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Abstract

As the semiconductor industry keeps evolving at the pace predicted by Moore’s Law, computer

system architects are facing increasing challenges from the three major design constraints: per-

formance, power, and reliability. Thermal constraints from a reasonable cooling cost do not scale

well as technology evolves. The dwindling scaling on threshold voltage leads to a slower pace of

supply voltage scaling. These two effects lead to an increasing power density in current and future

technology generations. Reliability has emerged as a primary design constraint due to the smaller

feature size and generally lower supply voltage for electronic devices. Transient errors caused by

high-energy particle strike and voltage noises are expected to increase significantly in frequency.

Performance improvement becomes more challenging for future architectures with limitations set

by the power and the resilience constraints.

Integration of accelerators to create heterogeneous processors is becoming more common for

both power and performance reasons. However, this adds one more dimension to the design space

that is already complex due to technology variants, system organizations, application’s variability,

and so on. Therefore, high-level models are essential for system designers to explore the design

space and make decisions in a timely manner. Additionally, the three design constraints compete

with each other. For example, resilience-aware techniques, such as DMR and TMR, are expensive

in terms of power and performance, low-power designs usually come with a price of lower speed.

Consequently, it requires system designers to make trade-offs by considering all the three design

constraints at the same time.

To address these challenges, we (1) propose an analytical modeling framework called Lumos

that is capable of modeling power and performance for heterogeneous architectures with hardware
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accelerators. Then we (2) use Lumos to explore the design space composed of CPU cores and

accelerators, revealing important scaling trend for future heterogeneous architectures. We further

(3) propose a rapid modeling framework to characterize resilience across a range of applications

in DSP, and image processing domains; And finally we (4) propose an integrated framework to

optimize energy-efficiency by trading off design constraints of power, performance and resilience.
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Chapter 1

Introduction

As the semiconductor industry keeps evolving at the pace predicted by Moore’s Law [53,54], com-

puter system architects are facing increasing challenges from the three major design constraints:

performance, power, and reliability.

First of all, performance has always been a primary constraint for system architects. However,

it is getting increasingly hard to improve the performance, especially the performance of a single

core. Chip-multiprocessors (CMP) have been widely accepted to be promising to deliver scalable

performance over generations. Nevertheless, its effectiveness has been largely reduced due to phys-

ical constraints arising from recent technology scaling trends (this will be discussed in detail later).

On the other hand, hardware specialization is another promising approach to achieve better per-

formance in an efficient way. Unfortunately, the heterogeneity among conventional cores and the

specialized hardware increases the design complexity significantly, not to mention the substantially

higher engineering cost associated with the customized hardware.

Secondly, power consumption has been widely accepted as another first-class constraint ever

since early this century [10]. Thermal constraints from a reasonable cooling cost set the total sys-

tem power, also known as the “Power Wall,” which does not scale well as the technology evolves.

The recent trend in technology scaling poses even more challenges on power constraints. Thresh-

old voltage scales down slowly in current and future technology generations to keep leakage power

under control. The dwindling scaling on threshold voltage leads to a slower pace of supply voltage

scaling. Since the switching power scales as CV 2 f , Dennard Scaling can no longer be maintained,

1



Chapter 1. Introduction 2

and power density keeps increasing. Furthermore, the cooling cost and on-chip power delivery im-

plications limit the increase of a chip’s thermal design power (TDP). As Moore’s Law continues to

double transistor density across technology generations, total power consumption will soon exceed

TDP, and if high supply voltage must be maintained, future chips will only support a small fraction

of active transistors, leaving others inactive, a phenomenon referred to as “dark silicon” [26, 84].

Last but not least, reliability has been evolved to be a primary constraint for system designers,

which traditionally is a serious concern only for mission-critical systems, such as unmanned aerial

vehicles (UAVs), or high-end server systems, such as IBM POWER series processors. The transis-

tor density keeps doubling every eighteen months, as Moore’s Law predicts. The growing density

results in a higher probability of manufacturing imperfection and raises the likelihood of a chip

to fail. Additionally, technology scaling keeps delivering smaller feature size and reduced supply

voltage for electronic devices. Single-event upsets (SEUs) caused by high-energy particle strike are

exacerbated at lower voltages, due to the critical charge (Qcrit) required to cause a latch or SRAM

bit flip diminishes correspondingly. Similarly, transient errors caused by voltage noise also increase

in frequency under low-voltage operations. To make the situation even worse, errors are expensive

to detect and recover in terms of power and performance. Redundancy-based techniques, such as

dual-modular redundancy (DMR) and triple-modular redundancy (TMR), suffer from considerable

overheads in system power and area. On the other hand, checkpoint-based techniques have non-

negligible run-time overhead, and could potentially prevent forward progress if the soft error rate

(SER) is too high. Meanwhile, extra energy consumed by recovery hurts the overall energy effi-

ciency of the system. This leaves computer systems with worse performance as well as even more

pressure on an already stringent power budget.

Integration of accelerators to create heterogeneous processors is becoming more common for

both power and performance reasons. However, this adds one more dimension to the design space

that is already complex due to technology variants, system organizations, applications variability,

and so on. As a result, high-level models are essential for system designers to explore the design

space and make decisions in a timely manner. Additionally, the three design constraints compete

with each other. For example, resilience-aware techniques, such as DMR and TMR, are expen-
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sive in terms of power and performance; low-power designs are implemented at a price of lower

speed. Therefore, it requires system designers to make trade-offs by considering all the three design

constraints at the same time.

To address these challenges, we propose a set of frameworks to model power-efficiency, re-

silience, and performance for future heterogeneous multi-core systems. The proposed frameworks

are flexible and easily integrated to perform holistic analysis regarding all design constraints. Our

approaches consist of the following major research tasks:

1. Design and implement an analytical modeling framework that is capable of modeling both

power and performance for heterogeneous architecture with hardware accelerators under dif-

ferent technology variants.

2. Explore the design space composed of conventional CPU cores and hardware accelerators,

revealing potential trends of system designs for future heterogeneous architectures.

3. Propose an approach to analyze and evaluate accelerator-rich heterogeneous architectures

exploiting an advanced optimization algorithm.

4. Design and implement a rapid resilience modeling framework based on application-level

fault injections, then characterize resilience across a range of applications in DSP, and image

processing domains.

5. Propose an integrated framework to optimize energy-efficiency by trading off design con-

straints of power and resilience in the context of real-time embedded processing.

1.1 Lumos: An Analytical Modeling Framework for Design Space

Exploration on Heterogeneous Computer Architecture

Quantitative models for power and performance play an essential role in computer architecture

research. As a result, researchers have proposed enormous amount of models through decades’
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research within the field, they vary in complexities and accuracies. Theoretically, direct measure-

ments on a real machine are considered as the most accurate modeling approach, however, it comes

with the limitation that quite a few architectural parameters can be changed. It is almost impossible

to use this approach to explore innovative architectures nor to experiment with new features on

existing architecture. The next level of approaches exploits architecture simulators to adopt power

and performance of the target computer systems. Although simulators are popular for architectural

research and development in the last couple of decades [2, 7, 10], they suffer from orders of mag-

nitude slower simulation throughput than native execution. And it is prohibitively expensive to use

simulation-based approaches to do a broad exploration in a large design space.

Analytical models based on Amdahl’s Law [1] have gained popularity recently [26, 35], pri-

marily for the interest of design space exploration of future computer architectures. These efforts

in early-stage exploration are not aimed at proposing specific architectural features. Instead, their

goals are trying to find important implications for architecture designs. For example, in [26], au-

thors showed that an increasing amount of die area will be inactive, a.k.a. “dark silicon,” due to

the more stringent relative power budget as the manufacturing technology advancing to the next

couple of generations. The observation advocated a shift of focus from multi-core scaling to more

power-efficient computing units (e.g. hardware accelerators).

In Chapter 2, we propose an analytical modeling framework, called “Lumos”, that is capable of

modeling the power and the performance of conventional CPU cores, as well as hardware accelera-

tors. Using “Lumos”, we explore the design trade-offs among CPU cores and various accelerators.

We show that despite the performance benefits from operating CPU cores at a substantially lower

supply voltage, it is even more promising to include hardware accelerators as the building block

in heterogeneous systems. Furthermore, in Chapter 3, we design a systematic approach to analyze

accelerator-rich heterogeneous architectures with regard to domain-specific and general-purpose

applications. From our extensive design space exploration, we show that reconfigurable accelera-

tors are preferable over dedicated accelerators when overall performance across a set of applications

is of particular interest.
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1.2 AFI: Application-Level Fault Injection

Due to technology scaling, reliability has emerged as a first-order design constraint for mainstream

computer systems. The shrinking feature size makes circuits more vulnerable to permanent and

transient faults. Permanent faults are caused by manufacturing imperfection as well as the aging

effect in transistors. Transient faults, also known as soft errors, are due to high-energy particle

strikes [4] and voltage droops [58]. Both types of faults are important from the perspective of

system reliability. However, in this dissertation, we mainly focus on transient faults since they are

more common.

Fortunately, a given pair of a machine architecture and an application offers significant masking

of effects in the face of spurious bit-flips. As a result, the raw soft error rate (SER) of processor

chips – even though it may increase with device density and lower voltages – is at least partially

offset by large degrees of masking. For a given machine, different applications or phases within

an application workflow present different degrees of masking. It is also true that despite errors in

a particular program output, consuming applications can often actuate actions accurately, thereby

providing error-free outcome at the end. For example, an image processing and recognition algo-

rithm can tolerate numerous pixel errors in the input data that may have been produced by an earlier

image-scanning step.

To quantify the SER with regard to various applications, in Chapter 4, we present a framework

based on a software-implemented fault injection (SWIFI) tool, called AFI. It features a runtime-

independent triggering mechanism to enable flexible parallel experiment runs, as well as a mecha-

nism to characterize only the region-of-interest (ROI) of an application through source code anno-

tation. The tool is built on top of standard debugging interface and performance counters which are

available in most of the modern operating systems and processors. AFI is currently implemented on

AIXTMfor POWER7 processor for demonstration purpose. It can be easily ported to other platforms

such as X86 on Linux. Using AFI, We characterize the transient error tolerance of a set of appli-

cations from DSP and image processing domains. Various error injection models are used to see if

the relative ordering of applications gets changed while measuring resilience metrics. Additionally,
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we show that error tolerance is a strong function of the compiler optimization level. This provides a

static optimization knob for application scientists in the quest to optimize performance/watt while

meeting resilience targets. Finally, we explain changes in the degree of error tolerance by analyzing

simple workload metrics like the dynamic instruction frequency mix.

1.3 Resilience-aware Optimization for Power-Efficiency with Real-

Time Constraints

A powerful control parameter for power management of embedded processor systems is dynamic

voltage-frequency scaling (DVFS). However, soft error rates (SERs) are known to increase sharply

as the supply voltage is scaled downward [70]. Hence, in order to preserve system resilience levels,

it is important to apply voltage scaling carefully, keeping in mind the varying levels of vulnerability

to SER within an application’s execution profile. On the other hand, overclocking or turbo-boosting

(with higher voltages applied if/as necessary) to meet the real-time deadlines, comes at the cost of

higher power (or current) density and temperature (as well as higher gate-oxide field stress), which

results in higher hard-failure rates.

In Chapter 5, we consider a class of embedded systems that require high levels of power-

performance efficiency while meeting mission-critical reliability specifications and real-time per-

formance targets. Such systems require an energy optimization protocol that is cognizant of the

variable resiliency needs and properties of the executed application. A representative example of

such an embedded system of interest is a single unmanned aerial vehicle (UAV) or a swarm of

such UAVs. These are typically engaged in remote sensing of ground images, for the purposes

of reconnaissance, object recognition/tracking and tactical response. We propose PEARL, a novel

software modeling framework that enables users to: (a) statically prepare application workflows

for energy-optimized resilience; and (b) explore run-time deployment options in targeted embed-

ded systems. The overall goal is to maximize performance per watt, while meeting real-time dead-

lines and resilience-related constraints (dictated by effective SER and maximum power dissipation).

PEARL stands for Power Efficient And Resilient embedded processing with reaL-time constraints.
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1.4 Summary

By finishing these research tasks, I contribute to a set of modeling frameworks with regard to three

important design factors: power, performance, and resilience. Lumos/Lumos+ provide mecha-

nisms for system designers to rapidly explore design points of future heterogeneous architectures,

and make early decisions before spending significant efforts on a single path. AFI helps applica-

tion developer to better understand applications’ resilience. System designers can also benefit from

resilience characterization by applying application-specific tuning algorithms. Finally, we demon-

strate an optimization scenario where trade offs are made among power, performance, and resilience

to achieve the best energy efficiency while still maintain the real-time deadline.



Chapter 2

Lumos: An Analytical Modeling Framework for

Multiprocessors

Threshold voltage scales down more slowly in current and future technology nodes to keep leakage

power under control. In order to achieve fast switching speed, it is necessary to keep transistors

operating at a considerably higher voltage than their threshold voltage. Therefore, the dwindling

scaling on threshold voltage leads to a slower pace of supply voltage scaling. Since the switching

power scales as CV 2 f , Dennard Scaling can no longer be maintained, and power density keeps

increasing. Furthermore, cooling cost and on-chip power delivery implications limit the increase

of a chip’s thermal design power (TDP). As Moore’s Law continues to double transistor density

across technology nodes, total power consumption will soon exceed TDP. If high supply voltage

must be maintained, future chips will only support a small fraction of active transistors, leaving

others inactive, a phenomenon referred to as “dark silicon” [26, 84].

Since dark silicon poses a serious challenge for conventional multi-core scaling [26], re-

searchers have tried different approaches to cope with dark silicon, such as “dim silicon” [36] and

customized accelerators [79]. Dim silicon, unlike conventional designs working at nominal sup-

ply, aggressively lowers supply voltage close to the threshold to reduce dynamic power. The saved

power can be used to activate more cores to exploit more parallelism, trading off per-core perfor-

mance loss with better overall throughput [27]. However, with near-threshold supply, dim silicon

designs suffer from diminishing throughput returns as the core number increases. On the other

8
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hand, customized accelerators are attracting more attention due to their orders of magnitude higher

power efficiency than general-purpose processors [16, 32]. Although accelerators are promising in

improving performance with less power consumption, they are built for specific applications, have

limited utilization in general-purpose applications, and sacrifice die area that could be used for more

general-purpose cores. Poorly-utilized die area would be very costly if there are more efficient so-

lutions, in terms of opportunity cost. Therefore, the utilization of each incremental die area must be

justified with a concomitant increase in the average selling price (ASP).

To investigate the performance potential of dim cores and accelerators, we have developed a

framework called Lumos, which extends the well-known Amdahl’s Law, and is accompanied by

a statistical workload model. We investigate two types of accelerators, application-specific logic

(ASIC) and RL. When we refer to RL, we generically model both fine-grained reconfigurability

such as FPGA and coarse-grained such as Dyser [31]. We also assume the reconfiguration overhead

is overwhelmed by sufficient utilization of each single configuration. In this chapter, we show that

• Systems with dim cores achieve up to 2x throughput over conventional CMPs, but with di-

minishing returns.

• Hardware accelerators, especially RL, are effective to further boost the performance of dim

cores.

• Reconfigurable logic is preferable over ASICs on general-purpose applications, where kernel

commonality is limited.

• A dedicated fixed logic ASIC accelerator is beneficial either when: 1) its targeted kernel has

significant coverage (e.g. twice as large as the total of all other kernels), or 2) its speedup

over RL is significant (e.g. 10x-50x).

This work has been published in IEEE Micro [87].
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2.1 Related Work

The power issue in future technology scaling has been recognized as one of the most important de-

sign constraints by architecture designers [56,84]. Esmaeilzadeh et al. performed a comprehensive

design space exploration on future technology scaling with an analytical performance model in [26].

While primarily focusing on maximizing single-core performance, they did not consider lowering

supply voltage, and concluded that future chips would inevitably suffer from a large portion of

dark silicon. In [9], Borkar and Chien indicated potential benefits of near-threshold computing

with aggressive voltage-scaling to improve the aggregate throughput. We evaluate near-threshold

in more detail with the help of Lumos calibrated with circuit simulations. In [36], Huang et al.

performed a design space exploration for future technology nodes. They recommended dim sili-

con and briefly mentioned the possibility of near-threshold computing. Our work exploits circuit

simulation to model technology scaling and evaluates in detail the potential benefit of improving

aggregate throughput by dim silicon and near-threshold computing. In short, Lumos allows de-

sign space exploration for cores running at near-threshold supply factoring in the impact of process

variations.

Another set of studies has evaluated the benefit of hardware accelerators as a response to dark

silicon. Chung et al. studied the performance potentials of GPU, FPGA, and ASIC in [16], re-

garding physical constraints of area, power, and memory bandwidth. Although a limited number

of applications were studied in their work, our work corroborates that reconfigurable accelerators,

such as FPGA, are more competitive than dedicated ASICs. Wu and Kim did a study across several

popular benchmark suites regarding the targets to be accelerated in [91]. Their work suggested

a large number of dedicated accelerators are required to achieve a moderate speedup due to the

minimal functional level commonality in benchmark suites like SPEC2006. This is consistent with

our observation that dedicated fixed logic accelerators are less beneficial due to limited utilization

across applications in a general-purpose workload, and the importance of efficient, reconfigurable

accelerators. In [81], Tseng and Brooks build an analytical model to study trade-offs between la-

tency and throughput performance under different power budgets and workloads. However, the



Chapter 2. Lumos: An Analytical Modeling Framework for Multiprocessors 11

model lacks the support of voltage and frequency scaling, especially near threshold and the capabil-

ity of hardware accelerator performance modeling, limiting the design space explorations of future

heterogeneous architectures. In [96], Zidenberg et al. propose MultiAmdahl model to study the

optimal allocations to each type of computational units, including conventional cores and u-cores.

The MultiAmdahl model cannot support voltage scaling and near threshold effects. Therefore,

its design space exploration capability is limited to heterogeneous systems under dark/dim silicon

projections. Lumos takes a broader view of these issues, by providing a highly configurable tool

for exploring the design space composed of conventional cores, various forms of accelerators, and

low-voltage operation, with various power constraints and various workload characteristics.

2.2 Lumos Framework

The design space of heterogeneous architectures with accelerators is too huge to use extensive

architectural simulation in a feasible way. To enable rapid design space explorations, we build Lu-

mos, a framework putting together a set of analytical models for power-constrained heterogeneous

many-core architectures with accelerators. Lumos extends the simple Amdahl’s Law model by Hill

and Marty [35] with physical scaling parameters calibrated by circuit simulations with a modified

Predictive Technology Model [12]. Lumos is composed of:

1. a technology model for inter-technology scaling;

2. a model for voltage-frequency scaling;

3. a model evaluating power and performance of conventional cores;

4. a model evaluating power and performance of accelerators;

5. a model for workloads and applications.

2.2.1 Technology Modeling

Technology scaling is built based on the modified PTM, which tunes transistor models with more

up-to-date parameters extracted from recent publications [12]. Two types of technology variants
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are investigated, a high-performance process and a low-power process. The primary difference is

that low-power processes have a higher threshold, as well as a higher nominal supply voltage, than

high-performance processes for every single technology node, as shown in 2.1.

Table 2.1: Nominal supply voltage (Vnom) and
threshold voltage (Vt) for each PTM technology
variants. Voltage units are volt (V ).

45nm 32nm 22nm 16nm

High Vnom 1.0 0.9 0.8 0.7

Perf. Vt 0.424 0.466 0.508 0.505

Low Vnom 1.1 1.0 0.95 0.9

Power Vt 0.622 0.647 0.707 0.710

Inter-technology scaling mainly deals with scaling ratios for the frequency, the dynamic power,

and the static power. From the circuit simulation, we compare the frequency, the dynamic power,

and static power at the nominal supply for each of technology nodes. We assume CPU cores will

have the same scaling ratio as the circuit we simulated. As shown in Table 2.2, the scaling factors of

high-performance variants are normalized to 45nm, while the scaling factors of low-power variants

are normalized to their high-performance counterparts.

Table 2.2: Technology scaling for high-performance (HP) processes and low-power (LP) processes.
The area scaling is assumed to be ideal so that the area of a single core shrinks by 2x per technology
node.

Tech. Freq. Switch Static
(nm) Power Power

45 1.0 1.0 1.0
32 0.95 0.49 0.31
22 0.79 0.21 0.12
16 0.66 0.09 0.13

(a) HP, normalized to 45nm

Tech. Freq. Switch Static
(nm) Power Power

45 0.27 0.30 0.0084
32 0.28 0.32 0.042
22 0.26 0.34 0.23
22 0.26 0.40 0.49

(b) LP, normalized to HP counyerparts
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2.2.2 Frequency Modeling

Voltage-to-frequency scaling is modeled by interpolating empirical results from circuit simulations.

We use a 32-bits ripple carry adder (RCA) to emulate the core frequency changes subject to various

supply voltages. The adder is synthesized with a standard-cell library [38] at 45nm. Sizes of

transistors in the post-synthesized net-list are scaled to other technology nodes. These circuit net-

lists are then simulated using a modified version of Predictive Technology Model (PTM) for the

bulk devices. Note that Lumos is not limited to the bulk devices, but can be extended to other

technologies by applying the same RCA characterization with the target technology library. More

specifically, Lumos can be extended with minimal efforts to support FinFET devices by using the

latest PTM from [75].

The switching speed of transistors scales exponentially to the threshold voltage when it is oper-

ating at near-threshold voltage; therefore, the working frequency of a circuit in the near-threshold

region is extremely sensitive to the threshold voltage. To investigate the fluctuation of frequency

subject to process variations, the test circuit has been simulated with Monte-Carlo analysis, assum-

ing a standard Gaussian distribution with 3-σ on the threshold voltage of transistors.

The results for 16nm are shown in Figure 2.1. For the high-performance process plotted in

Figure 2.1a, the maximum performance penalty due to process variations is less than 10% when

the circuit is operated at higher voltages around 1V . However, when supply voltage approaches the

threshold, frequency penalty increases significantly to more than 90%, which means an order of

magnitude slowdown on frequency. A similar trend is observed in Figure 2.1b for the low-power

process, though the low-power process suffers from a larger percentage of frequency loss than the

high-performance process even at a higher supply voltage, e.g. 1V.
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Figure 2.1: Voltage-frequency scaling characterization on a 32-bits ripple carry adder (RCA) simu-
lated at 16nm, subjecting to process variation (VarMin). Vt is the threshold voltage, and Vnom is the
nominal supply voltage.

2.2.3 Core Modeling

2.2.3.1 Power

Core power consumption is modeled as two major sources, dynamic power due to transistor switch-

ing and static power due to leakage. Therefore, per-core power is given by

Ptotal = Pdynamic +Pleakage (2.1)

Generally speaking, dynamic power is given by

Pdynamic = α ·Ce f f ·V 2
dd · f (2.2)

where α is the activity factor, Ce f f is the effective capacitance, Vdd is supply voltage, and f is

the core running frequency. We assume a constant activity factor and effective capacitance when

the core frequency is scaled with various supply voltages. Therefore, dynamic power changes

quadratically to supply voltage and linearly to frequency. According to [11], the static power of a
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system is given by

Pleakage =Vdd ·N · kdesign · Îleak (2.3)

where Vdd is supply voltage, N is the number of transistors, kdesign is a device-specific constant,

and Îleak is the normalized per-transistor leakage current. We assume the normalized per-transistor

leakage current is proportional to the leakage current of a single transistor, which , according to [64],

is given by

Ileak = I0 ·10
Vgs−Vt+ηVds

S ·
(

1− e−
Vds
Vth

)
(2.4)

where Vt is the threshold voltage, η is the drain-induced barrier lowering factor (DIBL), Vth is

the thermal voltage, and n is a process-dependent constant. The thermal voltage at room temperature

is around 28mV , which is far less than the supply voltage of interest in this project, therefore,

e−Vds/Vt ≈ 0. Because the transistor is at its static state when considering the static leakage power,

Vgs and Vds is roughly proportional to the supply voltage. As a result, the above equation can be

reduced to

Îleak ∝ 10
Vdd

Ŝleak (2.5)

where Ŝleak is the aggregate scaling coefficient derived from fittings to the simulated results.

2.2.3.2 Performance

Lumos uses aggregate throughput under physical constraints as the primary performance metric.

For the aggregate throughput performance (p fs), we model it with Amdahl’s Law as shown in

Equation 2.6

Speedup =
1

1−ρ

Sserial
+ ρ

n·Sparallel

(2.6)
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where ρ is the parallel ratio of the studied workload, Sserial is the serial part speedup over a

baseline core, Sparallel is the per-core speedup when the system works in parallel mode, and n is

the number of active cores running in parallel. For Sserial, only one core is active. In this case,

the core is boosted to 1.3x nominal supply to achieve the best single core performance, denoted as

p̂ f c. When the system is in parallel mode, both n and Sparallel are determined by supply voltage.

First, Lumos picks the optimal frequency with a given supply voltage; Second, it calculates per-

core power consumption including both the switching power and the leakage power according to

the frequency and the supply. Finally, the number of active cores is the minimum restricted by the

overall power and area budgets, which is given by

n(v) = min(
P

p(v)
,
A
a
) (2.7)

where p(v) is the per-core power as a function of supply voltage, P and A are system budgets

of power and area, respectively. As a result, Equation 2.6 can be rewritten as

Speedup = 1
/

1−ρ

p̂ f c
p f0

+
ρ

n(v) · p f (v)
p f0

(2.8)

where p f0 is the performance of a single baseline core, p f (v) is the per-core performance as a

function of supply voltage,

When considering process variation, performance loss of a single core leads to the poor through-

put of a symmetric many-core system, in which the slowest core dictates the overall performance of

the whole system. Adaptive Body Bias (ABB) is not considered here, but is important future work.

However, the worst-case variation we used here sets an upper bound on the benefits of ABB. As

a result, the parallel performance of a system is confined to the core with the worst performance,

denoted as p f (v)min. As for the power, we assume no fine-grained per-core level power manage-

ment mechanisms; therefore, all cores contribute to the total power consumption through the whole

period that the system is in parallel mode. We use the total mean power (p) to estimate the per-core
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power, so Equation 2.7 is rewritten to

n(v) = min(
P
p
,
A
a
) (2.9)

When considering process variations, the overall speedup in Equation 2.8 is rewritten to

Speedup = 1
/

1−ρ

p̂ f c
p f0

+
ρ

n(v) · p f (v)min
p f0

(2.10)

2.2.3.3 Un-core Components

Un-core components, such as network-on-chip (NoC) and memory controllers (MCs), have impor-

tant implications on power and performance of a modern processor. Detailed models ( [40, 67])

are too fine-grained to achieve fast evaluation, and unsuitable for exploration tasks of large design

space explorations that Lumos have been targeted. Alternatively, Lumos takes advantage of implicit

approaches to model the power and performance impacts of un-core components. Lumos reserves

50% of both the total thermal design power (TDP) and the die area for un-core components. The

performance impact on the multi-core scaling has been lumped into the ρ parameter in Equation 2.6.

2.2.3.4 Baseline

A Niagara2-like in-order core is chosen as a single-core baseline design. The characteristics of this

baseline core at 45nm are obtained from McPAT [48] and summarized in Table 2.3.

Table 2.3: Characteristics of a single Niagara2-like in-order
core at 45nm, obtained from McPAT [48].

Frequency Dynamic Leakage Area

(GHz) Power (W ) Power (W ) (mm2)

4.20 6.14 1.06 7.65
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2.2.4 Accelerator Modeling

We model the speedup and the power consumption of RL and customized ASIC for a given kernel

by u-core parameters (η,φ). “u-core” is a term proposed by Chung et. al. [16] to represent any single

computational unit that is not a conventional CPU core. Examples of “u-core” include dedicated

hardware accelerators and reconfigurable accelerators. η1 is the power relative to a single, basic

in-order core, and φ is the performance relative to the same baseline in-order core. We assume that

u-cores are only used to accelerate kernels that are ideally parallelized. Therefore, we model the

relative performance of a u-core proportional to its area:

Powerucore = η · Aucore

A0
, Perfucore = φ · Aucore

A0

where Aucore is the area of a u-core, and A0 is the area of a single baseline in-order core.

2.2.5 Workload Modeling

Figure 2.2 illustrates the workload model, where a workload is composed of a pool of applications.

Each single application is divided into two parts, serial and parallel. Part of an application can

be also partitioned into several computing kernels. These kernels can be accelerated by various

computing units, such as multi-core, possibly dim CPU cores, an RL accelerator, or a dedicated

ASIC accelerator. We add two more parameters to model the relationship between applications and

kernels:

Presence (λ) A binary value to indicate whether or not a kernel present in an application.

Coverage (ε) The time consumption in percentage for a kernel when the whole application is run-

ning with a single base line core.

To model these two parameters, We have profiled the PARSEC benchmark suite [6] using Val-

grind [59]. We use native input set for all applications except for x264, due to that Valgrind failed

1In the original paper of [16], µ is used to denote relative performance of u-cores. However, µ is commonly used as
the mean in statistics. Therefore, we use η as an alternative to avoid confusions.
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to capture source annotations for x264. We extract top kernels for every single application. Their

presence and coverage, which are plotted in Figure 2.3, show trends:

• Kernels, such as library calls, have a larger probability of presence, but lower coverage in a

single application;

• Kernels, such as application-specific routines, have very limited presence, but higher cover-

age once they present;

• The majority of kernels are application-specific.

In addition to general-purpose benchmark suites like PARSEC, we have observed a similar

trend on domain-specific benchmarks suite such as SD-VBS [83] and Minebench [57]. Based on

these observations, we propose a statistical approach to model kernels’ speedup (η), presence (λ),

A0

A1

A2
A3

Serial

(1- )

Parallel

()

k0k1k2

c2 c1 c0

Parameters for a kernel:
1) Speedup with U-cores
2) Coverage within an app.
3) Prob. to present in an app.

*U-core 
speedup Is 

proportional 
to its area

Workload

Application

Kernel

Figure 2.2: A workload is composed of applications. An application may have several computing
kernels, which can be accelerated by many-core parallelization, RL, and ASIC.
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Figure 2.3: Kernels coverage and presence. Kernels are extracted from PARSEC applications,
excluding x264. The coverage percentages of exp, fscanf, log, and rand are averaged across their
all occurrences. The coverage percentage of the “app specific” is the average of all application-
specific kernels.

and coverage (ε), which is shown in Equation 2.11.


η ∼N (µs,σ

2
s )

λ = B(1, p) where p = PDF(η)

ε ∼N (µc,σ
2
c)

(2.11)

Lumos samples the speedup (η) of kernels from a normal distribution. Speedup values of

common kernels (e.g. library calls) are close to the mean of the distribution. On the other hand,

speedup values of application-specific kernels are sampled from both tails of the distribution. The

left tail represents kernels that are hard to accelerate, such as control-intensive ones. The right tail

denotes kernels that are highly efficient on accelerators, such as compute-intensive streaming ones.

Lumos samples the presence (λ) of these kernels from a Bernoulli distribution where the distribution

parameter equals to PDF(η). Lumos then samples the coverage (ε) from an independent normal

distribution. We justify coverage parameters using values extracted from PARSEC. We extract

speedup values of RL accelerators by normalizing reported data from recent publications in the RL

research community. Finally, we assume a fixed performance scaling ratio of 5x between an ASIC
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accelerator and its counterpart RL implication. Table 2.4 summarizes values of all parameters used

in Lumos’s workload model.

Table 2.4: Summary of statistical parameters for kernel modeling

µs RL µs ASIC σs RL σs ASIC µc σc

40x 200x 10 50 40% 10%

Lumos exploits a priority-based approach to map kernels to accelerators and conventional cores.

Dedicated ASIC accelerators are considered to have the highest priority and followed by recon-

figurable accelerators. If neither types of accelerators are available, a kernel will be mapped to

conventional CPU cores.

2.2.6 System Configuration

Lumos models the basic system as a symmetric multi-core system composed of in-order cores.

We assume the power and the area of the last-level cache (LLC) remains a constant ratio to the

whole system. According to [48], we take the assumption that un-core components attribute to

50% of both the total thermal design power (TDP) and the die area. The bandwidth of the memory

subsystem is assumed to be sufficient for future technology nodes by applying advanced techniques

such as 3D-stacking, optical connections, multi-chip modules, etc. In the rest of this section, the

power and the area of a system only refer to core components.

We have modeled three systems with different configurations of power and area by extracting

data from commodity processors fabricated in 45nm. They include a small system representing

desktop level processors [18], a medium system for normal server processors [19], and a large

system that represents the most aggressive server throughput processors [20]. One more parameter

is introduced as the power density of a system, reflecting the maximum power allowed for a unit

area. It is calculated by dividing the area from the TDP. Table 2.5 summarizes detailed parameters

of system configurations for Lumos.

Within an application, we assume that each kernel takes a considerable amount of computation
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Table 2.5: System configurations. All numbers are for core compo-
nents, assumed to be 50% of the total TDP and the die area.

System Area TDP P. Density # of

Type (mm2) (W ) (W/mm2)† Cores∗

small 107 33 0.308 14

medium 130 65 0.5 17

large 200 120 0.6 26
∗ Computed based on the single core area at 45nm from Table 2.3.
† P. density is defined as maximum power allowed for a unit area.

time for a single run. Therefore, we can ignore various overhead in reconfiguration, as well as

setting up the execution context. We leave the detailed overhead modeling and the modeling of

transient kernel behaviors as future work.

2.2.7 Discussions

Instead of detailed cycle-accurate simulation, Lumos takes an analytical approach with abstractions

to model heterogeneous computer architectures composed of cores and accelerators. Due to its fast

evaluation time, Lumos is able to explore a large design space that is prohibitively expensive for

simulation-based approaches. However, the drawback is that it is not as accurate as simulation-

based approaches for a specific design. Therefore, the best use case of Lumos is to explore design

implications at early stages or provision future designs subject to the technology scaling. Be com-

plementary to each other, Lumos can help to prune down the design space for detailed simulation,

while characterizations from simulation-based approaches benefit Lumos with better modeling ac-

curacy.

2.2.8 Lumos Release

Lumos is composed of a set of Python scripts that read in technology-specific values described in

previous sections, as well as results from circuit simulations. Typically, Lumos needs a workload

description as its input for analysis. This description is encoded in XML format, enumerating all
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applications that compose the workload. Each application is described by a parallel fraction, as

well as possible kernels with their coverage in percentage. Each kernel is described by u-core pa-

rameters described in section 2.2.5. We have pre-compiled a couple of descriptions for kernels and

workloads following distributions as described in section 2.2.5. Lumos provides APIs to gener-

ate these XML descriptions by user-specified distribution parameters. Lumos requires the user to

specify the physical constraints of a system, such as thermal design power (TDP) and area, then

define systems by explicitly allocating area resources to any accelerators. Lumos allocates the rest

of area to conventional cores to form a heterogeneous many-core system. When all these are ready,

Lumos evaluates workload performance of the defined system or brute-force search system con-

figurations to find the one with the best TDP-constrained performance. More details on its usage

can be found at http://liangwang.github.com/lumos/tree/v0.1. Lumos is released under a

BSD open-source license.

2.3 Design Space Exploration

2.3.1 Effectiveness of Dim Silicon with Near-threshold Operation

Unlike dark silicon, which we define as maximizing the frequency of cores to improve the overall

throughput at the expense of potentially turning some off, dim silicon aims to maximize chip uti-

lization to improve overall throughput by exploiting more parallelism. Dark silicon systems apply

the highest supply voltage, which is assumed to be 1.3x the nominal supply voltage in Lumos, to

cores in parallel mode; while dim silicon systems scale down supply and pick the optimal voltage

according to the overall throughput. Figure 2.4 shows the comparisons between dark silicon (dark

Si.) and dim silicon (dim Si.). .

For performance, dim silicon beats dark silicon with up to 2X throughput improvement at 16nm.

When variation comes into play, however, both systems experience throughput loss compared to

non-variation cases respectively. Dim silicon systems suffer even more compared to dark silicon,

revealing more vulnerability of dim silicon to process variations. Dim silicon can utilize more

cores to achieve high utilization, up to 100% for the small system and the large system. Similarly,

http://liangwang.github.com/lumos/tree/v0.1
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utilization of dim silicon systems is sensitive to the process variation. Being aware of variation,

the small system with dim silicon sees the utilization drop to as low as 20%, quite close to the

utilization obtained by dark silicon at the same technology node.

Although dim cores manage to deliver higher throughput, they suffer from diminishing returns
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Figure 2.4: Dark silicon vs. dim Silicon, regarding the throughput based speedup, die utilization,
and the supply voltage with optimal throughput. Two system budgets (see Table 2.5) are compared:
a small-budget system plotted on the left, and a large-budget system plotted on the right.
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Figure 2.5: The overall throughput-based speedup of in-order (IO) cores at 16nm with high-
performance (HP) process. The system is configured with large budget of 200 mm2 in area and
120 W in TDP. Diminishing returns are observed starting around 50 active cores.

as the number of active cores increases. As shown in Figure 2.5, a system with the large budget

starts to experience diminishing performance gains when the number of active cores passes over 50.

When more than 50 cores are active at the same time, the system has to lower its supply voltage to

stay within the power budget. Therefore, the lower per-core frequency of dim cores compromises

the performance improvement from more cores. As a result, it is not cost-effective to lower supply

voltage aggressively to reach the optimal throughput. The limited performance improvement from

dim cores provides an opportunity to allocate some of the die area to more efficient customized

hardware, such as RL, or ASICs.

2.3.2 Dim Silicon with Reconfigurable Logic

In this section, we explore the design space that includes conventional CPU cores and accelerators

built on reconfigurable logic. Our goal is to find the optimal area allocation for RL that achieves

the highest overall throughput on a given application. We start by looking at the scenario that
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every application in the workload has only a single kernel with a considerable amount of coverage,

e.g. an application-specific kernel. To do this, we generate a pool of kernels from a population

of distribution described in Table 2.4, as well as applications associated with each of generated

kernels. To search for the optimal RL allocation, we adopt a brute-force approach by sweeping

RL allocations with a step size of 1% of the total area budget. As shown in Figure 2.6, despite

various kernel characteristics of each application, a majority of applications flavor RL allocations

that are less than 30% (Figure 2.6a and 2.6b). This is because RL manages to accelerate the kernel

significantly even with a small area allocation. As a result, the application performance is limited by

the performance that dim silicon delivers on the rest part of the application, according to Amdahl’s

Law.
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tions

Figure 2.6: Optimal area allocations on reconfigurable logic (RL) accelerators. Derived from ex-
haustive search, optimal RL allocations for each application are plotted in 2.6a. In this plot, each
of dots represents an application that has been characterized by the coverage of the kernel (Y-axis)
and the kernel’s u-core performance parameter (X-axis). The colors of dots indicate the optimal
RL allocation in percentage for the given application, the darker the color the higher the optimal
allocation. On the other hand, the distribution of optimal allocations is illustrated by a pie-chart
in 2.6b. Percentage numbers within the pie-chart suggest the distribution of each category, while
the percentage numbers around the pie-chart indicate the range of optimal RL allocations within
each category.

Considering a system with certain die area dedicated to RL, some applications may suffer from

performance penalties when the allocation is not large enough. We compare the performance of a



Chapter 2. Lumos: An Analytical Modeling Framework for Multiprocessors 27

system to the best speedup ever achieved by varying the area allocation of RL. Figures in 2.7 plot the

normalized speedup of systems with RL allocation of 15%, 20%, 25%, and 30%, respectively. Sys-

tems with smaller RL allocations, such as 15%, 20%, and 25%, have close-to-optimal performance

for a majority of applications, with a worst case performance loss of 35% with 15% allocation.

On the other hand, the system with 30% RL allocation only experiences less than 5% penalties

for most applications, and less than 10% for the worst-case. This indicates that the speedup is

somewhat insensitive to RL allocation within a reasonable range.

We vary statistical parameters of speedup and coverage, with five other alternatives listed in

Table 2.6. The sensitivity study on these alternatives is summarized in Figure 2.8. As the coverage

drops down from high to low profile, the optimal area allocation drops down as well. This is

because the lower the coverage of a single kernel, the less significant the kernel speedup at any

allocation. As the RL speedup goes from fast to slow, the optimal area allocation goes up. This is

because the less the speedup of the RL on kernels, the more area it requires to achieve a comparable

performance.

Table 2.6: Parameters for alternative distribu-
tions of speedup and coverage.

Speedup Coverage

Fast Medium Slow High Low

µ 80 40 20 0.4 0.2

σ 20 10 5 0.1 0.05

Then we take a look at a more realistic scenario, where applications follow characteristics de-

fined by Equation 2.11. We choose ten synthetic kernels with speedup performance sampled evenly

from µ−3σ through µ+3σ, representing various kernel performance and kernel’s probabilities of

presence in a specific application. We refer to these kernels with number 0 through 9. The accel-

erator speedup increases from kernel 0 through kernel 9, while the probability of presence peaks at

kernel 4 and 5 and bottoms at kernel 0 and 9 (i.e. normal distribution). We draw a sample popula-
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Figure 2.7: The performance of systems with reconfigurable logic accelerators. For each applica-
tion, we plot the performance of the given system relative to the system of the optimal RL allocation
for the application. Four systems with alternative RL allocations are shown at 15% in Figure 2.7a,
20% in Figure 2.7b, 25% in Figure 2.7c, and 30% in Figure 2.7d. X-axis is the index number
of an application within the workload. Y-axis is the relative performance achieved by the given
system configuration relative to the performance achieved by the system with the optimal RL allo-
cation. Note that each of dots is normalized to different baseline since the optimal RL allocation is
application-specific (see Figure 2.6).

tion of 500 applications. For each application, the sum of all kernels’ coverage follows the given

coverage distribution. We use the mean of speedups on all applications as the performance metric.

We do a brute-force search to find the optimal RL allocation.

The result suggests an optimal RL allocation around 20%, in Figure 2.9. A larger allocation on

RL limits the number of available dim cores to accelerate the non-kernel parts of the application.
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Figure 2.8: Optimal RL allocations with alternative distributions for speedup and coverage. Distri-
butions for speedup cover three scenarios from slow to fast, while distributions for coverage cover
two scenarios from low to high. Parameters for these distributions are detailed in Table 2.6.

Therefore, it delivers worse overall performance according to Amdahl’s Law. For net speedup

comparison of RL vs. dim silicon, see Figures 2.11-2.12 in following sections.

In summary, across a range of kernel characteristics, a relatively small area allocation on RL,

e.g. 20%-30%, is good enough to achieve the optimal throughput that is almost 3x larger than a

non-RL system of only dim cores.

2.3.3 Dim Silicon with ASICs

We use the same synthesized workload as described in the last subsection to study the performance

implications of systems equipped with various fixed logic ASIC accelerators. Although special-

ized accelerators can achieve tremendous speedup for application-specific kernels, limited overall

coverage of its targeted kernel within a general-purpose workload leads to limited overall perfor-

mance benefit for the workload as a whole. However, accelerators for library call kernels tend to



Chapter 2. Lumos: An Analytical Modeling Framework for Multiprocessors 30

0 10 20 30 40 50 60 70 80
Total ASIC allocation

40

60

80

100

120

140

160

180

S
p
e
e
d
u
p
 (

m
e
a
n
)

Figure 2.9: Speedup of various RL allocations. Optimal performance achieved at around 20% RL
allocation.

be more beneficial in the overall speedup of the workload due to their higher overall coverage. We

plot potential allocations of two, three, and four accelerators for library call kernels in Figure 2.10.

As the number of accelerators increases, the best achievable performance increases as well, from
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Figure 2.10: Speedup of a system composed of dim silicon and ASICs. We show configurations
with tow accelerators 2.10a and four accelerators 2.10b. The X-axis is the total allocation to ASIC
kernels, relative to the die area budget. The legend labels show the allocation of a kernel relative to
the total ASIC allocation.
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140 to 155. With a given number of accelerators, the system achieves the best performance when

area allocations to each accelerator are evenly distributed. The total area allocation to all hardware

accelerators is limited to less than 20%.

2.3.4 Dim Silicon with Accelerators(RL and ASIC) on General-Purpose Workload

In the previous two subsections, we have shown the benefits of accompanying conventional but dim

cores with RL and ASIC accelerators, respectively. Both of them exhibit performance improvement

over a baseline system composed of dim cores only. However, it is not necessary to achieve a better

performance by combining both types of U-cores. As shown in Figure 2.11, the best performance is

achieved with RL-only system organization. This counter-intuitive result comes from two reasons:

• In Lumos, the accelerator performance scales proportionally to the area it is allocated. In ad-

dition, we have a conservative assumption on the performance ration between ASIC and its
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Figure 2.11: Speedup of a system composed of dim silicon, RL, and ASICs. The X-axis is the total
allocation to U-cores, including both RL and ASIC accelerators, relative to the die area budget.
Legend labels indicate the total allocation of ASIC accelerators, relative to the total U-cores alloca-
tion. We assume an evenly distributed allocation among ASIC accelerators, since it shows the best
performance in the previous analysis.
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counterpart RL implementation.(see Section 2.3.6 for the impact of alternative performance

ratios). With these assumptions, RL will be more powerful than the ASIC implementation as

long as the RL allocation is adequately larger than the ASIC. Moreover, a large RL alloca-

tion is justified by the high utilization achievable across multiple kernels. Consequently, the

system ends up with an RL-only configuration.

• With a general-purpose workload, the average coverage of a kernel is small, due to ei-

ther small coverage among applications (library-call kernels) or rare presence (application-

specific kernels). This exaggerates the cost of a single ASIC accelerator that is only helpful

for a specific kernel. As a result, the RL implementation is more favorable due to its versatil-

ity across kernels.

2.3.5 Benefit of ASIC Accelerators

Although RL works better with general-purpose workloads, an ASIC accelerator becomes benefi-

cial when its targeted kernel is common enough across applications in a workload. To capture this

scenario, we add one special kernel to the set of ten kernels we have used in previous analyses. The

coverage of the special kernel is fixed across all applications, as well as the total coverage of all

other kernels. We generate workloads by varying the coverage of the special kernel and all other

kernels.

Figure 2.12 shows results of 10% and 30% coverage of all other kernels. One of the most sig-

nificant observations is that the dedicated ASIC accelerator is not beneficial at all until its targeted

kernel covers more than the total of all other kernels within an application, e.g. in the case where the

special kernel has an average coverage of 40% while others cover 10% on average (Figure 2.12c).

This observation is consistent with commercial MPSoC designs such as TI’s OMAP4470 [37],

which has dedicated accelerators for only image processing, video encoding/decoding, graphics

rendering, since these functions are expected to be quite common in the target mobile device work-

loads.
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2.3.6 Sensitivity of ASIC Performance Ratio

Lumos assumes that a fixed logic accelerator provides 5x better performance than the RL accelerator

with the same size. This assumption could be quite conservative, especially when it is hard to

amortize the reconfiguration overhead over RL’s running time of a specific kernel. To study the

sensitivity of the ASIC performance ratio, we investigate alternative performance ratios of 10x and

50x using a similar workload setup in the previous subsection.

In Figure 2.13a, the coverage of the special kernel is fixed at 20%, while the total coverage
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Figure 2.12: To study the benefit of a dedicated ASIC accelerator, we add one special kernel to the
set of ten kernels used before. We vary the total coverage of all other kernels at 10% (left plots)
and 30% (right plots), while setting the coverage of the special kernel at 20% (upper plots) and
40% (lower plots). The results show that the dedicated ASIC accelerator in only beneficial when its
targeted kernel has a dominant coverage with applications, e.g. in Figure 2.12c.
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of all other kernels varies from 10% through 40%. When the performance of the dedicated ASIC

accelerator is merely 5x better than RL, the system ends up with zero allocations to the dedicated

accelerator, unless the coverage of its targeting kernel (20%) is larger than the total coverage of all

other kernels (10%). However, when the performance of the dedicated accelerator boosts to 50x

better than RL, the dedicated accelerator will always hold its place with 10% allocation out of all

u-cores area. When the performance ratio is 10x, the dedicated accelerator is beneficial unless the

total coverage of all other kernels is as large as 40%, overwhelming the special kernel’s coverage

of 20%.

In Figure 2.13b, the total coverage of all other kernels is fixed at 20%, while the special kernel’s

coverage varies from 10% through 40%. It is similar that the dedicated accelerator is preferred

when there is a huge gap between either: 1) the performance of the dedicated and the reconfigurable

accelerator (e.g. 50x), or 2) the coverage of the dedicated kernel and the total coverage of all other

kernels (e.g. 2x larger).

In summary, the benefit of ASIC accelerators depends on its relative throughput to RL acceler-

ators on the same kernel. With a large throughput gap (e.g. 50x), ASIC accelerators are beneficial

even when the targeted kernel has a limited presence across applications (e.g. as low as 10%).

Otherwise, RL is preferable, as long as reconfiguration overhead can be neglected.
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Figure 2.13: Sensitivity study on ASIC performance ratio.
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2.3.7 Alternative Serial Cores

Although massive parallelism has been observed in several computing domains, such as high-

performance computing, there are many applications with a limited parallel ratio. In this case,

adding a “beefy” out-of-order (O3) core is more beneficial, especially when dim cores get dimin-

ishing returns on throughput. We extract the performance of the O3 core from SPEC2006 scores

of a Core i7 processor and calculate its power and area using McPAT, which are normalized and

summarized in Table 2.7.

Table 2.7: Characteristics of an O3 core at 45nm, normal-
ized to the in-order core at the same technology node.
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Figure 2.14: Relative performance by using O3 core to run the serial part of an application. System
budget is large in 2.14a and small in 2.14b, as characterized in Table 2.5. Y-axis is the performance
normalized to the system at the same technology node, which only includes in-order cores and uses
one of the in-order cores as the serial core.

We assume the same inter-technology scaling factors as we have used for in-order cores in all

previous analyses. We also assume the serial core is gated off in parallel mode to save power for

dim cores. As shown in Figure 2.14, even with an embarrassingly parallel application, the die area



Chapter 2. Lumos: An Analytical Modeling Framework for Multiprocessors 36

investment on dedicated O3 core is still beneficial. In the case of ideal parallelism, the performance

loss by introducing an O3 core is around 14% at 45nm. The performance loss reduces to less than

1% at 16nm, due to diminishing performance returns from a larger number of throughput cores, and

lower percentage area impact of one O3 core.

Alternatively, the serial code can be executed by the best core selected from several out-of-

order candidates, as proposed in [56]. In this work, Najaf et al. observed a 10% performance im-

provement by selecting from two alternative out-of-order cores, compared to an optimal-in-average

out-of-order core. We model core-selectability with assumptions of 10% better performance but

twice the area as an out-of-order core. To study the potential limits, we model an alternative or-

ganization of core-selectability with a total of three O3 cores to be selected, and assume another

5% performance boost by introducing more selections (a total of 15% over one O3 core “group”).

We use the small system budget summarized in Table 2.5. As shown in Figure 2.15a, the original

core-selectability (Sel2) shows less benefit as long as the parallel ratio is larger than 50% at 45nm.

At 16nm (Figure 2.15b), the original core-selectability outperforms the conventional core with al-

most all parallel ratios. The core-selectability in the alternative organization (Sel3) delivers worse

throughput at 45nm unless the application is almost serial with a parallel ratio of 10%. However,

when it comes to 16nm, the alternative core-selectability is better for almost all parallel ratios. This

is, again, because the number of throughput cores is so large that more in-order cores suffer from di-

minishing performance returns. Therefore, the parallel performance penalty is limited when trading

off a couple of in-order cores for single thread performance.

2.4 Conclusions

In this chapter, we describe Lumos, a framework for exploring the performance of heterogeneous

systems operating at near-threshold (e.g. with dim cores). We show that dim cores manage to pro-

vide a moderate speedup up to 2x over conventional CMP architecture (suffering from dark silicon

issue with further technology scaling). However, the poor per-core frequency of dim cores leads to

diminishing returns in throughput, creating an opportunity for more efficient hardware accelerators
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Figure 2.15: Performance comparison among systems implementing the serial core as an out-of-
order (O3) core, core-selectability of two O3 cores (Sel2), and core-selectability of three O3 cores
(Sel3). The system budget is small from Table 2.5. Y-axis is the performance normalized to the
system at the corresponding technology node, which only includes in-order cores and uses one of
in-order cores as the serial core.

such as RL and ASIC. Lumos models the general-purpose workload via a statistical approach. We

show that RL is more favorable for general-purpose applications, where commonality of kernels

is limited. A dedicated ASIC accelerator will not be beneficial unless the average coverage of its

targeted kernel is twice as large as that of all other kernels or its speedup over RL is significant

(e.g. 10x-50x). However, it is hard to identify common function-level hotspots in real-world appli-

cations, and this is even true with domain-specific applications. In fact, one of the most important

conclusions from this chapter is the need for efficient, on-chip, RL resources that can be rapidly

reconfigured to implement a wide variety of accelerators.



Chapter 3

Lumos+: Design Space Exploration for MPSoCs

Integration of accelerators to create heterogeneous processors is becoming more common for both

power and performance reasons. In most systems today, a design with only conventional CPU cores

cannot meet performance targets without exceeding power constraints. Fixed-function accelerators

can provide dramatic speedups over CPU cores, but sacrifice flexibility and programmability. Re-

configurable logic (e.g. FPGAs) is more flexible, so that the same hardware block can accelerate

various functions. Another advantage of reconfigurable logic is that hardware can be updated to

fix bugs, further optimize performance or power, or adapt to changing kernel characteristics. How-

ever, the overheads of reconfigurability reduce the performance and power-efficiency compared to

fixed-function logic.

Various fixed-function and reconfigurable accelerators have been recently proposed in both in-

dustry [62] and academia [14,16,73,92]. The increasing variety of both types of accelerators leads

to an exploding design space in selecting how many CPU cores, fixed-function accelerators, and

how much reconfigurable logic to provision, as well as the choice of optimal operating voltage.

Furthermore, heterogeneous processors must serve increasingly diverse workloads. An efficient,

automated pre-RTL design-space search methodology is needed to help identify the best configura-

tion.

The Lumos [87] design-space exploration framework is a first-order analytical modeling frame-

work for exploring the design space of accelerator-rich heterogeneous architectures, in order to de-

38
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termine the best mix of cores, fixed-function accelerators (FF-Accs), and reconfigurable logic (RL).

Lumos extends existing hardware models from [35] and [16] with a statistical workload model and

a fine-grained voltage-frequency scaling model calibrated by circuit simulation. Lumos+ extends

Lumos with GAopt, a genetic search heuristic, to find the accelerator allocation that achieves the

best throughput for diverse workloads. Lumos+ also adds modeling of the memory hierarchy, more

detailed modeling of the reconfigurable logic, and more detail in the workload model. Finally, we

propose a performance metric, volatility, to evaluate performance sensitivity to workload variations.

In addition to the GAopt search method, the primary contributions of this chapter are:

1. To show the importance of performance volatility as an evaluation metric for heterogeneous

architectures. An architecture with low volatility achieves close-to-optimal performance

across a majority of applications, even though it may not be best for any single application.

2. For general-purpose applications with a large number of kernels with diverse characteristics,

we show that systems equipped with reconfigurable logic achieve the best overall perfor-

mance and lowest volatility.

This work will be appeared in DAC 2016.

3.1 Related Work

Hardware accelerators have attracted a great interest from both industry and academia. For example,

Catapult [62] is an FPGA-based reconfigurable accelerator for Microsoft’s Bing service; In [34],

personal intelligent assistant kernels from Sirius suite are accelerated by FPGA implementations;

Diannao [14] is an application-specific accelerator implemented for common operations in Neural

Networks. All these have reported substantial performance and efficiency improvements over con-

ventional many-core systems, strongly motivating heterogeneous architectures with accelerators to

cope with increasingly stringent power constraints.

Recently, researchers have proposed infrastructures to understand the architectural design trade-

offs introduced by hardware accelerators. Aladdin [73] extracts accurate models from applications’



Chapter 3. Lumos+: Design Space Exploration for MPSoCs 40

execution traces, enabling explorations of designs on dedicated accelerators for any given applica-

tion. On the other hand, PARADE [17] takes advantage of high-level synthesis (HLS), and inte-

grates the accelerator models with a cycle-accurate simulator (Gem5). As a result, PARADE can

simulate end-to-end applications running on a user-defined accelerator-rich architectures. Lumos+,

which extends Lumos [87], is complementary to Aladdin and PARADE in two aspects: first, we use

analytical models for power and performance, trading off precision for fast evaluation time; sec-

ondly, we explore the design space at a higher level to find the optimal system configurations given

a number of accelerator candidates. Our work can benefit from Aladdin’s more accurate power-

performance characterization of accelerators, and our work can narrow down system configurations

for PARADE’s more detailed but time-consuming evaluations.

3.2 Lumos+

In the Lumos+ model, a processor consists of conventional general-purpose cores of various size

and performance levels, and optionally, one or more hardware accelerators. For simplicity, we

assume there is only one reconfigurable block that can be shared in time or space (the latter is

left for future work). Various figures of merit can be optimized, but in this chapter, we maximize

performance subject to power and area constraints. For each candidate hardware organization,

voltage, and hence frequency, are determined so that the power constraint is met. Performance

is determined according to the frequency and a model for performance as a function of workload

characteristics.

3.2.1 Technology Scaling Model

We employ circuit simulations to determine energy-delay characteristics of a given technology

process and derive a map of frequency and power as a function of voltage. This is achieved by

simulating a 32-bit ripple-carry adder using SPICE, for various supply voltages. The complexity of

an adder makes it a better approximation for logic with multiple critical paths than a simple inverter

chain. We use the predictive technology model (PTM) from [75].
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3.2.2 Performance Model

To model the performance of a kernel running on cores, we take a similar approach to the validated

model in [26]. This model extends Amdahl’s law by factoring cache hit rate and latency into the

multi-core performance scaling.

Per f = N
f req

CPIexe
µ

where N is the number of active cores subject to the power constraint, CPIexe is the effective cycles-

per-instruction (CPI) excluding stalls due to cache accesses, which are considered separately in

core utilization (µ). µ is calculated by factoring in the average memory access latency, percentage

of memory instructions, and miss rates.

To model the speedup and the power consumption of a hardware accelerator (FF-Acc or RL),

Lumos+ uses a pair of parameters (η, φ) for each kernel, following [16,87]. φ is the power efficiency

normalized to a single, baseline core, and η is the relative performance normalized to the same

baseline. The cost of data movement is lumped implicitly into the performance parameter (η) of an

accelerator. In general, hardware accelerators are much more power-efficient than cores. The area

allocated to a hardware accelerator also tends to be small. We do not yet model complex task graphs

so that different accelerators can be in use concurrently; in applications we have studied, such

task-level parallelism is small enough not to affect the eventual design. Although the CPU cores

can together be power-limited and need to run at lower voltage for a parallel task, an accelerator

will rarely be power limited. The goal of Lumos+ is to explore the best potential configuration

of cores and accelerators, so we assume the memory bandwidth is always sufficient. With these

assumptions, we model the relative performance of an accelerator proportional to its area, which is

a simplifying first-order approximation suitable for tasks with plentiful parallelism, but overlooking

synchronization and data-transfer overheads for more complex algorithms.

For simplicity, Lumos+ assumes that the power and the area of all un-core components remain

a constant ratio to the whole system. For this study, we study processor design for data-center

workloads and, following [48], assume that 50% of both the total thermal design power (TDP) and

the die area are available for processing units, with the rest allocated to memory controllers, I/O,
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etc. We use the Oracle SPARC T4, a representative server-class design, with TDP and area of

120W and 200mm2, to set our power and area budgets (i.e., 60W and 100mm2). For the CPU cores,

the Niagara2-like in-order core is used, as it is the latest design supported by McPAT and a close

predecessor to SPARC T4. At the baseline 45nm, a single core consumes 7.2W and takes 7.65mm2.

We scale these according to McPAT rules for more recent nodes.

3.2.3 Workload Model

A workload consists a set of N kernels (K1,K2, . . . ,KN) and M applications (A1,A2, . . . ,AM). For

each application Ai, the normalized execution time of the kernel K j using a single baseline core is

denoted as ti j. ti j = 0 if application Ai does not include kernel K j. We use Sa
i to denote the speedup

of the application Ai by a given system configuration, and calculate Sa
i as:

Sa
i =

1

∑
M
j=1

ti j
s j

(3.1)

where s j is the speedup of the kernel K j achieved by the given system configuration. In the case

that more than one computation units are available for a given kernel (K j), its speedup is defined as

the highest performance achieved among all computation units:

s j = max(sMP
j ,sRL

j ,sFF
j ) (3.2)

where sMP
j is the speedup achieved by many core parallelization, sRL

j is the speedup achieved by

RL, and sFF
j is the speedup achieved by an FF-Acc. Finally, the speedup of a workload is defined as

a weighted average of speedup achieved for every applications within the workload.

In order to compose state-of-the-art representative workloads, we derive applications from ker-

nels in the Sirius suite [34]. This suite consists of kernels extracted from Sirius, an open end-to-end

standalone speech and vision based intelligent personal assistant (IPA). It includes speech recog-

nition, image matching, natural language processing, and intelligent question-and-answer systems.

Finally, for this study, we adopt the speedup of reconfigurable accelerators from reported data

in [34]. To obtain speedups of FF-Accs, we scale up the speedup by a constant ratio from the RL
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implementations of the same size. We use 5–40x as conservative and aggressive values, as they

represent the range of performance ratios from literature.

3.2.4 Reconfiguration Overhead

The performance model of the reconfigurable accelerator described in the previous section implic-

itly ignores the reconfiguration overhead. It can be justified by the assumption that each kernel

within an application takes sufficient time to dominate the time spent on setting up the execution

context. Unfortunately, this is not always the case. To consider the reconfiguration overhead of a

kernel within an application, we introduce a pair of parameters to denote the number of reconfigu-

ration operations (Nrc) and the associated overhead (T rc). The power overhead of reconfiguration

tends to be trivial compared to the overall system power budget. As a result, we only focus on the

latency overhead associated with reconfiguration operations. According to the cost model of FPGA

reconfiguration in [60], we model the latency overhead as proportionally to the size of the reconfig-

urable accelerator. After factoring in the overhead, the runtime of the kernel K j in the application

Ai by reconfigurable acceleration can be expressed as:

tRL
i j =

ti j

sRL
j

+Nrc
i j ·T rc

i j (3.3)

where sRL
j is the speedup achieved by a reconfigurable accelerator. Nrc

i j is the reconfiguration count

of the kernel K j when it presents in the Application Ai. Its value is at least 1 if ti j is none-zero,

because the reconfigurable fabric has to be reconfigured at least once when the targeted kernel is

invoked at the first time. Finally, T rc
i j is the reconfiguration overhead of the kernel K j within the

application Ai. T rc
i j is normalized to the length of the application executed by a single baseline core.

3.3 Domain-Specific Applications

We define domain-specific applications to be applications that share a small set of kernels, with

these kernels likely to present in each application. To conduct the design space exploration on

domain-specific applications, we synthesize a set of applications using all seven kernels from the
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Sirius suite [34]. We use a synthetic kernel, “serial”, to model the serial computation of applications.

The “serial” kernel can only be executed on a single conventional core. Further, we introduce

another synthetic kernel, “coreonly”, to lump together computations that can be accelerated only by

many-core parallelization but not any types of hardware specialization. We employ a Monte-Carlo

sampling approach to generate 10,000 applications from a pool composed of seven Sirius kernels

and the two special synthetic kernels that are only applicable for conventional cores. In this section,

we first describe a simple brute-force search scheme, named BFopt; then we use BFopt to explore

the best system configuration among synthetic applications as just described.

3.3.1 BFopt

Since the number of FF-Acc candidates is small, it is possible to conduct a brute-force search on

the design space to find the optimal system configuration that delivers the best performance. We

call this scheme BFopt. To make it more practical, we employ two heuristics to trim down the

space of system configurations. First, we limit the area allocation for FF-Accs. This is because the

throughput of an FF-Acc is generally much better than many-core parallelization and reconfigurable

accelerators. A small FF-Acc is good enough to speedup its targeted kernel significantly. In our

study, we set the upper limit of area allocations on an FF-Acc to be 10% of the total system area

budget. Second, we assume that conventional cores cannot be eliminated completely. In reality,

an application typically has some portion that can only be executed by conventional cores (e.g. the

“serial” and the “coreonly” synthetic kernels). In our study, we set the area allocated to cores to be

at least 20% of total the overall processing area budget.

As a result, we set up BFopt in such a way that the area allocation of each FF-Acc ranges from

0 to 10% with a step size of 2%, while the area allocation of RL ranges from 0 to 70% with a step

size of 10%. After removing candidates that lead to less than 20% of total area budget for cores,

the effective search space is around 1.4 million configurations. Thanks to the fast evaluation of

Lumos+, the brute-force search takes minutes rather than days on standard servers.



Chapter 3. Lumos+: Design Space Exploration for MPSoCs 45

FFAcc  allocations
0.00

0.02

0.04

0.06

0.08

0.10

0.12

P
e
r-

A
cc

. 
A

re
a
 a

llo
ca

ti
o
n

(a) FF accelerators.

Total Acc. allocations
0.0

0.2

0.4

0.6

0.8

1.0

P
e
r-

C
o
n
fi
g
. 
A

re
a
 a

llo
ca

ti
o
n

(b) FF-Accs. and RL

Figure 3.1: Area allocation with BFopt for accelerators with a domain-specific workload, with an
FF-Acc speedup of 40X. The box extends from the lower to upper quartile values of the data, with
a line at the median, and the whiskers indicating min/max of the data. (a) distribution of per-
accelerator area allocations on FF-Accs within these optimal configurations. Allocations on FF-
Accs range from 2% to 10% with a step size of 2%. (b) distribution of total accelerator allocations
(including RL and FF-Accs) of each optimal configuration.

3.3.2 Area Allocations on Accelerators

As a validation to the heuristics we applied to BFopt, we first look at the area allocated to accel-

erators across optimal configurations for 10,000 synthetic domain-specific applications. For each

application, we invoke BFopt to find the optimal configuration of area allocations on accelerators

and cores.

We use a box-plot to show the results, where the box extends from the lower to upper quartile

values of the data, with a line at the median, and with whiskers indicating min/max of the data. As

shown in Figure 3.1a, when the performance advantage of an FF-Acc is as large as 40x over its RL
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counterpart, the optimal area allocations for a majority of FF-Accs are less than 8%, validating the

first heuristic that the optimal area allocation for an FF-Acc is small. In Figure 3.1b, the overall

accelerator allocations of each optimal configuration are mostly in the range of 15% to 45%, with

outliers reaching up to 70%. Even considering these outliers, the total allocations are still well

below 80%, corroborating the second heuristic that conventional cores cannot be eliminated com-

pletely (i.e., more cores are provisioned than the heuristic baseline of 20%). When the performance

advantage of FF-Acc’s is 5x, we observe a similar shape of the resulting data set. We omit plots of

5x for succinctness.

3.3.3 Number of Dedicated Accelerators

As dedicated accelerators are generally more expensive to design and manufacture, it is critical to

understand the optimal number of FF-Accs to achieve the best performance in a cost-effective way.

We study the same set of optimal configurations obtained from the previous analysis, and use a pie

chart to summarize the number of FF-Acc’s in each optimal configuration. In Figure 3.2a, where the

performance ratio of FF-Accs to RL is 5x, most of the optimal configurations end up with no more

than one dedicated accelerator. This is because an RL accelerator with a large allocation outper-
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Figure 3.2: Number of dedicated ASIC accelerators in optimal configurations, plotted in pie charts.
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Figure 3.3: Distribution of performance volatility of optimal configurations for ASIC performance
ratio of 5x, and 40x. The box-plot setting is the same as described in Figure 3.1.

forms the corresponding dedicated accelerator with a small area allocation, and the large allocation

on RL is justified by its flexibility in acceleration across a range of kernels. However, when the

performance ratio of the FF-Acc is large enough, e.g. at 40x, a small allocation on is more than

enough to deliver a substantial kernel speedup, leaving non-accelerating kernels (e.g. “coreonly”

and “serial”) the new performance bottleneck. Therefore, as plotted in Figure 3.2b, a majority of

optimal system configurations include dedicated accelerators for all seven Sirius kernels, and avoid

any RL allocations at all.

3.3.4 Performance Volatility

The overall throughput of a heterogeneous system, especially when it is loaded with FF-Accs,

depends heavily on the frequency of its targeted kernels in each application. More specifically, the

system performs best on applications in which the targeted kernels are heavily weighted, and suffers

in applications within which the targeting kernels have lower weights. To study the performance

heterogeneity of a system configuration across applications, we propose a new metric, volatility,

to describe the performance stability of a heterogeneous system across a workload. Volatility (V )

is defined as the sum of “square residuals” of system performance across all applications within a
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workload:

V =
1
N

N

∑
i=1

(
1− sa

i

Sopt
i

)2

(3.4)

where sa
i is the performance of the system on application Ai, Sopt

i is the performance of the system

that achieves the highest throughput on application Ai, and 1−sa
i /Sopt

i is the performance “residual”

for the application Ai. The value of V ranges from 0 to 1. The smaller the V , the higher likelihood

of a system configuration to deliver close-to-optimal (if not optimal) performance for applications

within a workload. For example, when V = 0.01, due to the square of “residual”, it implies that the

configuration performs within 90% of the optimum on an average basis. We show the distribution

of performance volatility of optimal configurations from previous analysis in Figure 3.3. The per-

formance volatility values of optimal configurations in both cases (5x and 40x) are as low as 0.01.

This is because most of the optimal configurations for domain-specific applications are similar in

the number of accelerators as well as the type of accelerators. A configuration that is optimal for one

application performs close-to-optimal for other applications as well, resulting in a low performance

volatility across the workload.

3.4 General-Purpose Applications

Next we extend our exploration to general-purpose applications. In contrast to domain-specific

applications, where the set of kernel behaviors is limited and can be more carefully characterized,

general-purpose applications vary significantly in the variety of potential kernels, meaning that

applications can differ substantially.

We can use the same approach to synthesize applications for our design space exploration. In

addition to the special kernels of “coreonly” and “serial,” we create a pool of 100 kernels whose

RL speedups are evenly sampled from the range determined by the seven Sirius kernels. Then we

synthesize 500 applications by randomly sampling kernels out from this pool for each application.

We first explore designs with applications that have 15 kernels per-each. Then we show a sensitivity

study on applications that have 10 and 20 kernels.

Because the number of kernel candidates across these general-purpose applications is so large,
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the prior exhaustive search mechanism is no longer practical. We propose a heuristic search using

a genetic algorithm to find the best allocation of cores, FF-Accs, and RL.

3.4.1 GAopt

Genetic algorithms (GAs) are search heuristics that mimic the process of natural selection. To solve

a problem using GAs, one first needs to define an “individual” and initialize a population as the start

point. The GA then applies a combination of the user-defined mutation and crossover operations to

breed a “child” generation from the “parent.” At the end of each iteration, the new child generation

goes through a selection process to choose the best “individual” judged by a user-defined fitness

function. This genetic evolution process iterates until either the new population has converged or a

preset maximum of iterations has been reached. To solve our area allocation problem, we set up a

GA as follows:

1. An individual is defined as a vector of [a0,a1, . . . ,an], where a0 is the area allocation for the

reconfigurable block, and a1 through an are the area allocations for the n FF-Acc candidates.

Any of the [a0 . . .an] can be zero. In this study, we assume that each kernel can have its

own FF-Acc, and there are n kernels. Note that the area allocation on conventional cores is

implied as 1−∑ai.

2. We initialize the population by generating individual vectors with random area allocations,

and discard vectors that imply a less-than-20% area allocation for the cores. This is consistent

with the second heuristic presented in Section 3.3.1.

3. The crossover operation just selects two random dedicated accelerators and exchanges their

allocations between the two individuals. The mutation operation selects a new, random allo-

cation for each accelerator.

4. The fitness function of each individual is the performance of the candidate system configura-

tion on the given application.
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Pop. Size of new number of Crossover Mutation
size generation generations prob. prob.
300 600 100 0.6 0.3

Table 3.1: Parameters for GAopt using DEAP framework

5. The selection process select the k best individuals for the next generation, where k is the

population size. This is chosen empirically to optimize the speed and accuracy of GAopt.

We implement GAopt using the DEAP framework [29], and use parameters summarized in Ta-

ble 3.1. The first three parameters in Table 3.1 are chosen to ensure the GAopt to find the optimal

results in a reasonable amount of solving time. In our experiments, GAopt finds no better configu-

ration with a larger population size or more generations. The last two probability parameters adopt

the typical values suggested by the DEAP framework.

We compare GAopt results against BFopt on application-specific applications studied in the

previous section. The results obtained from GAopt match closely to the results from BFopt, with the

worst-case relative performance of 0.98 and 0.99 for performance ratio of 5x and 40x, respectively.

In some cases, GAopt is even slightly better than BFopt. This is because BFopt searches for a more

coarse-grained space due to our pruning heuristics. GAopt solves for the optimal configuration for a

single application in 262.91s on a server with an Intel Xeon X5550 processor using a single thread,

while BFopt spends 8027.66s to solve for the same application on the same server. GAopt achieves

a 30x speedup. For a workload consisting of 500 applications, BFopt is prohibitively expensive,

while GAopt completes in 1.5 days.

3.4.2 Importance of Reconfigurable Accelerators

Heterogeneous architectures with FF-Accs can provide substantial performance and power-

efficiency improvements over conventional multicore organizations. However, the high develop-

ment, qualification, and chip-area cost of a dedicated accelerator cannot be justified unless the

target kernel is prevalent across applications, so only a limited number of accelerators can be provi-

sioned. Furthermore, general-purpose workloads may need a wide range of accelerators, and very

few FF-Accs are likely to receive high utilization. Even its speedups are lower, RL is often a bet-
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ter use of area, because it can provide speedups and power-efficiency benefits for a wide range of

kernels.

To explore this tradeoff space for general-purpose applications, we characterize the distribution

of performance volatility across 500 applications in a box-plot on the left in Figure 3.4, using the

same settings as described in Figure 3.1. Each of the 500 applications are synthesized by randomly

selecting 15 out of the 100 kernels. Performance ratio of FF-Accs is 40x, since RL has already

dominated allocations on accelerators in the optimal configurations when the ratio is 5x (see Sec-

tion 3.3.3). The plot suggests that most of the optimal configurations have a performance volatility

larger than 0.2. This suggests that the performance of these configurations are worse than the opti-

mal by more than 40% on average. Then we look at the performance volatility of systems composed

of only reconfigurable accelerators. In the right plot, X-axis indicates the area allocation on recon-

figurable accelerators, in terms of percentage to the total area budget. It shows that configurations

with a considerable amount of allocation on a reconfigurable accelerator have a much lower perfor-

mance volatility (the minimum volatility is 0.031 when RL accounts for 35% of total area budget).

These configurations may not give the optimal speedup for any single application, but performance

is close to the optimal for a majority of applications. More specifically, the configuration with RL
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Figure 3.4: Performance volatility comparison between per-application optimal configurations and
RL-only configurations. Performance ratio of FF-Accs is 40x.
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allocation of 35% achieves at least 80% of the optimal performance for 80% of applications. In

the worst case, the configuration still achieves 65% of optimal performance, showing much better

performance potential than configurations that include both RL and FF-Accs.

Next, we explore the optimal area allocation for the RL. We test this for three workloads, one

with 10 randomly selected kernels per application, one with 15, and one with 20. From the previous

analysis, we learn that RL-only configurations are sufficient in most cases. Therefore, we focus on

RL-only configurations in this study. The remainder of the area is therefore dedicated to CPU cores.

0 10 20 30 40 50 60

RL allocation in %

0.0

0.1

0.2

0.3

0.4

0.5

P
e
rf

o
rm

a
n
ce

 V
o
la

ti
lit

y

Lowest V achieved with 35% RL
10: 0.055, 15: 0.031, 20: 0.015

# of kernels
10 15 20

Figure 3.5: Performance volatility comparison between per-application optimal configurations and
RL-only configurations. Performance ratio of FF-Accs is 40x.

As shown in Figure 3.5, the lowest performance volatility is achieved when 35% of chip area

is allocated for RL. (The remaining 65% of area supports 55 CPU cores, at 0.86V .) As the num-

ber of kernels per-application increases from 10 through 20, the minimum performance volatility

decreases from 0.055 to 0.015, suggesting that RL-only configurations provide better performance

stability across applications as the number of kernels per application increases.



Chapter 3. Lumos+: Design Space Exploration for MPSoCs 53

10 20 30 40 50 60

RL allocation in percentage

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
ce

rc_count

10

100

1K

10K

0.1M

None

Figure 3.6: Impact of reconfiguration overhead on performance volatility of RL-only configura-
tions, as a function of the number of reconfiguration options per application. “None” means that
reconfiguration overhead is ignored.

3.5 Reconfiguration Overhead

One drawback to RL is that reconfiguration overhead can compromise overall performance signif-

icantly. To study the impact of reconfiguration overhead to the performance volatility of RL-only

configurations, We use the same set of general-purpose synthetic applications that have been used

in the last section. We only show the results for applications that average 15 kernels per each, and

we obtain similar conclusions for applications with 10 and 20 kernels. As shown in Figure 3.6,

when the reconfiguration count is small (e.g. rc count=10), its impact on performance volatility is

minimal. As the reconfiguration count increases, the RL allocation in the system that achieves the

lowest performance volatility decreases. This is because a larger RL requires more time to recon-

figure, compromising its performance benefit over a smaller RL. When the reconfiguration count

is embarrassingly high (e.g. 0.1M), the performance volatility of systems with RL-only acceler-

ators are constantly high across all RL allocations, suggesting that systems loaded with RL-only

accelerators perform sub-optimally across target applications.

The negative performance impact of reconfiguration overhead advocates mitigation techniques

in order to make reconfigurable accelerators beneficial. These overheads can be mitigated at the
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application or architecture level. At the application level, it is very important to design RL-friendly

algorithms that minimize either the amount of reconfiguration or the time of each single reconfig-

uration process. At the architecture level, it may be preferable to reduce the area of any particular

accelerator on the reconfigurable block, so that multiple accelerators can be instantiated concur-

rently, allowing for greater reuse without intervening reconfiguration operations. The effectiveness

of this approach will be limited by the diversity of kernels, but temporal locality in execution may

still allow for significant reuse, for the same reasons that instruction caches are effective for CPUs.

Partial reconfiguration can help exploit temporal locality, by dynamically adapting the mix of ker-

nels currently instantiated on the RL to match application use patterns, replacing one kernel at a

time. Compile-time or run-time prediction can also allow pre-fetching of kernels, so that they can

be installed before they are needed. Partial reconfiguration also allows accelerators to grow and

shrink as needed.

3.6 Conclusions

In this chapter, we use an analytical framework called Lumos+ to explore the design space of

heterogeneous architectures composed of hardware accelerators. With the help of a genetic algo-

rithm based search heuristic, we show that dedicated accelerators are only beneficial when their

performance premiums are large enough (e.g. 40x) to compensate for limited programmability,

or when only a few kernels need acceleration. However, systems equipped with reconfigurable

logic are promising to achieve close-to-optimal performance consistently across applications with a

wide range of kernel characteristics, an important implication for rapidly evolving, general-purpose

workloads.



Chapter 4

AFI: Application-Level Fault Injection

Traditionally, system reliability is only a serious concern for mission-critical systems, such as un-

manned aerial vehicles (UVAs), or high-end server systems, such as IBM POWER series proces-

sors. While this convention still holds, reliability has become to one of the first-class design con-

straints for almost all modern computer systems. Moore’s Law continues its pace to doubling the

number of transistors on a chip. This results in a higher probability of a chip to fail. To make it

even worse, technology scaling keeps delivering smaller feature size and lower supply voltage for

devices. Single-event upset (SEU) caused by high energy particle strike are exacerbated at lower

voltages, due to the critical charge (Qcrit) required to cause a latch or SRAM bit flip diminishes

correspondingly. Similarly, transient errors caused by voltage noise also increase in incidence rate

under low-voltage operations.

Errors are expensive to detect and recover. Redundancy-based techniques, such as dual-modular

redundancy (DMR) and triple-modular redundancy (TMR), suffer from considerable amount of

overheads in system power and area. On the other hand, checkpoint-based techniques have non-

negligible run-time overhead, and could potentially prevent forward progress if the soft error rate

(SER) is too high. Meanwhile, extra energy consumed by recovery hurts the overall energy effi-

ciency of the system. This leaves system designer with worse performance as well as even more

pressure on already stringent power budget.

Fortunately, a given machine-application pair offers significant masking of effects in the face of

55
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spurious bit-flips; so, the raw soft error rate (SER) of processor chips – even though it may increase

with device density and lower voltages – is at least partially offset by large degrees of masking. For

a given machine, different applications (or phases within an application workflow) present different

degrees of masking.

It is also true that despite errors in a particular program output, consuming applications can

often actuate actions accurately, thereby providing error-free outcome at the end. For example, an

image processing and recognition algorithm can tolerate numerous pixel errors in the input data that

may have been produced by an earlier image-scanning step.

Overall, the different levels of error tolerance in applications can be exploited by using dynamic

voltage-frequency settings in such a manner as to optimize the net workflow performance/watt,

without violating system resilience constraints [86]. Therefore, it is important to characterize and

understand the inherent degree of transient error tolerance across the range of application workloads

of interest in a particular embedded system domain.

To quantify the SER with regard to various applications, we present a framework based on a

software-implemented fault injection (SWIFI) tool, called AFI. It features a runtime-independent

triggering mechanism to enable flexible parallel experiment runs, as well as a mechanism to char-

acterize only the region-of-interest (ROI) of an application through source code annotation. The

tool is build on top of standard debugging interface and performance counters that are available

in most of modern operating systems and processors. AFI is currently implemented on AIXTMfor

POWER7 processor for demonstration purpose. It can be easily ported to other platforms such as

X86 on Linux (we will add this support later).

This work has been published in IISWC 2014 [85].

4.1 Related Work

Soft error resilience has been studied over several decades (dating back to 1978 [97]) with a large

body of more recent work at various levels of design hierarchy, such as logic level [21, 74], micro-

architectural level [43, 89], and architectural level [8, 49, 50, 55]. For example, Mukherjee et. al.
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proposed the concept of architectural vulnerability factor (AVF) in [55] to quantify the resilience

of various architectural components. In [43], Kim et. al. studied soft error sensitivity of functional

blocks using software simulated fault injections into the RTL model of a microprocessor (picoJava-

II); Though showing significant masking effects (e.g. more than 85% reported by Wang et. al.

in [89]), none of these prior works specifically considered application’s algorithmic masking effects.

Direct measurement based SER resilience characterization works [5,44,97] do not separate out the

MD and AD components of the derating stack.

More recently, there has been an increasing interest in studying resilience at the application level

for low-cost reliability solutions. SWAT/mSWAT [33, 46, 47, 68] take advantage of application’s

abnormal behavior, referred to as symptoms, to identify faulty units using light-weight diagnosis

algorithms. In [80] Thomas et. al. propose the term EDC describing outcomes that deviate signif-

icantly from the error-free outcomes of an application. They use LLFI, an LLVM-based injection

framework, to study EDC across six benchmarks from MediaBench. As mentioned in [90], LLFI

injects errors at LLVM IR level, which may not be accurate for errors resulting in crash. AFI uses

ptrace facility to inject errors directly into applications’ architectural state, therefore does not have

the inaccuracy issue. Besides, AFI captures EDC via SDC-related outcomes under relaxed result

checking mechanism (e.g. SNR comparisons for SAR kernels in our study - see Section 4.4.1), and

we have studied a more extensive set of applications for application-level resilience.

There are some early attempts on software implemented fault injectors by changing the value of

architectural states. FERRARI, proposed in [41], also exploits the ptrace debugging facility just as

we do. However, FERRARI waits for a timer interrupt to inject errors, where execution time would

be shifted if there is any resource sharing contentions. Xception, proposed in [13], requires dedi-

cated hardware support of debugging register. AFI only relies on commonly available features from

operating system and processor hardware, therefore can be adapted to a broad platform. GOOFI-2,

a recent tool presented in [77], integrates three injection “backends” in a single framework. One

of the backends, the exception-based injection is the most similar approach to AFI. However, this

approach changes target applications by adding an instrumentation function. While AFI keeps the

ROI of target applications intact to avoid any noise to the fault characterization.
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4.2 Application Level Resilience

4.2.1 SER Taxonomy
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Figure 4.1: SER taxonomy

Figure 4.1 depicts our adopted taxonomy [5,44] with respect to the classification of fault effects

at the machine and application-level, under the influence of a single particle strike event (commonly

referred to as single event upset or SEU). Following assumptions relevant in current technology

nodes, an SEU is considered to be synonymous with a single latch bit-flip. Such taxonomy also

applies in the context of fault injection experiments conducted during pre- or post-silicon soft error

rate (SER) testing and evaluation activities. An SEU may result in one of four outcomes (as shown

in the left segment of Figure 4.1), one of which results in the corruption of the architectural state

visible to the executing application or workload. Note that in this particular description, we limit

our attention to latch-level single bit-flips, assuming that SRAM elements (e.g. register files) are

ECC-protected as in current generation POWER server-class processor [76]. SEUs affecting data

sitting in such an SRAM buffer would be corrected in-place and so would be 100% masked.

Let us denote the probability of getting to an incorrect architectural (register or memory) state

on a given fault injection or incidence by Pmd , where md signifies machine or micro-architectural
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derating (or masking). In response to a random flip of a latch bit state (from 1 to 0 or vice versa),

while an application is running, most of the time (e.g. with a probability of 0.957 for a measures

case in the POWER6 design [5, 44]) there is absolutely no effect - i.e. no harm is done to the ap-

plication. The application-visible architectural state can be corrupted with only a small probability

Pmd (=0.002 in the case cited in Figure 4.1).

An architectural state bit change can potentially result in silent data corruptions (SDC). How-

ever, given that an unwanted state bit change has occurred, the probability Pad of that causing an

actual SDC at the program output can also be rather small (e.g. typically somewhere between 0.05

to 0.2, although very rarely as high as 0.5). Here, ad stands for application derating, and refers

to the masking offered by the application as a corrupted architectural state tries to propagate and

eventually affect the correctness of the final program output. Given that the raw probability (Praw)

of a random latch bit-flip (within a given processor core) caused by high energy cosmic particle

incidence (over a period of say 1 hour) is after all a very small number to begin with, one can

see that the net probability Pnet of an SDC (i.e., Pnet = Praw ∗Pmd ∗Pad ) can indeed be very, very

small. For example, suppose Praw = 10−3, in a lower-end embedded processor context; Pmd = 0.002,

Pad = 0.05 (for a particular SER-hardened application A, measured over an execution duration of

1 hour). Then, Pnet [A] = 10−3 ∗ 0.002 ∗ 0.05 = 10−7 is the probability of an SER-induced SDC

with the application A running for one hour. Over a period of a billion (i.e. 109) hours, the ex-

pected number of SDC errors seen by a continuously running application A would have been 100

(= 10−7 ∗109). By definition, therefore, the failure rate of application A, running on the given pro-

cessor (core) is 100 FITs (where FIT is a unit of measurement abbreviated from the term: failures

in time).

For a system composed of 1000 processor cores, the net SDC FITs would be 100,000, resulting

in an SDC MTBF of 109/105 = 10,000 hours, which is slightly more than 1 year. For short-

duration, mission-critical airborne flights, this about 1 year SDC-MTBF might seem to be quite

acceptable. However, if the application is not specifically constructed to be SER-resilient, and if it

has a larger Pad value (e.g. 0.5), then the SDC-MTBF in this scenario would be about 36 days. This

may still be barely acceptable for short-duration mission-critical systems, but for a long duration
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space mission (e.g. satellite-borne permanent space stations), an SDC-MTBF of 36 days would

quite possibly be deemed to be unacceptable. Note also, that the above illustrative MTBF figures

are constrained to SDC. The mean-time between application interrupts (MTBAI), which includes

consideration for all detected, uncorrected errors (DUE) would be much smaller.

4.2.2 Evaluating a Target System for SER

Figure 4.2 shows the target application domain of interest in this chapter. The system of interest

consists of a network of embedded processor systems that wirelessly communicate with each other,

while also being connected to a ground-based server system (possibly offered as a cloud-based ser-

vice) through an internet-enabled wireless communication protocol. Our focus of attention in this

chapter is an individual embedded processor system that is engaged in a real-time image processing,

recognition and response actuation mission. It may be noted, that depending on the size and scale

of the supporting cloud infrastructure, the per-core SDC FIT value discussed earlier would be unac-

ceptable in the design of such a cloud server or data center. For example, if we are talking about a

million-core extreme scale data center, the SDC-FITs would, in the above case, be 100∗106 = 108,

implying an SDC MTBF of 10 hours which is definitely unacceptable. So, what is acceptable for

a single many-core embedded processor system, may be totally unacceptable in the context of the
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Figure 4.2: Cloud-backed airborne embedded system network, which operates under harsh condi-
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large-scale supporting data center. Depending on the target system-level FITs and the size of the

system, the per-core and per-chip FITs target can be deduced and this then becomes a strict design

constraint.

To accurately predict system FIT values for a specific application workload in a pre-silicon

setting, the associated MD and AD factors must be estimated with reasonable precision. Pre-silicon

system-level methods for estimating the MD factor are found in prior works like AVF [55] and

Phaser [65]. In this work, we focus only on the AD component of the system derating stack. The

MD factor is actually also application-dependent, but the application sensitivity is significantly

smaller than that observed in AD calculations. Therefore, in trying to quantify the inherent error

tolerance of the PERFECT application suite, we limit out attention to the AD factor in this chapter.

The Application Fault Injection (AFI) tool, which we describe in Section 4.3, provides an es-

timate for the application-level derating (Pad shown in Figure 4.1) and when combined with the

machine-level derating values, the overall FIT estimation bound tightens to a more realistic bound.

Typically, the combined (MD+AD)-driven FITs can easily decrease by a factor of 10, relative to an

overly conservative system in which only the MD component is considered. As such, leveraging the

masking effects provided inherently by the application (modulo the level of compiler optimization

used) is a promising approach in low power embedded processor system research.

4.3 Application Fault Injection

The core component of application fault injection (AFI) is a software-implemented fault injector

(SWIFI). Figure 4.3 shows the high-level block diagram of the fault injector in AFI, which ex-

ploits the standard debugging interface available in all POSIX operating systems, like Linux and

Unix. The injector emulates hardware faults that are propagated into application level by alternating

program-visible architectural states, such as general-purposed registers. The behavior of injector

is fully parameterized and configurable to emulate various fault models such as single bit-flip in a

register, multiple bit-flips in a register, multiple bit-flips among registers, etc.

AFI provides a mechanism by which a parent process can launch and control the execution of
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Figure 4.3: Block diagram of Application-Level Fault Injection framework (AFI). AFI includes
two major components: 1) a fault injector which launches an application and injects error guided
by user input, and 2) a fault monitor which determines the outcome of injected error into one of
four outcomes as masked, SDC, crash, and hung.

another process – namely the application execution process that is targeted for fault injection. It ran-

domly choose the location within architectural states of each injection uniformly to inject bit-flips.

While, users can also specify a specific location (e.g. register number) to investigate application’s

resilience to a specific register. Within the chosen location, the application fault injector then flips

either a single bit at or multiple consecutive bits from a random bit location. The parent process

can examine and change the architectural register and memory state of the monitored application

execution process.

AFI is accelerated by running fault injection trials in parallel. Typically, AFI needs to run

thousands of injection trials to achieve statistical significance. This adds up to a significant amount

of time to finish all trials for a single characterization run. Conventional approaches use clock-timer

to trigger fault injection. When running injection trials in parallel, CPU time is not reliable since the

execution time of the application will be stretched due to resource sharing among multiple running

instances of the application. Instead of relying on CPU time, AFI exploits dynamic instruction

count to trigger its injection. AFI takes advantage of performance counters that are available in
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most of modern processors (e.g., POWER7), and triggers its injection when an overflow occurs on

dynamic instruction count by a pre-defined value (either user-specified or randomly generated by

AFI).

AFI is further augmented to selectively inject faults into region-of-interest (ROI) of an applica-

tion through source-level annotation. One of the most useful cases is to rule out the initialization and

finalization stages of applications from fault characterization. For most of the applications, there

application stages usually involve with file I/O operation to read/write data from/to files. They do

take considerable of time especially for kernel-like benchmark applications where the total execu-

tion time of the main loop is relatively short. Therefore, they contribute to a lot of noise to the fault

characterization when only the main loop is of interest.

AFI has been integrated with a user-friendly graphic user interface to configure fault injection

experiments as well as visualize results. This provides an intuitive way for user to quickly explore

the resilience characteristics of target applications. Advanced users can also take advantages of the

scripting facility to automate large amount of experiments for design space explorations.

Pseudo-random fault injection experiments were made into the architectural register space in

each controlled experiment. AFI then determines the outcomes of each such injection. Possible

outcomes are defined as follows:

Masked The bit that is flipped via the injection has no effect on the program execution profile,

including the final program output or final data memory state. These fault injections are

categorized as being fully “masked”.

SDC The injected bit-flip results in a silent data corruption (SDC) i.e. the program output or the

final data memory state shows an error, when compared to the fault-free, “golden” run of the

program.

Crash The injected error results in a program crash, where the operating system terminates the

program due to a detected runtime error (e.g. divide by zero exception or segmentation fault,

illegal memory reference, etc.).
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Hung The injected bit-flip results in a “hung” state, where there is no forward progress of the

program execution; effectively, in practice such a situation would require a user-initiated

program termination or even a physical machine reboot.

4.4 Experiment Setup

We have implement AFI framework on a POWER7 machine running a Unix-class operating system,

called AIXTM. AFI takes advantage of hardware performance monitor API (pmapi) provided by

AIX to interface the performance counters. All applications are compiled using IBM XL C compiler

suite.

4.4.1 PERFECT Suite

To demonstrate the capability of AFI, we choose a set of application from a newly developed PER-

FECT Suite, which is a class of mobile embedded applications that are currently under study in

the DARPA-sponsored PERFECT program.1 A key application domain of interest is that of mobile

embedded systems of the type captured by Figure 4.2 and associated discussion at the beginning of

this chapter. The suite is divided into four major domains. Each domain contains three kernels that

represent segments of computational importance for a representative application on the domain.

Applications are detailed as follows:

4.4.1.1 PERFECT Application1 (PA1)

PA1 applications are image processing related kernels that work on massive data sets. The three

kernels are:

2dconv is a kernel applying Gaussian filter over the input image or signals to reduce noise in

images. The input image uses 32-bit unsigned pixels with a dynamic range of 16 bits per

pixel.

1PERFECT stands for Power Efficiency Revolution For Embedded Computing Technologies.
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dwt53 is a discrete wavelet transform kernel similar to the Fourier transform, except that it captures

both frequency and temporal information. pa1.dwt53 can be used as a pre-conditioner to data

compression in areas of image and video processing.

histo is histogram equalization which increases the contrast of an image by spreading the most

frequent intensity values over a larger range.

The results of these kernels are presented in the form of an integer matrix. The correctness of

the results is verified by comparing the output matrix against the golden outputs.

4.4.1.2 Space-Time Adaptive Processing (STAP)

Radar systems on an airborne platform must often mitigate the impact of ground clutter (i.e.,

radar returns from the ground or structures), which can overwhelm other signals of interest. Air-

borne movement further complicates the mitigation process because radar returns are spread in the

Doppler dimension. Space-time adaptive processing (STAP) algorithms address clutter by adap-

tively computing and applying filters in both the spatial (angular) and temporal (Doppler) domains.

The included three kernels are:

oprod calculates outer product to estimate co-variance for a given range cell and Doppler bin in

order to calculate the associated adaptive weights.

syssol is a linear system solver taking the output of stap.oprod to generate weight using QR de-

composition.

iprod calculates inner product to apply adaptive weighting to the snapshot vectors to form the final

STAP output.

All three kernels have the results in the form of an array of complex numbers. To evaluate

the results, these kernels have embedded signal-to-noise ratio (SNR) calculation against the golden

output. To verify the correctness of the results, SNR values are compared against non-injection

runs.
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4.4.1.3 Synthetic Aperture Radar (SAR)

Synthetic aperture radar (SAR) is a radar-based imaging modality capable of producing high-

resolution imagery from an airborne platform. Rather than utilizing a large aperture to achieve

high resolution, SAR synthesizes a large aperture using platform motion and then forms an image

using data corresponding to the pulses acquired over the synthetic aperture. The amount of data

needed for image formation is a function of the radar system parameters, desired image resolution,

and coverage area. The included three kernels are:

pfa1 and pfa2 are two interpolation kernels related to the polar format algorithm (PFA), which is

a Fourier-based approach. The sar.pfa1 is a PFA range interpolation, while sar.pfa2 is a PFA

azimuth interpolation.

bp is the back-projection algorithm [23,24,30], which is a method of image formation that directly

integrates a contribution from each pulse into each pixel.

Similar to STAP kernels, SAR kernels present the results as an array of complex numbers. The

correctness is verified via SNR comparisons against non-injection runs.

4.4.1.4 Wide Area Motion Imagery (WAMI)

Modern imaging sensors produce a very large amount of data from which useful information must

be extracted. The included three kernels are:

debayer is the debayer kernel that takes a Bayer array image with one sampler per pixel as input,

and returns an image with RGB samples per pixel where the missing colors have been esti-

mated via interpolation. The algorithm is detailed in [51]. The result of debayer is verified

via exact match of each pixels. Any single mismatch of a pixel will be characterized as wrong

results.

lucas is an image alignment kernel which moves and warps a template image to minimize the

difference between the template and the original image. The algorithm is detailed in [3].
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Domain Application Result fidelity metric

PA1
2dconv bit-to-bit correctness

to predefined golden
outputs

dwt53
histo

STAP
oprod

signal-to-noise ratio (SNR)syssol
iprod

SAR
pfa1

signal-to-noise ratio (SNR)pfa2
bp

WAMI
debayer pixel-by-pixel comparison to

predefined golden outputs
lucas bit-to-bit comparison on check-

sums
cd pixel-by-pixel comparison with

acceptable mismatch threshold
of 0.1%

Table 4.1: Result checking mechanism of PERFECT applications

The result of lucas is presented as an 6x6 Hessian matrix of floating point numbers with 7

significant bits. The correctness of the results is verified via exact match to the golden output

matrix.

cd is a change detection kernel using Gaussian mixture model as described in [78]. The results are

compared to the golden output pixel-by-pixel. The result is considered to be incorrect when

more than 0.1% of pixels mismatch the golden output.

The result checking mechanism of all benchmarks within PERFECT Suite is summarized in

Table 4.1

4.4.2 Statistical Significance

In order to achieve statistical saturation of the masking rate, we have done a sensitivity study on the

number of faults injected using well known benchmarks such as bzip2, matrix multiply (mmm), and

conjugate gradient (CG). As shown in Figure 4.4, the masking rate saturates after 3000 injections.

Therefore, we choose 3000 injections for the rest of our studies.
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Figure 4.4: Sensitivity study on the number of injections to achieve statistical stability. X-axis is the
number of injections, while Y-axis shows the masking rate of corresponding experiments. Three
well known benchmarks are choose as conjugate gradient (CG-A) from NAS benchmark suite,
bzip2 from SPEC2006, and matrix multiply (mmm).

4.5 Resilience Characterization

We show a couple of resilience characterization cases to demonstrate the capability of AFI frame-

work.

4.5.1 Case I: Single Bit Errors

A single bit error in architectural states, e.g. general-purposed register file, is one of the most used

fault model to emulate a single-event upset (SEU) induced by high-energy particle strike. Using

AFI, we inject a single bit-flip into a general-purposed register that is randomly chosen at runtime.

As shown in Figure 4.5, the SDC rate in response to the bit-flip varies widely across applications,

ranging from 2% in the case of lucas and histo to as large as around 50% in the case of iprod.

There are two general observations that we make in connection with the reported (potential) SDC
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manifestation rate (or probabilities) within an application. These observations actually apply to both

general purpose and floating point register injection experiments (discussed later in this section).
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Figure 4.5: General-purpose register injections

Register Usage : The more registers used in the binary, the less resilient the application is. For

example, in the main loop of stap.iprod, the binary code generated by the compiler uses most

of the available architectural registers. Therefore, a single bit error within the architectural

register space is more likely to affect application correctness.

Interpretation of SDC : It must be noted that although we refer to SDC rates of an application

- we actually limit our attention only to the AD factor, in order to focus on the application-

specific sensitivity aspect. As discussed before, multiplying by the MD-related probability

and the raw SER incidence probability yields the net real probability of SDC error - which is

a much, much smaller number than the AD-related probability alone.

AFI is also capable of injecting bit-flips into other architectural stats, such as floating point reg-
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isters, as well. As shown in Figure 4.6, when injecting a single bit-flip in floating point architectural

state, the SDC rate, in general, are much smaller than injections in general-purpose architectural

state. This is because an error in floating point architectural state only affects floating point instruc-

tions, which are only a faction of total instruction mix. In particular, floating point registers are not

involved in address computation related instructions - unlike general purpose registers.
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Figure 4.6: Floating point register injections

We can see from Figure 4.7, SAR applications (pfa1, pfa2, bp) have relatively high floating

point operation percentages, therefore, they have the highest SDC rates among the floating point

applications under consideration. There are two exceptions for the correlation between SDC rates

and floating point instruction percentage, cd and 2dconv. In the case of cd, the final stage of the

computation generates residual checking values as the application’s output, which masks most of

the incorrectness in previous calculations. While for 2dconv, all floating point operations are ded-

icated to calculate the accumulating sum using a single variable, so that the generated binary only

uses very few floating point registers. As a result, the overall SDC rate is limited even though a
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Figure 4.7: Floating point instruction percentage

considerable number of instructions uses floating point operation.

4.5.2 Case II: Multiple Bit Errors

The multiple bit error injection models were primarily inspired by SEMU physical trend data, as

shown in Figure 4.12. Also, recent statistical fault injection based analysis by Cho et al. [15]

shows that random single bit-flips at the latch level (corresponding to an SEU) may not result in

just a single bit-flip corruption at the architectural register state. Regarding to these impacts on

architectural states, AFI supports different multiple bit error injection models.

We first look at a straightforward multi-bit injection model, where error bits are consecutive

within a single architectural register. In this injection model, AFI randomly chooses a single archi-

tectural register and independently a random bit location, then flips multiple bits starting from the

chosen location in the chose register.

In Figure 4.8, we show resilience results for all applications by injecting bit-flips into general-

purpose registers (Figure 4.8a) and floating point registers (Figure 4.8b), with a single bit, 2 bits,
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Figure 4.8: Multi-bit error injections.

and 4 bits, respectively.

For GPRs in Figure 4.8a, in general, we do not see significant changes in masking rates. This is

because when errors hit a critical register, it almost always leads to some form of errors, no matter

how many bits the error is. Besides, out of these unmasked trials, we can observe a higher SDC

rate with 1-bit error injection while a higher crash rate with 4-bit injection.This is because with

a single bit-error, the affected address pointers used by an application may still be legitimate but

point to a wrong place (hence SDCs). However, with 4-bit errors, the affected address pointers will

more likely point to an illegal address (hence crash). We observe a similar trend for FPR injections

(Figure 4.8b). The masking rates do not change much across 1-, 2- or 4-bit errors. Since the crash

and hang trials are very rare with errors in FPRs, the SDC rate is roughly equal to 1−mask rate.

As a result, SDC rates do not vary too much with multi-bits errors in FPRs.

We then look at an alternative multiple bit error injection model: for an N-bit error injection ex-
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periment, we randomly choose N consecutive architectural registers and an independently random

bit location. Then, AFI flips N consecutive bits starting from the chosen location within each of

these N registers. In this model, a total of N2 bits are flipped in a single experiment. This injection

model is used to mimic the single event multi-bit upset (SEMU) event, where a single particle strike

can flip multiple bits within a register file region.
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Figure 4.9: Results for alternate multi-bit error injection model (GPRs) to mimic the SEMU case.

We choose two applications: sar.pfa1 and wami.debayer. For each application, we inject 1, 2,

and 4 bits errors into general-purpose architectural register state using the alternative multiple bit

error injection model. As shown in Figure 4.9, as the number of error bits increases from 1 through

4, masking rates of both applications decrease significantly while crash and SDC rates increase

significantly. This is because more registers are affected under the alternative multiple bit error

injection model, which increases the likelihood that a critical architectural register is corrupted.
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4.5.3 Case III: Compiler Optimization

AFI can also be used to study the resilience of the same application, but compiled with different

optimization flags. In Figure 4.10, we show the SDC rates of sar.bp compiled with five different

optimization levels (O0, O2, O3, O4, and O5) subject to a single bit-flip in FPRs. Along with bars of

SDC rates, we have added bars for the dynamic or run-time floating point instruction percentage of

the corresponding binaries. We observe that the SDC rate increases significantly from optimization

level O0 to O2, then gradually decreases through O5. Meanwhile, the percentage of floating point

instructions follows a similar trend from O0 through O3 (increase from O0 to O2, and decrease from

O2 to O3). From O0 to O2, the increase of SDC rate is much larger than the increase of floating

point instruction percentage. This is because, the compiler, at O2, does loop unrolling optimization

which increases the usage of floating point registers a lot.

From O3 to O5, the SDC rate decreases while the floating point instruction percentage actually

increases. This is because, starting with O3, the compiler starts optimization of vectorization and
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Figure 4.11: Phased characterization on (a) pa1.2dconv, (b) stap.iprod, and (c) sar.bp
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tries to use vector registers as much as possible. In this experiment, we inject bit-flips into FPRs

only. Since FPR is part of the vector register file in POWER architecture, our injection only affects

part of the vector register file. Therefore, O5 binary which has the most extensive utilization of

vector instructions has the lowest SDC rates as shown in Figure 4.10.

4.5.4 Case IV: Temporal Vulnerability

We show phased characterization for three of the applications from PERFECT Suite in Figure 4.11.

In Figure 4.11a, the SDC rates are rather low in both initialization phases and finalization phases.

This is because 2dconv is doing file reading and writing during these two phases respectively. In

Figure 4.11b, only the initialization phases have low SDC rates. This is because iprod does cal-

culation of checksum in its finalization phases, which are still vulnerable to SDC errors. Lastly,

in Figure 4.11c, SDC rates tend to be roughly constant across all phases. This is because sar.bp

reads a relatively small input file so that the initialization phase is far less than 1 second. During

finalization phases, sar.bp does similar checksum calculation as stap.iprod. Therefore, these phases

are vulnerable to SDC errors as well.

4.6 Discussion of Characterization Results

The application-level statistical fault injection studies for the PERFECT Suite reported in this chap-

ter yield a couple of key conclusions:

• If single-event upset (SEU) events result in at most a single bit-flip in a single register file,

then the results in Figure 4.5 and 4.6 accurately depict the AD-related masking characteristics

of the general purpose and floating point register set respectively. Both figures show consid-

erable application-sensitivity. For example, in the GPR case, SDC vulnerability can range

from 2% (histo or lucas) to 50% (iprod).

• The temporal, phase-specific profiles of three selected applications (Figure 4.11), under the

same single bit-flip error injection model yields interesting data that can be easily explained
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by understanding the phase-specific functionality within each phase. For example, initializa-

tion, computational steady-state and final summarization steps often show up with distinct

resilience characteristics.

• Alternate multi-bit error injections model were tried, with the goal of mimicking the effect

of a single event multi-bit upset (SEMU) scenario. In one scenario, multiple (successive)

bits within a single randomly selected register were flipped in a given experimental run. In

another scenario, multiple (successive) registers were picked, and multiple bits across the

selected registers were flipped in a given run. In the first scenario, the difference in masking

and corruption characteristics across 1-, 2- and 4-bit injections was not much (Figure 4.8);

whereas, in the second scenario, when multiple registers were picked to flip bits at the same

time, a significant difference was found across 1-, 2- and 4-bit injections (Figure 4.9). This

was easily explainable by considering the fact that a single corrupted register is expected

to cause similar effects within the program, regardless of whether one or multiple bits are

changed. Whereas, if multiple registers get corrupted, the chances of downstream inaccuracy

of computed results become higher with the number of simultaneously affected registers.

• Compiler optimization level was found to be a strong influence in determining the resilience

characteristics of a given application (Figure 4.10). In general, higher degrees of optimization

tend to increase performance, but at the cost of increased vulnerability to transient errors.

One key reason why we see such a behavior is that code optimization tends to use more

registers than in un-optimized code - and this increases the probability of downstream failures

in response to random register bit-flips.

• As discussed in section 4.5, many of the experimentally observed trend data can be explained

quite easily by considering simple, machine-independent workload metrics like dynamic in-

struction frequency mix. This is a very useful result, since it implies that in a dynamic (adap-

tive) resilience framework, monitoring of instruction mix profiles (via performance counter

readings) can prove to be valuable in effecting appropriate control changes (e.g. voltage-
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frequency settings) in order to optimize performance per watt, without giving up system

resilience.
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Figure 4.12: Single event multi-bit upset (SEMU) trends for CMOS PD-SOI [66].

The multi-bit error injection models were primarily inspired by SEMU physical trend data, as

shown in Figure 4.12 (quoted from [66]). Also, recent statistical fault injection based analysis by

Cho et al. [15] shows that random single bit-flips at the latch level (corresponding to an SEU) may

not result in just a single bit-flip corruption at the architectural register state. Also, critical control

registers outside the programmer-visible architectural state could get corrupted. Cho et al. have

justifiably argued that conclusions about system-manifested net resilience or vulnerability levels

cannot be drawn from naively directed application (or architectural state) fault injection experi-

ments. Therefore, we experimented with a range of alternate single- and multi-bit error injection

models in this research. Regardless of the particular choice of the error injection model, we could

not observe any change in the relative ordering of the applications from ”highly resilient” to ”least

resilient.” This is an important result - but we acknowledge, this is limited to considerations of the
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application derating (AD) component of the net SER equation only. If the application-sensitivity

of the machine derating (MD) component were also considered, perhaps the resilience-directed rel-

ative application ordering would change, depending on the choice of error injection model. This,

therefore, remains an important area of future research.

4.7 Conclusions

In this chapter, we describe a framework called AFI for application programmer and system de-

signer to take advantage of application-level resilience. Using AFI, we have characterized 12 ap-

plications from PERFECT Suite, a benchmark suite for emerging embedded systems. The results

shows a wide range of application-level resilience (SDC vulnerability rates from about 2% though

more than 50%), which motivates further dynamic techniques to trade-off among resilience, power

and performance. We also find that application-level resilience is very sensitive to the compiler

optimization, where the SDC vulnerability rate is around 1% without optimization (or “-O0”), and

increases to more than 35% with “-O2” optimization level.



Chapter 5

PEARL: Power-Efficient Embedded Processing with

Resilience and Real-Time Constraints

A powerful control parameter for power management of embedded processor systems is dynamic

voltage-frequency scaling (DVFS). However, soft error rates (SERs) are known to increase sharply

as the supply voltage is scaled downward [70]. Hence, in order to preserve system resilience levels,

it is important to apply voltage scaling carefully, keeping in mind the varying levels of vulnerability

to SER within an application’s execution profile. On the other hand, overclocking or turbo-boosting

(with higher voltages applied if/as necessary) to meet real-time deadline, comes at the cost of higher

power (or current) density and temperature (as well as higher gate-oxide field stress), which results

in higher hard-failure rates.

In this chapter, we consider a class of embedded systems that require high levels of power-

performance efficiency while meeting mission-critical reliability specifications and real-time per-

formance targets. Such systems require an energy optimization protocol that is cognizant of the

variable resiliency needs and properties of the executed application. A representative example of

such an embedded system of interest is a single unmanned aerial vehicle (UAV) or a swarm of

such UAVs. These are typically engaged in remote sensing of ground images, for the purposes of

reconnaissance, object recognition/tracking and tactical response.

We first describe PEARL, a novel software modeling framework that enables users to: (a)

statically prepare application workflows for energy-optimized resilience; and (b) experiment with

80
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run-time deployment options in targeted embedded systems. PEARL stands for power efficient

and resilient embedded processing with real-time constraints, and is built upon the earlier toolset

described by Wang [86]. We then describe the use of PEARL to pursue static optimization of

voltage-frequency settings across segments of a workflow. We handle both linear and directed

acyclic graph (DAG)-structured workflows. Subsequently, we describe how dynamic (run-time)

uncertainties are factored into the user-driven workflow optimization process. Our analysis shows

up to 15% and 35% energy efficiency improvement over a simple baseline, for linear and graph

workflows respectively. Moreover, our proposed dynamic iterative approach achieves up to 25%

energy efficiency improvement over a conservative static approach, while maintaining the same

level of confidence in meeting deadline constraints.

This work has been published at ISLPED 2015 [88].

5.1 Related Work

Dynamic voltage and frequency scaling (DVFS) has been widely used for managing workload-

driven power in a processor or system context. For example, Isci et al. [39] propose multi-core

DVFS algorithms with the objective of maximizing chip throughput for a given power budget. In

the real-time embedded systems domain, early work by Pillai et al. [61] and more recent work by

Devadas et al. [25] and Qi et al. [63] are a few representative studies from a large body of work to

meet real-time deadlines while minimizing power. Scheduling of tasks in the form of DAG has also

been widely studied, for example, in Shang et al. [72] and Kanoun et al. [42]. However, none of

them considered reliability as a system-level design constraint.

Combining reliability considerations with energy savings in a unified dynamic resource man-

agement framework is a topic area that has not been explored as widely as dynamic power manage-

ment alone. Zhang et al. [94] address a reliability-aware power management problem, but in this

case the reliability focus is only on checkpoint-restart based systems. Similar to our work, Zhao

et al. [95] address the mutually opposing issues of energy efficiency and transient error probabil-

ity (with DVS or DVFS control). However, Zhao et al. use a set voltage-dependence equation to
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model system resilience, without factoring in the application-level masking effects (as in our work).

EPROF [93] exploits Integer Linear Programming (ILP) to optimize the trade-off among energy,

performance, and reliability. However, the trade-off in EPROF targets heterogeneous multi-core

systems composed of reliable cores consuming high power, and unreliable cores consuming low

power. Performance, and reliability are modeled as intrinsic properties of hardware using proxies

such as clock frequency and soft error rate. Our work relies on voltage-frequency scaling as the

primary energy saving technique, and takes advantage of application-specific models for power and

reliability. Finally, our work presents an approach to dynamic adaptation that accounts for run-time

variations, which is not covered by EPROF. As in our static optimization work, the authors of [71]

propose a similar linear-optimization based approach, while emphasizing the impact of application

level correctness to the system resilience. However, in their work, the method of characterizing the

application level resilience is SoC-specific, and does not apply to general-purpose processors, as

studied in our work. In [86], Wang et al. present the idea to exploit ILP for linear workflow opti-

mization. Our work extends this to more complex graph workflows, and provides a better dynamic

approach that can achieve higher energy efficiency while still maintaining a high level of confidence

in meeting deadline constraints.

5.2 PEARL Facility and Methodology

5.2.1 Workflow Models

We use the term workflow to denote a collection of inter-dependent tasks as executed by a single

mobile embedded system (e.g. UAV) or a swarm thereof. The basic building block of a workflow is

an application or a task. For simplicity, we stipulate that any workflow-specific voltage-frequency

management decision is applied only at the beginning of an application segment. Within an appli-

cation, the voltage-frequency setting remains fixed.

A linear workflow (Figure 5.1a) is used to model a single embedded system, where a sequence

of applications is ordered by inter-application dependencies. A graph workflow (Figure 5.1b) is

used to model multiple embedded systems, across which inter-communications are required in or-
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der to solve the mission-assigned task cooperatively. Each embedded system runs its own thread

of linear workflow, while applications within that linear workflow are also subject to dependencies

from other embedded systems, known as inter-dependencies. Adding inter-dependencies, threads of

linear workflows form a directed acyclic graph (DAG). For simplicity, we only consider dependen-

cies across applications, and leave the overhead associated with inter-application communication

as future work.

5.2.2 Individual Application Programs

We use applications from the PERFECT benchmark suite provided for research in the DARPA

PERFECT program [22]. The PERFECT suite includes 12 applications taken from signal and

image processing tasks: outer product (oprod), system solve (syssol), inner product (iprod), discrete

wavelet transform (dwt53), histogram equalization (histo), 2D convolution (2dconv), path finding

algorithms (pfa1 and pfa2), back projection (bp), change detection (cd), lucas kanade (lucas), and

debayer (debayer). To add diversity to our set of benchmarks, we also select 8 applications from
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Figure 5.1: Workflow illustration. A linear workflow (a) is a stitched sequence of applications,
modeling a single embedded system (ES). A graph workflow (b) is a set of linear workflows with
inter-dependencies, modeling multiple embedded systems with inter-system communications.
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SPEC2006 in the expectation that embedded systems will have an increasing burden of general

purpose applications. Selected applications are gcc, perlbench, bzip2, h264ref, mcf, sphinx, dealII,

and lbm, which constitute an application set with diverse computing domains and characteristics.

We will use these 20 applications to synthesize workflows studied later in this chapter.

5.2.3 Power and Performance Modeling

We use machine measurement from real hardware for power and performance characterizations

for all the applications mentioned in the last section. The experimental system is a state-of-the-art

multi-core server processor system with POWER ISA. For each application, we measure the power

and performance (execution time) under 20 frequency levels with a step size of 100MHz. The

frequency range covers operating levels such as turbo boosting, nominal operation, and low-power

operations with low supply voltage. Note that, in our experimental setup, the appropriate supply

voltage is determined by firmware for each frequency level. Therefore, the frequency and supply

voltage always come as a pair for voltage-frequency scaling. For simplicity, we will refer to voltage-

frequency settings by their corresponding frequency levels. Unlike prior work using analytical

models for power and performance characterization, we rely solely on machine measurements,

which are more accurate with less modeling errors. The characterization cost may seem high due

to the fine granularity of frequency levels for each application. However, the one-time cost can be

amortized later by analysis on various workflows composed of the same set of applications.

The length of each application plays a critical role in the voltage-frequency allocation prob-

lem. For example, if a single application dominates the workflow in terms of the execution time,

it will have an overwhelming effect in determining the energy efficiency of the workflow. The so-

lution, in this case, would be straightforward: just choose the most efficient operation level for the

dominating application. Therefore, in order to remove such application-specific bias in our illustra-

tive analysis, we scale the execution time of each application so that all of them run for the same

length of time (10 seconds) at the nominal supply voltage. This assumption allows us to explore

the maximum achievable improvement via full-workflow scheduling. Furthermore, the DVFS tran-

sition time (which is in the milliseconds range) is a very small fraction of each application’s run
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time. We ignore the transition overhead associated with DVFS by only allowing DVFS transitions

at application boundaries.

Note that, all our presented approaches in this chapter do not rely on any specific value of

applications’ length of execution time, and can be broadly applied to any real applications of interest

in the described scenarios.

We measure the power and performance using “cornflake” [82], which is an externally resident

software that can attach to facilities inside the POWER7+ system. Using cornflake, we are able to

remotely access both the power and performance metrics associated with a given application run.

The performance metrics are accessed via the performance monitoring unit (PMU) facilities within

the processor. The power metrics are measured via the AMESTER framework [45], which is a spe-

cially developed firmware that is capable of monitoring the power and temperature measurements

tracked by the EnergyScale micro-controller [28].

Cornflake

POWER7+ Based System

EnergyScale 
Microcontroller

POWER7+ 
Processors

OS: Linux

Applications (PERFECT 
Suite, SPEC2k6, etc.)

PMU Access 
Tool

AMESTER

Figure 5.2: Experimental system block diagram.

We have characterized the power and performance for all 20 applications mentioned in Sec-

tion 5.2.2. Due to the space limit, we only show the results for 3 selected applications. As plotted

in Figure 5.3a, applications’ power consumption scales with a similar trend. We confirm that other

applications that are not shown in the figure also share similar scaling profile. Execution time, on

the other hand, is a little different. To demonstrate the characterization on the scaling of execution

time, we fit the execution time to the operating frequency using equation t = β · f α. As shown in
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(a) Power characterization of selected applications for demonstration purpose. Power, plotted on
the Y-axis, is normalized to the power of each application running at the lowest 2.4GHz. Other
applications, although not shown due to space limit, have similar scaling trends to the shown three
applications.
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(b) Execution time characterization of selected applications for demonstration purpose. Perfor-
mance, plotted on the Y-axis, is calculated as the reciprocal of applications’ execution time, and
normalized to the execution time of each application running at the lowest 2.4GHz. The formula
in the title indicates coefficients when fitting performance to frequency levels.

Figure 5.3b, 2dconv and bzip2 have the α coefficient value as 0.95, and 1, indicating the two are

more computation-intensive applications. While lbm has a α value of 0.31, indicating a memory-

intensive application. For all target applications, 14 out of 20 have α values greater than 0.9. There

are only a few exceptions whose α values are significantly less than 1. The application with the

smallest α is lbm, where α = 0.31.

5.2.4 Resilience Modeling

System reliability, in the context of transient (soft) and permanent (hard) errors, is of critical impor-

tance for embedded systems carrying out mission-critical tasks. For soft error rate (SER) modeling,

we estimate the failure rate (measured in standard units of failures in time or FITs) using an ap-

proach adopted from industrial practice [44,69]. In such an evaluation methodology, machine-level
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derating (MD) and application-level derating (AD) are treated as decoupled factors. We model the

system-level FIT as: FITSER = SERlatch×NL× (1−AD)× (1−MD), where SERlatch refers to the

raw per-latch SER; NL is the number of latches; AD refers to the probability of application-level

masking, given a corruption of the program-visible (register and memory) state; and MD is the

probability of machine- (or micro-architecture) level masking in the context of a single latch bit

upset.

To model SERlatch, we empirically fit it to the voltage sensitivity gradients published in [70]

using the formula shown below:

SERlatch = eα·Vdd+β

where V dd is the supply voltage, and α,β are fitting constants.

To derive the AD factor for a given application, we use an Application Fault Injection (AFI) tool

with a built-in programmable statistical fault injection routine. AFI makes use of the ptrace debug-

ging facility that is available in POSIX-compatible operating systems to put together a framework

in which any target application can be compiled and run, under user-controllable fault injection di-

rectives. Each injected error in program-visible architectural state leads to one of the four outcomes:

1) Masked, where there is no effect on the correctness of program execution or final output; 2) SDC

or silent data corruption where a deviation of the program output, relative to the golden value is

observed; 3) Crash, where the program terminates prematurely; and 4) Hang, where a hung state

is observed such that there is no forward progress in the program execution. The overall AD factor

is empirically derived as the “masked” rate as observed from AFI experiments. However, if the

concern is mainly on SDC (which is often the case in numerical, compute-intensive codes), the AD

factor may be computed as: AD = 1− rateSDC.

MD factors can be estimated using the same approach as used by the authors of Phaser [65],

which factors in true data residency statistics for each functional unit. These statistics can be derived

from a properly validated, cycle-accurate architectural simulator as explained in [65]. As has been

observed in prior work on POWER machines [69], the AD factor tends to dominate over MD by

a large factor, especially if the focus is only on SDC. Therefore, for simplicity of analysis, in this
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chapter we only focus on AD, while effectively assuming that MD is invariant across the class of

applications considered for a given (fixed) machine implementation.

In optimizing for power-performance efficiency (e.g. billions of instructions per second per watt

or BIPS/W), the tendency is to push towards lower voltage-frequency operating points as much as

possible, without violating latency (i.e. deadline) constraints. Therefore, our resilience modeling

is mostly focused on soft errors, because, as discussed above, SER increases very sharply as the

supply voltage is scaled downward, which constrains the useful range of DVFS. For operation at

nominal or sub-nominal voltage-frequency regions, hard-fault incidence rates are well below design

specification limits, so these effects need not be considered explicitly in resilience models within

PEARL. Even when turbo-mode operation is required (very rarely) to meet deadline constraints in

field operation, the hard-failure rate is actually within specification, since the processor is designed

to tolerate the higher voltages and temperatures incurred in turbo-mode. Nonetheless, for complete-

ness, we decided to consider power consumption as a proxy or gauge for hard-failure rates of the

system. With increased voltage-frequency operation points, the current drawn is higher, so fail-

ures linked to current density (e.g. electro-migration) are higher. Also, higher voltages translate to

failure rates associated with mechanisms such as oxide breakdown and bias-temperature instability

(BTI).

5.2.5 Workflow Synthesis

PEARL is a framework for workflow optimization. However, the target benchmark suites are com-

posed of individual applications. Therefore, a workflow synthesizer, which has been embedded

in the PEARL framework, is required to assemble workflows from applications according to user-

specified parameters, such as application dependencies, execution time (duration), etc. The syn-

thesizer is able to generate various workflows for both design space exploration and algorithm

evaluation. In order to characterize the potential benefits of full-workflow scheduling, this chapter

synthesizes workflows using normalized applications. PEARL framework is capable of handling

arbitrary workflows composed of applications with any variety of execution time.
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5.3 Linear Workflow Optimization

Our primary goal is to maximize system energy-efficiency measured by GOPs/Watt, while still meet

the deadline constraint for the workflow. For the requirement of resilient embedded processing, the

maximization is also subject to soft-error induced resilience constraint as well as hard-error induced

power constraint. In other words, the average power consumption of any applets can not exceeds

certain value dictated by lifetime reliability requirement. We use the maximum power consumed by

any applets within a workflow working at nominal 4.1GHz as the power maximum. While for soft-

error induced resilience requirement, we define the workflow resilience metric as the time-weighted

FIT rates of all applets within a workflow as:

∑FITi ∗Ti

∑Ti
≤Cr

where FITi and Ti is the FIT estimator and run time of the ith applet.

Before proceeding to the algorithm, we first formally define the optimization problem by given

the follows:

• A linear workflow composed of N applications, W = {A1,A2, . . . ,AN};

• A list of M possible processor frequency levels (or modes), F = { f1, f2, . . . , fM}, each asso-

ciated with M corresponding voltage levels.

• The power, execution time and resilience characteristics of each application under

all available frequency levels, P[i] = {pi1, pi2, . . . , piM}, T [i] = {ti1, ti2, . . . , tiM}, R[i] =

{ri1,ri2, . . . ,riM}, i = 1,2, . . . ,N;

• Constraints on maximum power (Cp), maximum execution time, or deadline (Ct), and maxi-

mum resilience metric(Cr).

Minimize: Total energy of execution by picking the “best” combination of frequency levels

( f1, f2, . . . , fN) across the N applets while adhering to workflow deadline, power, and resilience

metric constraints.
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5.3.1 LinOpt

We now describe a heuristic called LinOpt that is an available option within PEARL. LinOpt is

formulated as a static real-time-constrained DVFS mode allocation problem, and solved by an lin-

ear programming algorithm. To formulate it as an integer linear programming problem, for each

application Ai, we define a frequency mask bit-vector (FM) of length M, FMi is a member of the

set [0,1], where only bit j within FMi is set to 1, indicating a particular choice of DVFS mode, as

illustrated in Figure 5.4.
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Figure 5.4: Using frequency masks to denote the running frequency domains of each application.

Ai’s power, performance and resilience can be expressed as the dot product of the characteristics

and the associated frequency mask FMi:

• Power = P[i] ·FMi

• (Inverse) Resilience = R[i] ·FMi

• Execution time = T [i] ·FMi

Constraints can be expressed as:

• Power: P[i] ·FMi ≤Cp for each application Ai

• Resilience metric: (∑R[i] ·FMi)/Ct ≤Cr for each application Ai

• Execution time: ∑T [i] ·FMi ≤Ct
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The goal of the original problem is equivalent to minimizing the total energy of execution by pick-

ing the “best” combination of FM bit-vectors (FM1,FM2, . . . ,FMN) across the N applications while

adhering to workflow execution time, power and resilience constraints. It is an integer linear pro-

gramming problem. We use a standard branch-and-cut algorithm [52] to solve the problem.

5.3.2 Energy Efficiency Improvement

We evaluate the proposed algorithm against the baseline using various constraints. The baseline

picks a single frequency level that is the lowest that meets all the constraints across all the ap-

plications. For a given workflow, the maximum and minimum execution time is determined by

running all applets at the lowest and highest frequency levels, respectively. We evenly sample 32

data points within the range of possible workflow execution time. For resilience metric constraint,

we similarly sample 32 data points within the range of possible resilience metrics, where the max

metric is adopted by running all applets at the lowest frequency level while the minimum metric is

adopted by running all applets at the highest frequency level. We first show the results when apply-

ing LinOpt on the workflow that is composed of all 20 applets we have characterized. For each set

of constraints including deadline, power, and resilience, we compare the resulting energy efficiency

derived from running applets at frequency levels chosen by LinOpt and the baseline. Finally, we

plot the energy efficiency improvement of LinOpt over the baseline for the whole space of sweeping

constraints in Figure 5.5.

The energy efficiency improvement of Linopt is plotted as a heat-map with the darker colors

indicate higher improvements, while the lighter colors indicating lower improvements. LinOpt

achieves the highest improvement of 15% when the resilience metric constraint is 50.8 and the

deadline constraint lays in the upper region of the range, shown as the darkest red stripe in Fig-

ure 5.5. The top left portion of the heat-map is mostly red, and lower right portion is mostly blue.

This suggests that energy efficiency improvement over the baseline decreases when the resilience

metric constraint is less stringent. This is because when the resilience metric constraint is less tight,

a single frequency chosen by SimpleOpt is more likely to be close to optimal, whereas when the

constraints are tighter, LinOpt is required.
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Figure 5.5: LinOpt improvement in performance/Watt (GOPS/W) over SimpleOpt across a range
of constraints. The workflow is a stitched sequence of all 20 characterized applets. Constraints
of resilience and execution time are plotted on X-axis and Y-axis respectively. Energy efficiency
obtained by LinOpt under various constraints are normalized to the baseline SimpleOpt under the
same constraint, and plotted in a heat-map with dark color indicating the highest, while light color
indicating the lowest.

Then, we use the embedded workflow synthesizer to generate workflows by selecting 10, 15,

or 20 applications from the full suite of 20. The selection is done by using random sampling with

replacement. For each generated workflow, we set the power and resilience constraints to be the

maximum values of these metrics as observed across all the applications within the workflow at

nominal frequency level. After that, we exhaustively search the space of feasible deadline con-

straints. We then report the best energy efficiency improvement over the baseline to demonstrate

the maximum potential of the algorithm. As shown in Figure 5.6, LinOpt outperforms the baseline

by around 15% for the majority of the 20-application workflows. In some less common cases, the

improvement may go up to 25%. Comparing the three plots, the mass of the histogram is seen to
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Figure 5.6: Histogram of the maximum improvement in BIPS/W achieved by LinOpt over the base-
line across 1,000 generated workflows with a given number of applications. Power and resilience
constraints are set as the maximum of applications within a workflow running at the nominal fre-
quency level. X-axis is the relative energy efficiency of LinOpt normalized to the baseline. Y-axis
is histogram in percentage.

shift to the right, suggesting longer workflows with more diverse behaviors will generally lead to

better energy efficiency improvements from LinOpt.

5.3.3 Impact of Power Variation

We notice that power characterization under various voltage/frequency settings are quite similar

for most of applications we include in this study (Figure 5.3a). Therefore, the energy saving from
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Figure 5.7: LinOpt benefit over SimpleOpt for a workflow composed of two synthetic applets based
on 2dconv.The syn-hp doubles the power characterization of 2dconv to serve as a high-power vari-
ant, and the syn-lp reduce the power characterization by 90% to serve as a low-power variant.

applets operating at lower voltage/frequency settings is offset considerably by applets operating at

higher voltage/frequency settings.

To validate our argument, we create a workflow composed of two synthetic application seg-

ments with high power (syn-hp) and lower power (syn-lp consumption). The two synthetic appli-

cations are derived from characterizations of 2dconv, where syn-hp doubles the power character-

ization of 2dconv at each frequency level to mimic a hypothetical power-hungry application and

syn-lp adopts 1/10 of the power characterization of 2dconv to mimic a hypothetical low-power ap-

plication. Noted that these two synthetic applications are for illustration purpose, the ratios are

picked in order to create a large power variations to explore potential of LinOpt under the extreme

case. The generated workflow has one segment of syn-hp followed by three segments of syn-lp. As

shown in Figure 5.7, LinOpt exploits the power variations between the two synthetic applications
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and delivers up to 40% of energy efficiency improvement over SimpleOpt.

5.3.4 Impact of Execution Time Scaling

Another observation is that most of the characterized applications are computation-intensive, of

which the execution time scales linearly to the operating frequency. As a result, the energy saving

from slowing an applet is largely offset by another applet which has to be boosted in order to meet

the deadline. This ends up with a minimal overall energy efficiency improvement.

To justify the above argument, we create a workflow composed of both a computation-intensive

applet (2dconv) and a memory-intensive applet (lbm). With this workflow, LinOpt achieves much

higher energy efficiency improvement over baseline. In Figure 5.8, we use the workflow has 7 ap-
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Figure 5.8: LinOpt improvement in performance/Watt (GOPS/W) over SimpleOpt when the tar-
geting workflow compose of 2dconv and lbm, of which have quite different execution time charac-
terization with regard to voltage-frequency scaling. The workflow includes 7 applets as 3 2dconv
followed by 4 lbm.
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plication segments with 3 copies of 2dconv, and 4 copies of lbm. LinOpt achieves up to 29% energy

efficiency improvement over the baseline. This is because with α = 0.31, lbm shows very limited

sensitivity in run time with regard to voltage-frequency scaling. As a result, the operating frequency

for lbm can usually be lowered significantly without violating the overall deadline constraint, and

eventually leads to higher energy efficiency by operating at lower voltage-frequency levels.

5.4 Graph Workflow Optimization

5.4.1 DAGopt

We propose an iterative optimization algorithm called DAGopt to statically optimize voltage-

frequency settings of applications within a graph workflow. The basic idea of DAGopt is to apply

LinOpt iteratively on paths of a DAG until all applications within a graph workflow are optimized.

For a given graph workflow, as shown in Algorithm 1, DAGopt initializes all applications with

the lowest frequency level, and identifies the critical path as C: one that has the longest execution

time. Then it applies LinOpt to C to choose the optimal frequency levels for each application within

C. After a successful optimization of C, DAGopt updates the DAG with the execution time of all

applications within C running at the optimized frequency level, and marks these applications as

processed. In the next iteration, DAGopt identifies the next critical path as C∗, which is defined as

the longest path that traverses at least one un-processed application. Then it applies LinOpt on C∗

with the same deadline constraint of T , where frequency levels can only increase on any already-

processed applications. As a result, any paths that share applications with C∗ can only run faster

after the current iteration. This restriction ensures that no paths processed in prior iterations would

violate deadline constraints, while sacrificing energy efficiency due to the potential increase of fre-

quency levels on already-processed applications. DAGopt keeps working on the next critical path

until all applications have been marked as processed (therefore, no new next critical path can be

found). The algorithm processes at least one application in each iteration so that it finishes in at

most N-iterations, where N is the number of applications within a workflow. Figure 5.9 shows how

the algorithm executes on an illustrative DAG.
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Algorithm 1 Graph workflow optimization algorithm

1: function DAGOPT(workflow, constraints)
2: initialize f req list by the lowest frequency level ( f reqmin)
3: for all app in work f low do
4: update the execution time of app set by f reqmin

5: while not all applications processed do
6: C← NextCriticalPath(workflow)
7: f req opt← LinOpt(C, constraints, f req list)
8: if LinOpt fails on path C then
9: return Failure due to in-feasible constraints

10: update f req list with f req opt
11: for all app in C do
12: update the execution time of app according to f req opt
13: return f req list
14: function NEXTCRITICALPATH(workflow)
15: for all app that is not processed do
16: Cto← longest path from source to app
17: C f rom← longest path from app to target
18: C←Cto +C f rom

19: return max C

40

15

50

20

35

15

45

5

33

8

44

5

(a) (b) (c)

A

B

C

D A A

B

C C

DD

B

Un-processed App. Processed App. Deadline = 85s

Figure 5.9: DAGopt illustration on a synthetic workflow. Numbers in each node indicate the execu-
tion time of the corresponding application in seconds. Suppose that the deadline constraint is 85s.
In (a), all applications are initialized with the lowest frequency levels. In (b), DAGopt identifies
the critical path as A→C→ D, then invokes LinOpt on the path. Upon a successful optimization,
DAGopt sets optimized frequency levels as indicated by the new execution time, and marks all
nodes within the path as processed. In (c), DAGopt identifies the next critical path as A→ B→ D
and invokes LinOpt on the path while only selecting higher frequency levels for A and D than
their already chosen levels. DAGopt terminates after this step since all the applications within the
workflow have been marked as processed.

5.4.2 DAGopt Evaluation

We first show a workflow illustrated in Figure 5.10, for which the DAGopt has a promising en-

ergy efficiency boost over the baseline. The workflow has two threads of linear workflows. Each
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linear workflow is composed of applications chosen from 2dconv, lbm, and bzip2. We add inter-

dependencies between the two threads, shown by the dashed arrows. Power and resilience con-

straints are set as the maximum power and maximum FIT estimates of all applications within a

workflow running at nominal frequency. For demonstration purposes, we select 10 evenly-spaced

sample points for deadline constraints from the range of critical path execution times, determined

by running all applications within a workflow at the lowest and highest frequency levels. Results

shown in Figure 5.11 suggest up to 35% energy efficiency improvement is achievable over the

simple single-frequency selection heuristic. This is because, with the added inter-dependencies,

application segments such as bzip2 in the first thread can be slowed down considerably thanks to

the dependence-imposed timing slack.

Finally, we carry out the energy efficiency distribution study that is similar to what we have

shown in the previous section. We first randomly choose 14 applications to form two linear work-

flows, with seven applications per workflow. Then we randomly add a given number of inter-

dependencies between the two linear workflows to finish a graph workflow. Using this approach,

we generate 1,000 graph workflows, and compare DAGopt against the baseline which picks a sin-

gle frequency for applications within the workflow. We use the same constraints that were just

described. We choose the number of inter-dependencies to be 5, 10, and 15, and plot the histogram

of maximum relative energy efficiency obtained by DAGopt over the baseline in Figure 5.12. It

shows that with fewer inter-dependencies (e.g. 5), DAGopt is able to achieve an energy efficiency

boost over the baseline by 10% to 20%. As the number of inter-dependencies increases to 15, the

improvement in energy efficiency reduces to the range of 5% to 10%. This is because DAGopt

lbm lbm lbm lbm bzip2 2dconv 2dconv

2dconv 2dconv lbm lbm lbm lbm bzip2

Start EndIntra-dependence Inter-dependence

Figure 5.10: An illustrative graph workflow, consisting of 2 threads with inter-dependencies indi-
cated by dashed arrows.
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Figure 5.11: DAGopt energy efficiency improvement over simple single-frequency selection heuris-
tics, evaluated on an illustrative workflow (Figure 5.10). Power and resilience constraints are set
as the maximum of applications within a workflow running at the nominal frequency level. Energy
efficiency values, plotted on Y-axis, are normalized to the baseline under the execution time con-
straint of 100s (the leftmost data point). DAGopt outperforms the baseline in all cases, with up to
35% boost when the execution time constraint is 106s.

becomes more limited in trade-off options among applications as the number of inter-dependencies

increases.

5.5 Dynamic, Run-time Efficiency Optimization

5.5.1 Dynamic Iterative Approach

PEARL is also capable of emulating real systems by considering dynamic execution time variations.

For each application within a workflow, we define its run-time variation factor (rv f ) for a specific

execution instance as the ratio of actual execution time to the pre-characterized value at the same

frequency level. An rv f value greater than one indicates that the actual execution time of the

corresponding application exceeds the expected pre-characterization value. In this case, there is a
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Figure 5.12: Histogram of the maximum relative BIPS/W obtained by DAGopt over the baseline
across 1,000 generated workflows. The number of inter-dependencies is varied from 5 to 15. Power
and resilience constraints are set as the maximum of these metric values across applications within
a workflow running at the nominal frequency level. The X-axis is the relative energy efficiency
normalized to the baseline, Y-axis is the histogram distribution percentage. It shows that with fewer
inter-dependencies, DAGopt is good to achieve an energy efficiency boost over the baseline by
10% to 20%, while as the number of inter-dependencies increases to 15, the improvement in energy
efficiency reduces to the range of 5% to 10%.

potential to miss the overall deadline for a workflow. On the other hand, an rv f value less than one

indicates that the actual execution time is less than the pre-characterized value. The resulting slack

could be potentially reclaimed to improve overall energy efficiency.

The static optimization algorithm on a linear workflow tends to choose lower frequency settings
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to maximize energy efficiency. As a result, the total execution time of a given solution is usually

close or equal to the deadline constraint. Therefore, such a static algorithm’s success becomes vul-

nerable to dynamic execution time variations, where the rv f value of at least one application in the

workflow is greater than 1. With rv f following the Gaussian distribution of N (1,0.1), frequency

settings given by LinOpt miss deadline constraints in more than 50% of trials. Although it is possi-

ble to invoke LinOpt with a stricter deadline constraint than the original to tolerate execution time

variations, it reduces the achieved energy efficiency significantly. For example, with the same rv f

distribution, it reduces the average energy efficiency by 20% when statically invoking LinOpt with

only 90% of the original deadline constraint.

In this section, we present an iterative dynamic algorithm (Figure 5.13a) to achieve a high

level of confidence in meeting deadline constraints without significantly compromising the energy

efficiency. The algorithm works as follows:

1. Before starting application Ai, we invoke LinOpt with an adjusted deadline by applying a

scaling factor (t f ) to the original deadline constraint. Then, we launch Ai with the frequency

2dconv dwt53 histo

deadline target (T0)

2dconv dwt53 histo

2dconv remaining budget (T1)

dwt53 histo

2dconv dwt53 T2

histo

2dconv dwt53 histo

T0*tf

T1*tf

T2*tf

Ai finishes  with ti , T = T - ti

Start with i=1

Invoke LinOpt on (Ai, Ai+1, …, An) 
with adjusted deadline as 

T’=T*tf

Initiate Ai with the optimization 
mandated VFS settings.

T<0

SucceedFail

i<=n

Example workflow

Deadline target

LinOpt

Elapsed time runs 
over the anticipated

LinOpt

Elapsed time runs shorter 
than the anticipated

LinOpt

Elapsed time runs over 
the anticipated, but global 
deadline is still met

a) Algorithm flowchart b) Illustrative example

N

Y N

Y

Figure 5.13: An iterative algorithm adapting to dynamic execution time variations. In (a), the
algorithm is presented as a flowchart, and in (b), a step-by-step example illustrates the dynamic
optimization algorithm. The illustrative linear workflow is a stitched sequence of three applications:
2dconv, dwt53, and histo.
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level picked by LinOpt.

2. At the end of Ai, we observe that the actual elapsed execution time for Ai is ti. We incorporate

this slack (positive or negative) and update the deadline constraint for the residual workflow

by deducting ti from the residual deadline. If it is less than zero, the algorithm terminates and

reports “in-feasible” as the deadline constraint is not met.

3. We go back to step 1) and iterate until the workflow is fully processed.

The algorithm is visualized step by step in Figure 5.13(b) using an illustrative workflow composed

of 2dconv, dwt53, and histo.

It is important to choose appropriate values for the deadline scaling factor t f . When t f equals

1, it invokes LinOpt with the original deadline constraint. In this case, the algorithm achieves

maximized energy efficiency, while it is vulnerable to any applications that run slower than their

pre-characterized latency. On the other hand, when t f is less than 1, the algorithm invokes LinOpt

with a more stringent deadline constraint. In this case, the algorithm creates slack that tolerates

runtime delays while sacrificing energy efficiency. Note that the value of t f can be larger than 1 in

speculating that most applications finish earlier than their pre-characterized latency. However, we

will not discuss this scenario in this chapter.

We choose t f based on the observation that delays in early phases of a workflow are more easily

compensated for, while delays in later phases of a workflow are more dangerous because there is

less opportunity to compensate with few remaining residual applications. Based on this observa-

tion, our algorithm exploits the most aggressive max(t f ) at the beginning for the first application

to maximize potential energy efficiency gains, then gradually lowers t f to the most conservative

min(t f ) at the end for the final applications to stay within the deadline constraint. The pair of

parameters (max(t f ),min(t f )) enables the trade-off between energy efficiency and the level of con-

fidence in meeting the deadline constraints. We choose a value of 1 for max(t f ), speculating that

few applications finish earlier. We evaluate alternate min(t f ) values in the next subsection with

regard to distributions of rv f s.
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5.5.2 Evaluation

To study the impact of run-time variations, we use an illustrative workflow by stitching together

four copies of the lbm application, two copies of 2dconv, and one copy of bzip2, and replicate the

7-application sequence three times. The resulting workflow has 21 applications. For illustration pur-

poses, we use Monte-Carlo simulation method to generate rv f sequences by following a Gaussian

distribution for the workflow. For each rv f distribution, we sample 1,000 rv f sequence samples.

We study three alternative distributions to cover various dynamic execution scenarios: a)VarL with

N(1,0.1), which reflects the scenario that the system experiences significant, intermittent changes

in operating environment; b)VarS with N(1,0.03), which reflects a scenario similar to VarL except

that only moderate changes in operating environment are observed; c)Delay with N(1.05,0.02),

which reflects the scenario in which steady deviations from the nominal operating environment

lead to persistent delays for all applications (as indicated by the mean rv f that is larger than 1).

We study the dynamic iterative approach with three values for parameter min(t f ): 0.9, 0.85, and

0.8. The three cases are denoted as DYN 0.9, DYN 0.85, and DYN 0.8, respectively. We compare

the three dynamic approaches against the static LinOpt (denoted as ST 1). We include an alternate

static case which targets 90% of the original deadline constraint (denoted as ST 0.9). Note that

rv f distributions are chosen to illustrate the capabilities of PEARL. PEARL accepts distributions

chosen by users.

As shown in Figure 5.14, static approaches are either too conservative, yielding lower energy

efficiency (in the case of ST 0.9), or too vulnerable to dynamic execution time variations, yielding

higher deadline miss ratio (in the case of ST 1). Dynamic approaches, on the other hand, achieve

energy efficiency that is close to static LinOpt, which targets the original deadline constraint. Within

dynamic approaches, the energy efficiency increases in a limited manner as min(t f ) increases. In

the cases of VarS and Delay where distribution variations of rv f are small, dynamic approaches

do not miss any deadlines, in any experimental trials, which is as good as the conservative static

approach (ST 0.9). In the case of VarL, dynamic approaches with higher min(t f ) (e.g. DYN 0.9)

suffer from a higher deadline miss ratio. The latter is more than double the miss ratio observed

in dynamic approaches with lower min(t f ) (e.g. DYN 0.8), despite a modest energy efficiency
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improvement. Overall, the dynamic approach prefers a high min(t f ) when the variation of rv f is

small, and a low min(t f ) is better when the variation of rv f is large.

5.6 Conclusions

Future ultra-efficient embedded systems with mission-critical resilience requirements in the deep-

submicron design era will require a careful balance between static preparation and run-time adap-

tation of applications. In this chapter, we first describe a software framework called PEARL for

application preparation and runtime steering in the context of diverse performance, power, and

resilience constraints. Then we present experimental analysis for a diverse set of application se-

quences to demonstrate the functionality and capabilities of the PEARL framework. Our analysis

shows up to 15% and 35% energy efficiency improvement over a simple baseline, for linear and

graph workflows respectively. Moreover, our proposed dynamic iterative approach achieves up to
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Figure 5.14: Dynamic simulation results. For the described scenarios (VarL, VarS, and Delay),
we compare the dynamic iterative approach with 3 values of min(t f ) (DYN 0.9, DYN 0.85, and
DYN 0.8), and two two cases of static LinOpt with (ST 0.9) and without (ST 1) conservative pro-
vision on deadline constraints. The Y-axis is the average energy efficiency computed in BIPS/W
normalized to ST 0.9. The percentage on top of a bar is its deadline miss ratio. Dynamic ap-
proaches generally achieve energy efficiency close to the aggressive static approach (ST 1), while
maintaining miss ratios close to the conservative static approach (ST 0.9).
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25% improvement in energy efficiency over a conservative static approach, while maintaining the

same level of confidence in meeting deadline constraints.



Chapter 6

Conclusions and Future Work

6.1 Dissertation Summary

Continuous scaling in manufacturing process has introduced new challenges to improve perfor-

mance without violating design constraints of power and resilience. In this dissertation, we have

proposed first-order modeling frameworks for power, performance, and resilience, to help system

architects to understand various implications for future computer systems.

In Chapter 2, we describe Lumos, an analytical modeling framework for power and performance

of both homogeneous and heterogeneous architectures. By exploring the performance potential of

homogeneous systems operating at lower-than-nominal supply voltage (e.g. with dim cores), we

show that up to 2x speedup can be expected over cores running at the nominal supply. However, the

diminishing performance returns from dim cores open a window for more efficient specialized hard-

ware. Further analysis indicates that efficient accelerators that can be re-purposed after fabrication

are the key for future heterogeneous architectures.

In Chapter 3, we continue our exploration from Chapter 2, by using an augmented analytical

framework called Lumos+ to explore the design space of heterogeneous architectures composed of

hardware accelerators. With the help of a genetic algorithm based search heuristic, we show that

dedicated accelerators are only beneficial when their performance premiums are large enough (e.g.

40x) to compensate for limited programmability, or when only a few kernels need acceleration.

However, systems equipped with reconfigurable logic are promising to achieve close-to-optimal

106
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performance consistently across applications with a wide range of kernel characteristics, an impor-

tant implication for rapidly evolving, general-purpose workloads.

In Chapter 4, we describe a framework called AFI for application programmer and system

designer to take advantage of application-level resilience. Using AFI, we have characterized 12

applications from PERFECT Suite, a benchmark suite for emerging embedded systems. The results

show a wide range of application-level resilience (SDC vulnerability rates from about 2% though

more than 50%), which motivates further dynamic techniques to trade-off among resilience, power

and performance. We also find that application-level resilience is very sensitive to the compiler

optimization, where the SDC vulnerability rate is around 1% without optimization and increases to

more than 35% with the “O2” optimization level.

Finally, in Chapter 5, we designed a framework, called PEARL, for resilience-aware energy-

efficiency optimization with the deadline constraint for future ultra-efficient embedded systems with

mission-critical resilience requirements. PEARL is capable of application preparation and runtime

steering in the context of diverse performance, power, and resilience constraints. Then we present

experimental analysis for a set of various application sequences to demonstrate the functionality and

capabilities of the PEARL framework. Our analysis shows up to 15% and 35% energy efficiency

improvement over a simple baseline, for linear and graph workflows respectively. Moreover, our

proposed dynamic iterative approach achieves up to 25% improvement in energy efficiency over a

conservative static approach, while maintaining the same level of confidence in meeting deadline

constraints.

6.2 Future Directions

6.2.1 Design Space Exploration

As shown in Chapter 2 and 3, reconfigurable accelerators are more promising due to its capability

to adapt to various kernels. However, overhead, if accumulated by excessive reconfiguration opera-

tions, could eliminate all their gains in performance and power efficiency. This actually inspires an

alternative reconfigurable accelerator design: instead of programming and serving a single kernel
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at a time, designers could implement and instantiate multiple accelerators simultaneously and serve

more than one kernels without repeatedly reprogramming the logic. Such a design paradigm raises

interesting research questions such as:

• Design trade-off between implementation of multiple kernels and a single kernel. The

multiple-kernel implementation benefits from fewer reconfiguration and smaller overhead

thanks to the partial reconfiguration techniques. However, it suffers from worse per-kernel

performance compared to a single-kernel implementation as each kernel is only allocated by

a portion of all the logic resources.

• Resource allocation optimization among kernels in a multiple-kernel implementation. In the

case of practical applications, the performance of reconfigurable accelerator scales to the

amount of logic resources by a discrete step-wise function, instead of a continuous linear

function. And scaling functions vary across accelerators. Allocation algorithms for logic

resources are needed to optimize the performance of each instantiated accelerator.

• Real-world applications have far more kernels than what can be instantiated in the recon-

figurable fabric at a single time. Therefore, dynamic scheduling algorithms are required to

implement accelerator replacement when a kernel needs to be accelerated buy yet imple-

mented in the logic. A good scheduling algorithm is capable of minimize replacement to

reduce the reconfiguration overhead.

6.2.2 Application-Level Resilience

The results presented in Chapter 4 target for processors from POWER family. It would be inter-

esting to compare results from other architectures by porting the AFI framework to platforms such

as X86, ARM, etc. The comparison helps to understand the resilience impact of architectural vari-

ations across platforms. Another promising research direction on application-level resilience is to

characterize resilience for multi-threaded applications. Most of the prior resilience characteriza-

tion work, including the one presented in this dissertation, focused on single-threaded applications.

However, multi-threaded applications become more and more popular in most computing domains.
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The resilience characterization on a threaded application may be quite different from its serial im-

plementation, due to complexities in synchronization and inter-thread communications.

6.2.3 Resilience-Aware Energy-Efficiency Optimization

In Chapter 5, we have shown energy-efficiency optimization for single-entity linear workflows and

multi-entity graph workflows. In either cases, applications are executed in serial on a single entity,

which is a reasonable assumption for most of the embedded systems today. However, the hard-

ware in the embedded system is evolving rapidly to be capable of handling multiple tasks. Recent

development of autonomous techniques for flying and grounded vehicles corroborate the need of

multi-tasking in embedded systems. Multi-tasking introduces new challenges for resilience-aware

energy-efficiency optimization due to the task scheduling. The optimization algorithm depends on

the output of scheduling to determine the critical path and overall power consumption of all tasks,

while the scheduling algorithm is sensitive to the finish time of each task which depends on the

voltage levels selected by the energy-efficiency optimization. The two algorithms are required to

collaborate with each other to form a feedback loop, which is a new challenge for the design of both

algorithms.

Additionally, the adaptation approach proposed in Chapter 5 needs re-optimization before

launching every single task. The total number of tasks should be maintained at a low level to

avoid exaggerate overhead of re-optimization, which limits the granularity of sub-task partition for

long-running tasks. On the other hand, the proposed approach requires global knowledge of all

tasks to be executed. This is only acceptable for routine tasks that can be pre-characterized. To sup-

port fine-grained truly dynamic adaptation, two challenges need to be addressed. First, light-weight

online estimates of power, performance and reliability are required. It is relatively easier to find es-

timates of power and performance via monitoring performance counters which are widely available

on modern processors. On the other hand, the online estimate for reliability is more complicated to

adopt. SoftArch [49,50] presented a promising SER estimate based on statistical sampling. Second,

a runtime adaptation algorithm is needed to speculatively apply DVFS on each application segment,

in order to save energy while still meet power, performance (deadline), and reliability constraints.



Appendix A

Glossary

Definitions are collected here for easy reference. In general, the accepted definitions for terms are

used, although some terms are used in a more restricted sense than their usual interpretation.

SER Soft error rate.

SEU Single-event upset.

DMR Dual-Modular Redundancy.

TMR Triple-Modular Redundancy.

SDC Silent data corruption.

MPSoC Multiprocessor system-on-chip.

FPGA Field Programming Gate Array, a device that can be reprogrammed to change its function-

ality after fabrication.

Reconfiguration An operation to change the function of reconfigurable fabric.

RL Reconfigurable Logic, a device whose functionality can be changed after fabrication. FPGA is

one of the most popular RL devices.

ASIC Application Specific Integrated Circuit, a device that has a fixed functionality (application-

specific), and can not be changed after fabrication.
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Workflow A collection of applications with dependencies, that accomplishes certain tasks.

BIPS/W Billion Instructions Per Second Per Watt, a metric to evaluate energy efficiency of a com-

puter system, the higher the better efficiency.
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and Christian Gagné. DEAP: Evolutionary Algorithms Made Easy. The Journal of Machine

Learning Research, 13(1):2171–2175, July 2012.

[30] LeRoy A. Gorham and Linda J. Moore. SAR Image Formation Toolbox for MATLAB. In

Proceedings of Algorithms for Synthetic Aperture Radar Imagery, 2010.

[31] Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankaralingam. Dynamically Spe-

cialized Datapaths for Energy Efficient Computing. In International Symposium on High-

Performance Computer Architecture, 2011.

[32] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomatnikov, Ben-

jamin C. Lee, Stephen Richardson, Christos Kozyrakis, and Mark Horowitz. Understanding



Bibliography 116

Sources of Inefficiency in General-purpose Chips. In International Symposium on Computer

Architecture, 2010.

[33] Siva Kumar Sastry Hari, Man-Lap Li, Pradeep Ramachandran, Byn Choi, and Sarita V. Adve.

mSWAT: Low-Cost Hardware Fault Detection and Diagnosis for Multicore Systems. In Inter-

national Symposium on Microarchitecture, 2009.

[34] Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang, Cheng Li, Austin Rovinski, Arjun

Khurana, Ron Dreslinski, Trevor Mudge, Vinicius Petrucci, Lingjia Tang, and Jason Mars.

Sirius: An Open End-to-End Voice and Vision Personal Assistant and Its Implications for

Future Warehouse Scale Computers. In International Conference on Architectural Support

for Programming Languages and Operating Systems, 2015.

[35] Mark D Hill and Michael R Marty. Amdahl’s Law in the Multicore Era. Computer, 41(7):33–

38, July 2008.

[36] Wei Huang, Karthick Rajamani, Mircea R. Stan, and Kevin Skadron. Scaling with Design

Constraints: Predicting the Future of Big Chips. IEEE Micro, 31(4):16–29, July 2011.

[37] Texas Instruments Inc. OMAP4470 Mobile Application Processor. http://focus.ti.com/

pdfs/wtbu/OMAP4470_07-05-v2.pdf.

[38] Nangate Incorparation. Nangate FreePDK45 Generic Open Cell Library. http://www.si2.

org/openeda.si2.org/projects/nangatelib.

[39] Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip Bose, and Margaret Martonosi.

An Analysis of Efficient Multi-Core Global Power Management Policies: Maximizing Per-

formance for a Given Power Budget. In International Symposium on Microarchitecture, 2006.

[40] Andrew B. Kahng, Bill Lin, and Siddhartha Nath. Explicit Modeling of Control and Data for

Improved NoC Router Estimation. In Design Automation Conference, 2012.

http://focus.ti.com/pdfs/wtbu/OMAP4470_07-05-v2.pdf
http://focus.ti.com/pdfs/wtbu/OMAP4470_07-05-v2.pdf
http://www.si2.org/openeda.si2.org/projects/nangatelib
http://www.si2.org/openeda.si2.org/projects/nangatelib


Bibliography 117

[41] Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A. Abraham. FERRARI: A Flexi-

ble Software-Based Fault and Error Injection System. IEEE Transactions on Computers,

44(2):248–260, February 1995.

[42] Karim Kanoun, Nicholas Mastronarde, David Atienza, and Mihaela van der Schaar. On-

ling Energy-Efficient Task-Graph Scheduling for Multicore Platforms. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 2014.

[43] Seongwoo Kim and Arun K. Somani. Soft Error Sensitivity Characterization for Microproces-

sor Dependability Enhancement Strategy. In International Conference on Dependable Systems

and Networks, 2002.

[44] Prabhakar Kudva, Jeffrey W. Kellington, Pia N. Sanda, Ryan McBeth, John Schumann, and

Ron Kalla. Fault Injection Verification of IBM POWER6 Soft Error Resilience. In Proceed-

ings of the Workshop on Architectural Support for Gigascale Integration, 2007.

[45] Charles. Lefurgy, Xiaorui Wang, and Malcolm Ware. Server-Level Power Control. In Pro-

ceedings of Autonomic Computing, 2007.

[46] Man-Lap Li, Ramachandran Pradeep, Swarup Kumar Sahoo, Sarita V. Adve, Vikram S. Adve,

and Yuanyuan Zhou. Understanding the Propagation of Hard Errors to Software and Implica-

tions for Resilient System Design. In International Conference on Architectural Support for

Programming Languages and Operating Systems, 2008.

[47] Man-Lap Li, Pradeep Ramachandran, Swamp K. Sahoo, Sarita V. Adve, Vikram S. Adve, and

Yuanyuan Zhou. Trace-Based Microarchitecture-Level Diagnosis of Permanent Hardware

Faults. In International Conference on Dependable Systems and Networks, 2008.

[48] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Nor-

man P. Jouppi. McPAT: An Integrated Power, Area, and Timing Modeling Framework for

Multicore and Manycore Architectures. In International Symposium on Microarchitecture,

2009.



Bibliography 118

[49] Xiaodong Li, Sarita V. Adve, Pradip Bose, and Jude A. Rivers. SoftArch: An Architecture-

Level Tool for Modeling and Analyzing Soft Errors. In International Conference on Depend-

able Systems and Networks, 2005.

[50] Xiaodong Li, Sarita V. Adve, Pradip Bose, and Jude A. Rivers. Architecture-Level Soft Error

Analysis: Examining the Limits of Common Assumptions. In International Conference on

Dependable Systems and Networks, 2007.

[51] Henrique S. Malvar, Li-Wei He, and Ross Cutler. High-Quality Linear Interpolation for De-

mosaicing of Bayer-Patterned Color Images. In International Conference of Acoustic, Speech

and Signal Processing, 2004.

[52] John E Mitchell. Branch-and-Cut Algorithms for Combinatonial Optimization Problems.

Handbook of Applied Optimization, pages 65–77, January 2002.

[53] Gordon E. Moore. Cramming More Components onto Integrated Circuits. Electronics,

38(8):114–117, April 1965.

[54] Gordon E. Moore. Progress in Digital Integrated Electronics. In International Electron De-

vices Meeting, volume 21, pages 11–13, 1975.

[55] Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer, Steven K. Reinhardt, and Todd

Austin. A Systematic Methodology to Compute the Architectural Vulnerability Factors for a

High-Performance Microprocessor. In International Symposium on Microarchitecture, 2003.

[56] Hashem H. Najaf-abadi, Niket K. Choudhary, and Eric Rotenberg. Core-Selectability in Chip

Multiprocessors. In International Conference on Parallel Architectures and Compilation Tech-

niques, 2009.
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