and compares them with its private values.
After the consumer work-item verifies that the values are iden-
tical, it executes the store and then frees the communication
buffer for use by another producer work-item.

Any communication using global memory is complicated
by the cache hierarchy and the relaxed-consistency memory
model present on many modern GPUs. AMD GPU L1 caches
are write-through, making all writes globally visible in the L2,
but not necessarily visible in the L1 caches of other CUs. To
solve this issue, we force work-items to read from the L2 cache
by issuing atomic adds with the constant 0. This ensures the
read will be from the backing store and that the most recent,
globally visible value at that address will be returned.

7.3. Performance
Figure 6 shows that Inter-Group RMT has an even wider range
of performance than Intra-Group RMT, from SC, which has
an average slow-down of 1.10x, to BitS, which has an average
slow-down of 9.48x. Performance counters gave no indication
as to why RMT became so expensive for some applications
(mainly BitS, DWT, and FWT).

0.8
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6

Sl
o

w
d

o
w

n

7.35x 9.37x 9.48x

Figure 6: Performance overheads of Inter-Group RMT normal-
ized to the runtime of the original kernel. Some kernels have
extremely large slow-downs due to the high cost of communi-
cation.

7.4. Performance Analysis
To identify the causes of poor performance, we selectively
removed portions of the RMT algorithm to isolate for their
effects. Figure 7 shows the results of our experiments. We
first removed communication code from the RMT algorithm
to measure the cost of inter-work-item communication. We
then modified each group of the original kernel to use the same
number of resources as two Inter-Group RMT groups. This
modification approximates the cost of scheduling twice as
many work-groups on the GPU without adding extra computa-
tion or memory traffic. The remaining overhead of Inter-Group
RMT is the cost of actually executing redundant work-groups
and synchronizing their global memory accesses.

-20%
0%

20%
40%
60%
80%

100%
120%
140%
160%
180%
200%
220%
240%
260%
280%

*B
in

S

B
O

*B
it

S

B
lk

Sc
h

*D
C

T

*D
W

T

*F
W

T

*F
W

M
M N
B

*P
S

*Q
R

S

*R *S
C SF

U
R

N
GO

ve
rh

e
ad

 A
d

d
e

d
 t

o
 K

e
rn

e
l R

u
n

ti
m

e

Doubling Size of work-groups

Adding Redundant Computation

Adding Communication

595% 393% 605%

Figure 7: Each bar represents the additional slow-down added
by each successive augmentation to the original kernel. Nega-
tive contributions indicate a speed-up relative to the previous
modification. Kernels marked with * indicate that the work-
group doubling experiment was performed.

Costs of Inter-work-item Communication: Because Inter-
Group RMT uses global memory for inter-work-item com-
munication, we would expect this cost to be extremely high.
However, Figure 7 shows that for most kernels, communica-
tion is not the main bottleneck; in fact, communication is a
very small proportion of the overall overhead of Inter-Group
RMT. This is a counter-intuitive result, but can be explained

when considering the pre-existing bottlenecks of each kernel.
The number of required output comparisons that Inter-

Group RMT requires scales with the total number of writes
to global memory. Therefore, for applications that have a low
proportion of global writes with respect to kernel computation,
the cost of communication will be low. In BinS, many work-
itemss never execute a global write at all and never require
synchronization or communication.

In all of the applications that do extremely poorly (greater
than 3x slow-down), communication is a large contributing
factor. The reason for such a high overhead relative to other
applications turns out to be pre-existing bottlenecks in the
memory hierarchy. If a kernel spends a high proportion of time
reading, writing, or stalling on memory operations, adding any
extra reads, writes, and atomics can be especially expensive.
For example, the original BitS kernel spent about 72% of its
execution time issuing memory commands and 26% of its time
executing writes. After adding the additional memory traffic
for communication and synchronization, BitS spent almost
94% of its time executing memory operations, and 59% of its
total execution time stalled.

High CU utilization also may amplify this effect. Because
wavefronts executing on a CU share the L1 cache, if we in-
crease the number of memory operations per CU, we may
introduce memory stalls or cause thrashing in the cache. All
applications with low communication overheads also spent a
low proportion of execution time doing memory operations,
wrote a small number of bytes in total to memory, and had a
low proportion of stalls in the memory hierarchy.
CU Under-utilization: One candidate to explain low over-
heads of Inter-Group RMT is CU under-utilization. If an ap-
plication does not launch enough work-groups to saturate all
CUs on the chip, there will be little or no added contention for
CUs. When developing GPU programs for massively parallel
algorithms, it generally is easy to launch enough work-groups
to utilize all CUs; therefore, too few work-groups should not
be considered a realistic situation. For the input sizes used
for testing, the applications caused only two kernels to under-
utilize CUs on the GPU: NBody (NB) and PS, which utilize
only eight and one of twelve available CUs, respectively. Both
perform well under Inter-Group RMT transformations, with
overheads of 1.16x and 1.59x, respectively. However, this
does not explain why applications that fully utilize CUs (BinS,
SC, R, and SF) also do well.
Explaining Less Than 2x Slow-downs: While kernels that
saturate the LDS and compute capabilities of a CU experience
expected 2x overheads after adding redundant computation
(BO, BlkSch, DCT, FW, MM, QRS, URNG), other kernels
experience less than 2x overheads. Kernels like BinS and R are
designed such that not all groups that are scheduled to the GPU
write back to global memory. Therefore, these "ghost" groups
never need to communicate values for output comparisons. If
a kernel is already memory-bound, the computation of these
ghost groups, and their redundant partners, may be hidden

behind other global memory traffic.
SC and SF may benefit from another accidental optimiza-

tion called "slipstreaming" [22]. Slipstreaming is a form of
pre-fetching in which a previous speculative work-item warms
up caches for more efficient execution. Because SC and SF
are both image transformations that modify pixels based on
surrounding pixel values, work-groups in these kernels share
a large amount of reads. Redundant groups in kernels with
such behavior therefore may benefit from a form of slipstream-
ing because redundant groups prefetch data into the cache
hierarchy.
Costs of Doubling the Number of Work-groups: Figure
7 shows the cost of doubling the number of work-groups.
To approximate this cost, we inflated the number of VGPRs
required by the original application to match that required by
two Inter-Group RMT work-groups. For applications whose
Inter-Group RMT versions executed an odd number of work-
groups per CU, this technique could not match the work-group
occupancy required to simulate Inter-Group RMT occupancy,
and so we present results for only a subset of the applications.

Only one application, DCT, was affected significantly by
doubling the number of work-groups. This indicates that for
most kernels, scheduling more groups is not a major bottle-
neck. SC was the only kernel that saw an appreciable speed-up
due to a decrease in utilization and contention among shared
CU resources, an effect discussed in previous sections.

7.5. Summary

The primary findings from our analysis of Inter-Group RMT
are:
• Additional memory traffic caused by communication and

synchronization is extremely expensive if the application
already is bottlenecked by global memory accesses, cache
thrashing, or memory stalls.

• CU under-utilization can allow for relatively low overhead
Inter-Group RMT but is not a realistic scenario for many
production applications.

• If a kernel is compute or LDS throughput-bound, Inter-
Group RMT shows an expected 2x slow-down.

• Kernels that experience slow-downs less than 2x may be
benefiting from "slipstreaming" [22], or from groups that
never write to global memory, which therefore never need to
communicate and can hide their computation behind global
memory latency.

GPUs are designed to run efficiently as many work-groups
as possible in parallel, which typically is achieved by not hav-
ing any ordering constraints or communication among groups.
Because group ordering and inter-group communication is an
inherent feature of Inter-Group RMT, kernel performance can
degrade. Alternative approaches that facilitate more efficient
inter-group communication in GPUs, such as task queuing
(e.g., [13, 31]) or co-scheduling techniques, may alleviate this
bottleneck.

8. Going Beyond OpenCL: Leveraging
Architecture-specific Features

To maintain portability across different architectures, we origi-
nally chose to implement our RMT transformations within the
constraints of the OpenCL specification. However, OpenCL
imposes certain restrictions on how work-items are organized
and executed, and how they communicate with each other, on
the GPU. Even if individual GPU or CPU architectures allow
for more general behaviors, their OpenCL implementations
may hide these capabilities.

a b c d v0 … x

t0 t1 t2 t3 t63

b b d d v0 … x

swizzle

Figure 8: The behavior of the swizzle instruction, used for
inter-work-item communication. Values in V0 from odd lanes
(t1, t3, etc.) are duplicated into even lanes (e.g., after the swiz-
zle instruction, work-item 1s value b now can be read by work-
item 0).

By taking advantage of architecture-specific capabilities, we
may be able to reduce the overheads of RMT without affecting
the correctness or portability of the original application. While
these capabilities may improve performance, they are not
portable, but could be disabled on architectures that do not
support them.

One example of an AMD GPU-specific capability not ex-
posed by OpenCL is the swizzle [6] instruction. A swizzle
allows the re-organization of 32-bit values within a vector
register. OpenCL allows intra-group, inter-work-item com-
munication only via local memory. However, because we
can guarantee that Intra-Group RMT work-item pairs execute
within a single wavefront, and therefore share vector registers,
we can use the swizzle instruction to share values directly via
the VRF. Implementing this fast inter-work-item communica-
tion may result in lower latency as well as reduced resource
pressure by eliminating the need for a local memory commu-
nication buffer.

Figure 8 shows an example of how communication can
occur using the swizzle instruction in a wavefront’s vector reg-
ister. Registers in the VRF are organized into 64, 32-bit lanes
in which each work-item within a wavefront reads and writes
values to single lane. The swizzle instruction allows a wave-
front to re-organize the values into different lanes, therefore
providing a way to pass private values between work-items
without the need for local memory.

By modifying the low-level GPU shader compiler to per-
form inter-work-item communication via the swizzle instruc-
tion, we saw significant speed-ups for kernels with high com-
munication costs. The results are shown in Figure 9. BO,
DWT, PS, and QRS all see considerable improvements in
performance. FW and NB show decreases in performance,
possibly because of the overhead of added casting and pack-

0.8
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

B
in

S

B
O

B
it

S

B
lk

Sc
h

D
C

T

D
W

T

FW
T

FW M
M N
B PS

Q
R

S R SC SF

U
R

N
G

Sl
o

w
d

o
w

n

Intra-Group+LDS Intra-Group+LDS FAST Intra-Group-LDS Intra-Group-LDS FAST

Figure 9: Intra-Group RMT results before and after implement-
ing fast inter-work-item communication via the VRF.

ing/unpacking of vectors necessary for communication via the
32-bit registers.

This example shows that if we allow our implementation to
go beyond the OpenCL specification, we can realize signifi-
cant performance improvements in some cases. This motivates
further research into hardware and compiler framework modi-
fications that further decrease the overheads of RMT.

9. Conclusions and Future Work
In this work, we evaluated performance and power overheads
of three automatic techniques for software-implemented re-
dundant multithreading on graphics processing units targeting
different spheres of replication. The performance of GPU
RMT depends on the unique behaviors of each kernel and the
required SoR, but generally favors kernels that under-utilize
resources within compute units. Some kernels are even acceler-
ated by RMT transformations due to accidental optimizations
and the relief of some fixed, per-CU resource bottlenecks.

Increasing the required SoR generally involved a perfor-
mance trade-off. The larger the granularity of replication in
OpenCL, the larger the SoR. However, this increase in protec-
tion from transient faults often resulted in a reduced ability
to take advantage of under-utilization on the chip as well as
higher inter-work-item communication and synchronization
costs.

We evaluated a hardware mechanism to reduce communi-
cation overheads by implementing fast inter-work-item com-
munication in the vector register file rather than local memory.
This change improved performance in kernels with large com-
munication overheads; however, such a solution is not exposed
in the OpenCL specification, motivating further research into
architecture-specific capabilities that may help decrease the
overheads of RMT.

10. Acknowledgments
We thank the anonymous reviewers for their insightful com-
ments and suggestions. We also thank John Kalamatianos,
Daniel Lowell, Mark Wilkening, Bolek Ciesielski, and Tony
Tye for for their valuable inputs.

References
[1] LLVM. [Online]. Available: http://llvm.org
[2] S. Ahern, A. Shoshani, K.-L. Ma, A. Choudhary, T. Critchlow,

S. Klasky, V. Pascucci, J. Ahrens, E. W. Bethel, H. Childs, J. Huang,

K. Joy, Q. Koziol, G. Lofstead, J. S. Meredith, K. Moreland, G. Os-
trouchov, M. Papka, V. Vishwanath, M. Wolf, N. Wright, and K. Wu,
Scientific Discovery at the Exascale, a Report from the DOE ASCR
2011 Workshop on Exascale Data Management, Analysis, and Visual-
ization, 2011.

[3] AMD. AMD CodeXL. Available: http://developer.amd.com/
tools-and-sdks/heterogeneous-computing/codexl/

[4] AMD. AMD Graphics Cores Next (GCN) Architecture. Available: http:
//www.amd.com/us/Documents/GCN_Architecture_whitepaper.pdf

[5] AMD. OpenCL Accelerated Parallel Processing (APP) SDK. Available:
http://developer.amd.com/tools-and-sdks/heterogeneous-computing/
amd-accelerated-parallel-processing-app-sdk/downloads/

[6] AMD. (2012) Southern Islands Series Instruction Set Architecture.
Available: http://developer.amd.com/wordpress/media/2012/12/AMD_
Southern_Islands_Instruction_Set_Architecture.pdf

[7] J. Chung, I. Lee, M. Sullivan, J. H. Ryoo, D. W. Kim, D. H. Yoon,
L. Kaplan, and M. Erez, “Containment domains: A scalable, efficient,
and flexible resilience scheme for exascale systems,” in Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’12. Los Alamitos, CA,
USA: IEEE Computer Society Press, 2012, pp. 58:1–58:11. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389075

[8] C. Constantinescu, “Trends and Challenges in VLSI Circuit
Reliability,” IEEE Micro, vol. 23, no. 4, pp. 14–19, Jul. 2003.
Available: http://dx.doi.org/10.1109/MM.2003.1225959

[9] M. Dimitrov, M. Mantor, and H. Zhou, “Understanding software
approaches for GPGPU reliability,” in Proceedings of 2nd Workshop
on General Purpose Processing on Graphics Processing Units, ser.
GPGPU-2. New York, NY, USA: ACM, 2009, pp. 94–104. Available:
http://doi.acm.org/10.1145/1513895.1513907

[10] D. Foley, M. Steinman, A. Branover, G. Smaus, A. Asaro, S. Punyamur-
tula, and L. Bajic, “AMD’s Llano Fusion APU,” in "IEEE/ACM Sympo-
sium on High Performance Chips (HOTCHIPS)", 2011. Available: http:
//www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.19.
9-Desktop-CPUs/HC23.19.930-Llano-Fusion-Foley-AMD.pdf

[11] M. A. Gomaa and T. N. Vijaykumar, “Opportunistic Transient-Fault
Detection,” in Proceedings of the 32nd Annual International
Symposium on Computer Architecture, ser. ISCA ’05. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 172–183. Available:
http://dx.doi.org/10.1109/ISCA.2005.38

[12] I. S. Haque and V. S. Pande, “Hard data on soft errors: A large-scale
assessment of real-world error rates in gpgpu,” in Proceedings
of the 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, ser. CCGRID ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 691–696. Available:
http://dx.doi.org/10.1109/CCGRID.2010.84

[13] HSA Foundation. Heterogeneous System Architecture Specification.
Available: http://hsafoundation.com/standards/

[14] J. S. Hu, F. Li, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and
M. J. Irwin, “Compiler-Directed Instruction Duplication for Soft Error
Detection,” in Proceedings of the Conference on Design, Automation
and Test in Europe - Volume 2, ser. DATE ’05. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 1056–1057. Available:
http://dx.doi.org/10.1109/DATE.2005.98

[15] H. Jeon and M. Annavaram, “Warped-dmr: Light-weight error
detection for gpgpu,” in Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO ’12. Washington, DC, USA: IEEE Computer Society, 2012,
pp. 37–47. Available: http://dx.doi.org/10.1109/MICRO.2012.13

[16] D. Kinniment, I. L. Sayers, and E. G. Chester, “Design of a reliable
and self-testing VLSI datapath using residue coding techniques,” Com-
puters and Digital Techniques, IEE Proceedings E, vol. 133, no. 3, pp.
169–179, 1986.

[17] M. Lovellette, K. Wood, D. L. Wood, J. Beall, P. Shirvani, N. Oh, and
E. McCluskey, “Strategies for fault-tolerant, space-based computing:
Lessons learned from the ARGOS testbed,” in Aerospace Conference
Proceedings, 2002. IEEE, vol. 5, 2002, pp. 5–2109–5–2119 vol.5.

[18] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailed
design and evaluation of redundant multithreading alternatives,”
in Proceedings of the 29th Annual International Symposium
on Computer Architecture, ser. ISCA ’02. Washington, DC,
USA: IEEE Computer Society, 2002, pp. 99–110. Available:
http://dl.acm.org/citation.cfm?id=545215.545227

[19] S. Mukherjee, Architecture Design for Soft Errors. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2008.

[20] R. Nathan and D. J. Sorin, “Argus-D: A Low-Cost Error Detec-
tion Scheme for GPGPUs,” ser. Workshop on Resilient Architectures
(WRA), Atlanta, GA, 2010.

[21] N. Oh, P. Shirvani, and E. McCluskey, “Error detection by duplicated
instructions in super-scalar processors,” Reliability, IEEE Transactions
on, vol. 51, no. 1, pp. 63–75, 2002.

[22] Z. Purser, K. Sundaramoorthy, and E. Rotenberg, “Slipstream Memory
Hierarchies,” Tech. Rep., 2002.

[23] M. K. Qureshi, O. Mutlu, and Y. N. Patt, “Microarchitecture-based
introspection: a technique for transient-fault tolerance in micropro-
cessors,” in In Proceedings of the 2005 International Conference on
Dependable Systems and Networks (DSN 2005, 2005, pp. 434–443.

[24] S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection
via simultaneous multithreading,” SIGARCH Comput. Archit.
News, vol. 28, no. 2, pp. 25–36, May 2000. Available:
http://doi.acm.org/10.1145/342001.339652

[25] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-conscious
wavefront scheduling,” in Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO ’12. Washington, DC, USA: IEEE Computer Society, 2012,
pp. 72–83. Available: http://dx.doi.org/10.1109/MICRO.2012.16

[26] J. W. Sheaffer, D. P. Luebke, and K. Skadron, “The visual
vulnerability spectrum: characterizing architectural vulnerability
for graphics hardware,” in Proceedings of the 21st ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware, ser.
GH ’06. New York, NY, USA: ACM, 2006, pp. 9–16. Available:
http://doi.acm.org/10.1145/1283900.1283902

[27] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi,
“Modeling the Effect of Technology Trends on the Soft Error Rate
of Combinational Logic,” in Proceedings of the 2002 International
Conference on Dependable Systems and Networks, ser. DSN ’02.
Washington, DC, USA: IEEE Computer Society, 2002, pp. 389–398.
Available: http://dl.acm.org/citation.cfm?id=647883.738394

[28] A. Shye, T. Moseley, V. Reddi, J. Blomstedt, and D. Connors, “Using
process-level redundancy to exploit multiple cores for transient fault
tolerance,” in Dependable Systems and Networks, 2007. DSN ’07.
37th Annual IEEE/IFIP International Conference on, June 2007, pp.
297–306.

[29] J. Tan and X. Fu, “Rise: improving the streaming processors reliability
against soft errors in gpgpus,” in Proceedings of the 21st international
conference on Parallel architectures and compilation techniques,
ser. PACT ’12. New York, NY, USA: ACM, 2012, pp. 191–200.
Available: http://doi.acm.org/10.1145/2370816.2370846

[30] The Khronos Group. The OpenCL Specification. Available: http:
//www.khronos.org/registry/cl/specs/opencl-1.2.pdf

[31] S. Tzeng, B. Lloyd, and J. D. Owens, “A GPU Task-Parallel Model
with Dependency Resolution,” Computer, vol. 45, no. 8, pp. 34–41,
2012.

[32] T. N. Vijaykumar, I. Pomeranz, and K. Cheng, “Transient-fault
recovery using simultaneous multithreading,” in Proceedings of the
29th Annual International Symposium on Computer architecture, ser.
ISCA ’02. Washington, DC, USA: IEEE Computer Society, 2002, pp.
87–98. Available: http://dl.acm.org/citation.cfm?id=545215.545226

[33] M. Villmow. AMD OpenCL Compiler. Available: http://llvm.org/
devmtg/2010-11/Villmow-OpenCL.pdf

[34] C. Wang, H.-s. Kim, Y. Wu, and V. Ying, “Compiler-Managed
Software-based Redundant Multi-Threading for Transient Fault
Detection,” in Proceedings of the International Symposium on
Code Generation and Optimization, ser. CGO ’07. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 244–258. Available:
http://dx.doi.org/10.1109/CGO.2007.7

[35] K. S. Yim, C. Pham, M. Saleheen, Z. Kalbarczyk, and R. Iyer,
“Hauberk: Lightweight silent data corruption error detector for
gpgpu,” in Proceedings of the 2011 IEEE International Parallel &
Distributed Processing Symposium, ser. IPDPS ’11. Washington,
DC, USA: IEEE Computer Society, 2011, pp. 287–300. Available:
http://dx.doi.org/10.1109/IPDPS.2011.36

[36] Y. Zhang, S. Ghosh, J. Huang, J. W. Lee, S. A. Mahlke, and D. I.
August, “Runtime asynchronous fault tolerance via speculation,” in
Proceedings of the Tenth International Symposium on Code Generation
and Optimization, ser. CGO ’12. New York, NY, USA: ACM, 2012,
pp. 145–154. Available: http://doi.acm.org/10.1145/2259016.2259035

