
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
Accelerating Weeder: A DNA Motif Search Tool using the Micron
Automata Processor and FPGA

Qiong WANG†a), Member, Mohamed EL-HADEDY††b), Kevin SKADRON†††c), and Ke WANG†††d), Nonmembers

SUMMARY Motif searching, i.e., identifying meaningful patterns from
biological data, has been studied extensively due to its importance in the
biomedical sciences. In this work, we seek to improve the performance of
Weeder, a widely-used tool for automatic de novo motif searching. Weeder
consists of several functions, among which we find that the function namely
oligo_scan, which handles the pattern matching, is the bottleneck especially
when dealing with large datasets. Motivated by this observation, we adopt
the Micron Automata Processor (AP) to accelerate the pattern-matching
stage of Weeder. The AP is a massively-parallel, non-von-Neumann semi-
conductor architecture that is purpose-built for symbolic pattern matching.
Relying on the fact that AP is capable of performing matching for thousands
of patterns in parallel, we develop an AP-accelerated Weeder implementa-
tion in this work. In particular, we describe how to map Weeder’s pattern
matching to the AP chip and use the high-end FPGA on the AP board
to postprocess the output from AP. Our experiment shows that the AP-
accelerated Weeder achieves 751x speedup on pattern matching, compared
to a single-threaded CPU implementation.
key words: Automata processor, weeder, motif search, FPGA

1. Introduction

Unraveling the complex mechanisms that regulate gene ex-
pression is an important problem as we are entering the
era of large-scale genome sequencing. Transcription-factors
(TF) are the specific proteins that bind to DNA to control
the gene expressions by activating or inhibiting the tran-
scription machinery. The short segments of the DNA which
transcription-factors bind to are called transcription-factor
binding sites (TFBS). They usually range in size from 8-10
to 16-20bp. Functionally related DNA sequences gener-
ally share some common sequence elements such as binding
sites. Therefore, accurately extracting consensus motifs for
DNA-binding sites may greatly help scientists predict genes
and genes functions. However, it is difficult to predict TFBS
instances for a given TF due to the fact that the sites recog-
nized by the factor are similar but variable. In particular, they
usually differ in one or more nucleotides from each other.

Motif Searching. Roughly speaking, motif searching in bi-
ological sequences could be considered as the problem of

†College of Computer, National University of Defense Tech-
nology, China
††Coordinated Science Lab, University of Illinois Urbana-

Champaign, USA
†††Department of Computer Science, University of Virginia,

USA
a) E-mail: wangqiong@nudt.edu.cn
b) E-mail: hadedy@alumni.ntnu.no
c) E-mail: skadron@virginia.edu
d) E-mail: kw5na@virginia.edu
DOI: 10.1587/transinf.E0.D.1

finding short similar, but not necessarily identical, sequence
elements shared by a set of nucleotide or protein sequences
with a common biological function. To be more precise,
motif searching is to find a substring of length k that oc-
curs in a set of input sequences with up to d mismatches.
In computational genomics, k-mers refer to all the possible
subsequences (of length k) from a read obtained through
DNA Sequencing. For example, consider three input se-
quences ACGTATCA,GAACATAT, andCACGTCAG. Sup-
pose k=6, d=1. The 6-mer ACGTAT is one of the motifs of
the given 3 input sequences. It appears at the first position in
the first sequence with no mismatches, at the third position
in the second sequence with one mismatch, and at the second
position in the third sequence with one mismatch.

Over the past few years, numerous algorithms have
been implemented and applied to motif search. Most of
the motif-searching tools can be categorized into two ma-
jor groups based on the combinatorial approach used in
their design: 1) word-based (string-based) methods that
mostly rely on exhaustive enumeration, i.e., counting and
comparing oligonucleotide frequencies and 2) probabilistic
sequence models where the model parameters are estimated
using maximum-likelihood principle or Bayesian inference.
Some examples of profile-based algorithms are MEME and
Gipps Sampling [3], [4], [6], [7], [11]. Planted Motif Search
(PMS), also known as (k, d) motif search, is a method for
identifying all substrings of length k which appear in all the
input sequences with at most d mismatches. Note that these
solve different problems. MEME determines how well a
motif conserved in a set of input sequences, while PMS is
a theoretical study targeting to find the largest k and d in a
shortest time. Indranil et. al proposed an exact algorithm for
solving the PMS problem using the AP [10].

Weeder. In this work, we targetWeeder [9], a de novomotif-
finding software package. It is one of the widely-used tools
for de novo motif discovery [7], [12]. It is a consensus-based
method that enumerates exhaustively all the oligonucleotides
up to user-defined length and calculates their occurrence fre-
quency in a set of input sequences. Each motif is evaluated
according to the number of sequences where it appears and
how well conserved it is in each sequence, with respect to
values calculated by comparing to a species-specific back-
ground model, built from the oligonucleotide distribution
of all promoter (or intergenic) regions available for different
species. The default lengths considered are 6, 8, and 10, with
at most 1, 2, and 3 substitutions in the motif occurrences,

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Fig. 1 Flowchart of Weeder

respectively. Users could change k and d according to their
purpose, but they also need to provide the corresponding
oligo frequency files. The candidates are evaluated through
a statistic model (Equation 1 in Section 4.2) and the best-
scoring ones are collected to get the candidates for next run.
Finally, best instances of each motif are computed.

Weeder narrows down the candidates to prune the
search space. As shown in Fig. 1, Weeder first analyzes
the species-specific background frequency files, which are
needed in the evaluation stage of the motifs. Then it takes ev-
ery k-mer (6-mers in the beginning) of the input sequences
as a motif candidate, to traverse the input sequences sequen-
tially. Each time it finishes a match between the k-mer and
an input sequence, it calculates a score according to the
number of times it appears, how well it is conserved, and
the values computed from frequency files. Then it picks the
best-scoring k-mers, based on which it generates a group of
(k+2)-mers as the candidates for the next run. After it fin-
ishes the matching stage for the longest k-mers (10-mers in
default), Weeder chooses the best-scoring motifs, which are
more likely to represent conserved TFBSs. For these mo-
tifs, a Position-Weight Matrix (PWM) is built to represent
the frequency of four possible nucleotides appearing in each
position of them. Using a PWM, the most likely location of
the motif within each sequence can be calculated.

Motivation of This Work. Since Weeder relies on exhaus-
tive search, it needs to take all the substrings of length k
as candidates and use them to traverse all the input se-
quences sequentially. Oligo_scan is the pattern matching
function through which k-mers are traversed for each in-
put sequence. This becomes prohibitively time-consuming
as the number of input sequences becomes large. In other
words, the function Oligo_scan is the bottleneck of Weeder
when dealing with large datasets. For example, we use the
dataset from DREAM Challenges [1] to evaluate the time
cost of Oligo_scan. The length of each input sequence is

Table 1 Time for Weeder (s)
Number of

input sequences Total time Time of
Oligo_scan

5000 488 306
8300 1145 705
16000 3718 2226
166666 95050 37919

60 base pairs. We run the test on an Intel Core i7-3770
CPU with 8GB memory. Table 1 shows the running time
of oligo_scan, from which we can see that when the dataset
becomes larger, the time increases sharply. Accelerating the
pattern-matching stage therefore plays a significant role in
improving the performance of Weeder.

Our Contributions. In this work, we evaluate the ability
of the Micron Automata Processor (AP) [2] to accelerate
the pattern matching stage of Weeder. The AP is a hard-
ware implementation of non-deterministic finite automata
(NFA), with the first-generation boards supporting concur-
rent matching against approximately 1.5 million states. This
allows testing of thousands of patterns in parallel, which
makes it an ideal processor for massively-parallel pattern
matching in Weeder. Relying on this fact, we develop an
AP-accelerated Weeder implementation. In addition to the
AP chips, we use the high-end FPGA on the AP board to
postprocess the data output from AP. Our experiment shows
that the AP-accelerated Weeder pattern matching achieves
751x speedup when compared to a single-threaded CPU im-
plementation.

Organization.The rest of this paper is organized as follows.
Section 2 briefly introduces the Micron Automata Proces-
sor (AP). Section 3 describes our proposed AP-accelerated
Weeder. The performance of our solution is evaluated in
Section 4. And finally in section 5, some conclusions are
given and our future work is listed.

2. Micron Automata Processor

Micron has announced and provided preliminary software for
a new accelerator, the Automata Processor (AP) [2], which is
a highly-parallel, reconfigurable, non-Von Neumann archi-
tecture designed for execution of Non-Deterministic Finite
Automata (NFA). It is purpose-built to address the challenges
associated with symbolic pattern matching, which arises in
regular-expression processing [17], pattern mining [14], text
mining [13], and various other forms of data analytics [16].

The architecture of the first-generation AP, i.e., D480,
is depicted in Figure 2. Below we briefly introduce its main
components and working principle. More details about the
AP could be found in the work [5].

2.1 The Automata Processor Elements

The AP chip consists of three fundamental types of func-
tional elements: State Transition Elements (STE), Counters,
and Boolean elements. Counters and Boolean elements are

WANG et al.: ACCELERATING WEEDER: A DNA MOTIF SEARCH TOOL USING THE MICRON AUTOMATA PROCESSOR AND FPGA
3

Fig. 2 Architecture of an AP chip [8]

Fig. 3 An automaton consisting of three STEs

used with STEs to extend computational capabilities beyond
NFAs.

In our work, we only use the STEs, which are the most
important elements of the AP, because they represent the
fundamental state and transition aspects of NFA execution.

STEs are based on the homogeneous NFA model, in
which the matching operation is denoted in the state, and
a match activates all successor states. Each STE can be
programmed to match on any subset of the 8-bit ASCII char-
acter set. By default, all STEs are initialized in an inactive
state, except those marked as start states (marked with "1" in
the AP workbench) or those configured to always be active
(marked with "∞ "). STEs in principle can have an arbitrary
number of successor states, including itself, all of which are
activated when that STEmatches; however, hardware limita-
tions impose some limits on the fan-out and fan-in for STEs.
Figure 3 shows an very simple example automaton consist-
ing of three STEs to accept "abc" at the very beginning or
"bc" anywhere in the input stream.

2.2 Programing

The Automata Network Markup Language (ANML), an
XML-based language for describing the composition of au-
tomata networks, contains elements that represent automata
processing resources. Using ANML, a programmer can ex-
plicitly describe how these automata processing resources
are connected together to create an automata network by

configuring the elements and the connections, and provid-
ing input and allowing the automata network to compute.
Micron also provides a graphical interface called the AP
Workbench, which is for automaton design and debugging.
It allows users to develop small automata rapidly and gives
a direct understanding of the implementation of the ANML
files. However, it is not suitable for large automata de-
signs. AP SDK enables programming and operation of the
AP hardware under Windows and Linux system. It pro-
vides API interfaces for C/C++, Python, and Java to develop
Automata network.

2.3 Input and Output

The AP takes input streams of 8-bit symbols. The output is
generated by the reporting elements (marked with "R"). If an
element is configured as a reporting element, it will generate
a one-bit signal once it is activated. All the reporting results
will be buffered in the output event memory, which can be
read by the FPGA on the AP board through a DDR interface.

It is important to note that an input stream is sent to all
participating AP chips in parallel, so on every clock single,
every STE on every AP chip sees a the same, next input
symbol. The board can process four input streams in parallel,
with each input stream sent to a different rank.

2.4 AP Chip and Board

An AP board consists of 4 ranks, each of which has 8 AP
chips. Micron’s current-generation AP-D480 chip is built on
50nm DRAM technology running at an input symbol rate of
133 MHz. Each column in the DRAM arrays represents an
STE. The AP achieves its massive parallelism by using the
input symbol to activate all the corresponding rows of the
DRAM, thus reading out the response of all the STEs to that

4
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

input symbol.
Each AP board is capable of processing up to 4 separate

data streams concurrently. The D480 chip has two half cores
and each half-core has 96 blocks. Each block has 256 STEs,
4 counters, and 12Boolean elements. In total, oneD480 chip
has 49,152 STEs, 2,304 Boolean elements, and 768 counter
elements. Since the AP takes the input 8-bit symbols each
cycle, this time is called symbol cycle. The symbol cycle is
7.5 ns. The board is a PCI-Express board with a x8 interface.
In addition to the AP ranks, the board contains an FPGA that
acts as the PCI host, implements the interfaces to the AP
ranks, and provides spare capacity that can be used for user
functionality. A programming interface has not yet been
made available for programmers to access the FPGA, so our
work uses a separate FPGA to model the performance that
can be achieved with the AP and on-board FPGA working
in concert.

3. AP-accelerated Weeder

In this section, we describe how to accelerate Weeder using
the AP.

3.1 Flowchart

The term k-mer refers to the motif of length k. The default k
considered are 6, 8, and 10, with d= 1, 2, and 3 respectively
in Weeder 2.0. As shown in Fig. 4, the AP-accelerated
Weeder consists of four major parts:

• Preprocess (T1) : Except for the first round, whose
candidate k-mers are the subsequences of the input se-
quences, the candidate motifs are generated based on
the previous best-scoring motifs. Other data needed to
calculate the scores are also preprocessed in this stage.

• Symbol replacement (T2): In some cases, the number of
candidate motifs exceeds the capacity of the AP board,
requiringmultiple passes ofmatching. If the connection
among the STEs stays the same, AP chips do not need
to be recompiled. The symbol-matching rules of the
STEs merely need to be updated with new candidate
k-mers. The symbol replacement mechanism provides
a fast way with maximum 0.05s each time.

• Pattern matching (T3): Streaming in the input se-
quences andmatching the k-mers onAP chip. The input
sequences are connected as a long sequence, where a
symbol is inserted between them as the separator. The
automata on the AP chips will compare the input se-
quences with the candidate k-mer and produce a report
event every time it finds a substring of the input se-
quence whose Hamming distance from the k-mer is
less than the maximum mismatch. AP records the po-
sition of each match in the input sequences and the
corresponding reporting STE ID.

• Postprocessing (T4): After the AP finishes the pattern

Fig. 4 Flowchart of AP-accelerated Weeder

matching, it gets the number of occurrences and the cor-
responding mismatches. Our FPGA circuit then reads
the output results and calculates the scores for k-mers
in parallel.

3.2 Automaton Design

TheHamming distance between two strings of equal length is
the number of positions at which the corresponding symbols
are different. The pattern-matching module implemented on
the AP uses the Hamming distance automata constructions
described in [10]. Fig. 5 shows an automaton that is for
finding the occurrences of ACGTAT in the input sequences
with maximum 1 mismatch (here d=1). The last STEs in
each row are the reporting elements, which will report every
time it finds a match. The last STE in the first row reports
when it finds an exact match, and the last STEs of the second
and third rows find a match with 1 substitution. This is a
basic automaton structure for one k-mer. The automaton,
which accepts strings of length k with d mismatches, has
2d + 1 rows of STEs and arranged in k columns requiring
(2d+1)k−d2 STEs in total. At the beginning of the pattern-
matching stage, for the candidate k-mers, the AP will be
compiled to have as many of these Hamming automata as
possible, all of which have the same structure but differ in
the specific k-mer pattern they match. They will be traversed
by the input sequences in parallel. In the subsequent runs,
the AP does symbol replacement for new candidates of the
same length.

3.3 Postprocessing on the FPGA

After the AP finishes the pattern matching, the results are
read by the FPGA to do the postprocessing. The output of
AP contains two parts: the offset arrays which record the

WANG et al.: ACCELERATING WEEDER: A DNA MOTIF SEARCH TOOL USING THE MICRON AUTOMATA PROCESSOR AND FPGA
5

Fig. 5 An automaton to accept ACGTAT with maximum 1 mismatch

offset of the input stream whenever there is a report among
all the report elements, and the output vector array in which
every bit represents a report element’s state (the bit will be
"1" if a report element reports in that cycle).

In the experiment, we program with VHDL to design
the postprocessing circuit, and synthesize inXilinx’sVivado.
The details of the design are shown in Fig. 6. It consists of
several components as below:

• Score Calculation (Score_calc)

Weeder adopts a consensus-based enumeration method to
search the motifs. It ranks all the possible motifs according
to statistical measures of significance[15]. The equation to
compute a score associated with pattern p is defined as:

Score(p) =
n∑
i=1

I(p, i)) ln
Obs(p, i, bi)

f (p, i, bi) ∗ length(i)
, (1)

where I(p,i)=1 if p has an occurrence in the i-th input se-
quence (with at most d mismatches) but equals zero oth-
erwise. bi denotes the number of mismatches of the best
occurrences, which means if there are several occurrences,
the one with the least substitutions is the best. Obs(p,i,b_i)
represents the number of best occurrences of p in the i-th
input sequence with bi mismatches. We remark that the
computation of f(p,i,b_i), i.e., the expected frequency value,
is not implemented in our design, since it is computed before-
hand and stored in the frequency RAM in the preprocessing
stage. n is the number of input sequences and length(i) is the
length of the ith input sequence.

Score_calc reads and analyzes the vectors from the
buffer pool to decide the value of Obs(p,i,b_i) and b_i. Then
the scores are computed using the Vivado floating-point IP
integrator. If it receives a finish signal from the central con-
troller and it finishes the last calculation, it sets work_done
to high to mark the end of the workload.

• Central Controller

The Central Controller is the most important part of the de-
sign. It employs a state machine that is in charge of the
communication between the components. The Central Con-
troller reads the offset and pushes the corresponding output
vector to the accumulator at the same time. It compares the
offset with the length range to decide whether this output
event happens within the same input sequence or not. If not,

it enables the calculation component to compute the score
of the patterns for the current input sequence. Calc_ena
signal is to signal the accumulator to start read from the out-
put vector RAM line by line and accumulate the values to
get the number of occurrences and number of mismatches
in each input sequences for the patterns. Write_ena and
read_ena signals are mutually exclusive signals which de-
cide the read or write access to the buffer pool. If the buffers
in the Score_calc component finish the reading, they set
read_finishes to high. Once the read_finish is high, and
Central Controller is in the state which waits for this signal,
it signals write_ena to push the data from the accumulator to
the buffer pool.

• Output Vector and Offset RAM

As described in section 4.2, the automaton for each pattern
shares a similar design on AP. For each pattern of length k
with d substitutions, it has 2d+1 rows, thus 2d+1 reporting
elements where last STE in each row is a reporting element.
Therefore, for 6-mers (at most 1 mismatch), 8-mers (2 mis-
matches) and 10-mers (3 mismatches), it has 3,5,7 reporting
elements in the automaton respectively. Suppose the number
of k-mers is a, the number of reporting elements of automa-
ton for each k-mer is r, then the length of the output vector
is a*r. The offset RAM has arrays of 64 bits, representing
the offset in the input stream where it finds a report. Each
line maps to the output vector correspondingly.

• Accumulator

The Accumulator is the component designed to accumulate
the values from the output vector array. Every bit in a single
output vector represents the state of one report element in
a single cycle. For 6-mers with 1 mismatch, there are 3*a
bits in an output vector where a is the number of 6-mers.
Each cycle, the accumulator reads a line from the output
vector RAM. But the start of the accumulation depends on
the signal calc_ena from the central controller. Since the
score calculation component include a multiplication, divi-
sion, ln(x) and accumulation, it takes more cycles than the
accumulator. However, the accumulation time can be ig-
nored as it is overlapped with the computation time. As
illustrated in Fig. 7, one can note that the postprocessing
time is

T = (a + b × n) × t, (2)

where a denotes the number of cycles needed for the accumu-
lator to accumulate the output vectors produced by one input
sequence, b denotes the number of cycles needed for equa-
tion calculation, n is the number of input sequences which
have report events, and t is the clock time of the circuit.

• Buffer Pool

The buffer pool stores the number of occurrences for each
pattern within an input sequence. The size of the pool is
the number of bits in the output vector. It is written by the
accumulator and read by the score_calc components. It is a
key element in the pipeline of accumulator for score_calc.

6
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Fig. 6 Postprocessing on the FPGA

Fig. 7 Pipeline of accumulation and calculation

• Other RAMs

The values of length, length range and frequency RAMs
are calculated and loaded in the preprocessing stage. The
value of length range is used as boundary and compared
to decide whether an output event happens in which input
sequence. The data in frequency RAM is calculated based
on the frequency files. The length RAM stores the length of
each input sequences.

4. Tests and Results

In the experiment, we use the same dataset [1] as described
in section 1. The preprocessing stage is running on an In-
tel Core i7-3770 CPU with 8GB memory. It is remarkable
that since the AP hardware is not yet available, our work
uses a separated FPGA to model the performance that can
be achieved with the AP and a desirable on-board FPGA.

Table 2 FPGA Resource Utilization
Resource LUT FF BRAM
Used 1045689 1742001 808

Available 1221600 2443200 1292
Utilization 85.6% 71.3% 62.5%

Table 3 Speedup of Oligo_scan for different numbers of input sequences
Number of

input sequences Original time AP-accelerated
time speedup

5000 306 32.5 9
8300 705 38.9 18
16000 2226 40.9 54
166666 37919 50.45 751

Precisely, in our experiment, the postprocessing time is es-
timated using Vivado simulation and XC7V2000T-2 FPGA
board. The FPGA resource utilization is shown in Table 2.
We note that the current generation of AP, AP-D480, has an
Altera FPGA containing only 270,000 LEs/101,620 ALMs.
Such an FPGA is not large enough to hold the postprocessing
circuit designed in our work. However, our work is mainly
intended to show the speedup potential achievable with an
AP approach, and the achieved experiment results indicate
that for the motif searching, realizing the full potential is
contingent on a larger FPGA.

Since commercial hardware is not yet available, the AP
time is modeled by simply computing the length of the in-

WANG et al.: ACCELERATING WEEDER: A DNA MOTIF SEARCH TOOL USING THE MICRON AUTOMATA PROCESSOR AND FPGA
7

Table 4 Time for AP-accelerated Weeder(s) of 166666 input sequences

k-mers Preprocess (s) Symbol Replacement Pattern
Matching

(s)
Postprocess (s) Total

Time
(s)Generate

motifs
Generate
ANML
Files

Get length
of

input sequences

Number
of

k-mers

Times
of

Replacement

Total
time
(s)

6 6.80536 1.0015 0.068 4095 1 0.05 0.08 0.11 8.11
8 5.88941 5.9986 0 55825 5 0.25 0.38 0.55 13.07
10 8.92706 9.9987 0 245903 44 2.2 3.3 4.84 29.27

Total 21.62183 16.9988 0.068 305823 50 2.5 3.76 5.5 50.45

put stream times the 7.5 ns clock period. Table 3 shows
the speedup of Oligo_scan for different number of input
sequences. The speedup grows as the numbers of input
sequences increases. To provide more details about the per-
formance of our proposed system, we choose the result of
166666 input sequences for analysis. This is a typical use
case.

The total running time for function oligo_scan in CPU
for 166666 input sequences is 37919s, as shown in Table 1.
The time of AP-acceleratedWeeder is calculated for different
k-mers (k=6, 8, 10) in different stages separately. It is shown
in Table 4, while Fig. 8 shows the percentage for each stage.

• After AP acceleration, the preprocessing stage takes
the most time (76%). It includes several parts, includ-
ing generating candidate motifs either from the input
sequences or from the result of the last run, convert-
ing the automaton to ANML files, and computing the
length of each input sequence. At the same time, the
automata of the patterns are compiled on the AP chips;
the data from frequency files of the candidate motifs
are extracted from the frequency files which are used
to fill the frequency RAMs; and the data needed for
the postprocessing are stored in the other RAMs. It is
worth noting that this stage could be accelerated using
CPU multi-core parallelism.

• The time for the replacement stage depends on the num-
ber of candidates for the k-mer of different lengths and
the number of passes needed. Since the symbol replace-
ment mechanism provides a fast way with maximum
0.05s each time, we use 0.05s as an upper limit for each
time.

• The time for pattern matching is determined by the
length of the input stream and the number of replace-
ment passes, since the input sequences need to be
streamed in the AP for several times. Taking advan-
tage of the pattern matching in parallel on AP, even
though the input sequences are streamed in 44 times
for 10-mers, the AP’s ability to check many candidate
patterns in parallel still yields a net speedup.

• Postprocessing is the second most expensive task in all
(21.8%). As shown in Fig. 7, a is the number of cy-
cles needed for analyzing vectors from a single input
sequence while b is the number of cycles needed for
Equation 1 calculation. We use an array of 500 output
vectors as input to run the simulation. On average, it
takes 44 cycles for the Accumulator of the FPGA pro-
cessing, from attaining the output vector to finishing

Fig. 8 Percentage of different stages for AP-accelerated Weeder

accumulation, and 86 cycles for the Score_calc, from
reading data to producing the result. Thus, a=44 while
b=86 in Equation 2. And the clock period of the circuit
is 7.5ns, according to our synthesis result. Since every
input sequence has at least a report event based on the
test result, we have n=166666. Therefore, postprocess-
ing time for each output result from AP is (44+166666
× 86) ×7.5ns ≈ 0.11s.

As shown in Table 4, the time for accelerated oligo_scan is
50.45s in total, and hence the speedup is 751x, as compared
to 37919s (given in Table 1), which is the original running
time of oligo_scan in a single-threaded CPU implementa-
tion.

5. Conclusions and Future Work

In this paper, we presented an AP-accelerated Weeder solu-
tion that accelerates the main bottleneck: a pattern-matching
function called oligo_scan on Micron’s Automata proces-
sor that tests how well candidate motifs are conserved in
the input. Taking advantage of massively-parallel pattern
matching, the AP shows up to 751x speedup for oligo_scan.

In the future work, we plan to further optimize the re-
source utilization of FPGA-based post-processing proposed
in this work. Moreover, apart from oligo_scan, we found
that another function, matrix::scan_z , also plays a signifi-
cant role in Weeder. Particularly, it traverses the top-scoring
k-mers calculated by oligo_scan to build the weight matrix.
This could also be potentially accelerated by the AP via our
proposed approach here.

8
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (61472431, 61272143 and 61272144),
grants fromMicron Technology, and C-FAR, one of six cen-
ters of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA.

References

[1] Dream challenge. http://dreamchallenges.org/.
[2] Micron’s automata processor. https://www.micronautomata.com/.
[3] Timothy L. Bailey and Charles Elkan. Fitting a mixture model by

expectation maximization to discover motifs in biopolymer. In Pro-
ceedings of the 2nd International Conference on Intelligent Systems
for Molecular Biology, pages 28–36, 1994.

[4] TimothyLBailey andCharles Elkan. Unsupervised learning ofmulti-
ple motifs in biopolymers using expectation maximization. Machine
learning, 21(1-2):51–80, 1995.

[5] Paul Dlugosch, Dean Brown, Paul Glendenning, Michael Leventhal,
and Harold Noyes. An efficient and scalable semiconductor architec-
ture for parallel automata processing. IEEE Transactions on Parallel
and Distributed Systems, 25(12):3088–3098, 2014.

[6] Charles E Lawrence, Stephen FAltschul, Mark S Boguski, Jun S Liu,
Andrew F Neuwald, and John CWootton. Detecting subtle sequence
signals: a gibbs sampling strategy for multiple alignment. science,
262(5131):208–214, 1993.

[7] Andrei Lihu and Stefan Holban. A review of ensemble methods for
de novomotif discovery in chip-seq data. Briefings in Bioinformatics,
16(6):964–973, 2015.

[8] Harold B Noyes. Micron’s Automata Processor architecture: Recon-
figurable andmassively parallel automata processing. InProceedings
of the Fifth International Symposium on Highly-Efficient Accelera-
tors and Reconfigurable Technologies, 2014.

[9] Giulio Pavesi, Paolo Mereghetti, Giancarlo Mauri, and Graziano
Pesole. Weederweb: discovery of transcription factor binding sites in
a set of sequences from co-regulated genes. Nucleic Acids Research,
32(Web-Server-Issue):199–203, 2004.

[10] Indranil Roy and Srinivas Aluru. Finding motifs in biological se-
quences using the Micron Automata Processor. In Proceedings of
28th IEEE International Symposium on Parallel and Distributed
Processing, pages 415–424. IEEE, 2014.

[11] Marie-France Sagot. Spelling approximate repeated or common
motifs using a suffix tree. In Proceedings of LATIN’98: Theoretical
Informatics, pages 374–390. Springer, 1998.

[12] Martin Tompa, Nan Li, Timothy L Bailey, George M Church, Bart
De Moor, Eleazar Eskin, Alexander V Favorov, Martin C Frith,
Yutao Fu, W James Kent, et al. Assessing computational tools for the
discovery of transcription factor binding sites. Nature biotechnology,
23(1):137–144, 2005.

[13] Ke Wang, Yanjun Qi, Jeffrey J. Fox, Mircea R. Stan, and Kevin
Skadron. Association rule mining with theMicron Automata Proces-
sor. In 2015 IEEE International Parallel and Distributed Processing
Symposium, pages 689–699, 2015.

[14] Ke Wang, Elaheh Sadredini, and Kevin Skadron. Sequential pattern
mining with the Micron Automata Processor. In Proceedings of
the ACM International Conference on Computing Frontiers, pages
135–144, 2016.

[15] Federico Zambelli, Graziano Pesole, and Giulio Pavesi. Using
weeder, pscan, and pscanchip for the discovery of enriched tran-
scription factor binding site motifs in nucleotide sequences. Current
Protocols in Bioinformatics, pages 2–11, 2014.

[16] Keira Zhou, Jeffrey J. Fox, Ke Wang, Donald E. Brown, and Kevin
Skadron. Brill tagging on the Micron Automata Processor. In Pro-

ceedings of the 9th IEEE International Conference on Semantic Com-
puting, pages 236–239, 2015.

[17] Keira Zhou, JackWadden, Jeffrey J. Fox, KeWang, DonaldE.Brown,
and Kevin Skadron. Regular expression acceleration on the Micron
Automata Processor: Brill tagging as a case study. In Proceedings
of the IEEE International Conference on Big Data, pages 355–360,
2015.

Qiong Wang received her BS degree in
computer science from National University of
Defense Technology, China in 2011. Now, She
is now a PhD candidate at National University of
Defense Technology. Her current research inter-
ests include power management and application
acceleration on heterogeneous architectures.

Mohamed El-Hadedy received the M.Sc
degree in Electronics and Communication from
Mansoura University, Mansoura, Egypt in 2006.
He earned a PhD degree in Electrical and Com-
puter Engineering from the Telematics Depart-
ment at the Norwegian University of Science and
Technology, Trondheim, Norway in 2012. He
worked as a Senior Design Engineer at Atmel
AS, Norway. After that, he joined University
of Virginia as a Research Associate. Currently,
he is a Research Scientist at the University of

Illinois at Urbana-Champaign. His main research interests include Cryp-
tography, Computer Architecture Design, Signal Processing, Image Pro-
cessing, FPGA, Reconfigurable devices, Robotics, Big-data accelerators,
Coherent Accelerators, and Genome Accelerators. He has two patents that
are pending and is writing another one. He is a Member of IEEE.

Kevin Skadron is theHarryDouglas Forsyth
Professor and department chair of Computer Sci-
ence at the University of Virginia, where he has
been on the faculty since 1999, when he received
his Ph.D. in Computer Science from Princeton
University. He is a Fellow of the IEEE and the
ACM, and a recipient of the ACM SIGARCH
Maurice Wilkes Award. Skadron’s research in-
terests include design and application of accel-
erators and heterogeneous architectures, includ-
ing solutions to power, thermal, reliability, and

programming challenges. To support research in these areas, he and his
colleagues have developed a variety of modeling and benchmarking tools,
including the ANMLZoo benchmark suite for automata processing, the Ro-
dinia benchmark suite for heterogeneous computing, contributions to the
SPEC ACCEL suite, and the HotSpot, VoltSpot, and ArchFP modeling
tools.

Ke Wang is a senior scientist in the Depart-
ment of Computer Science at the University of
Virginia. He received his PhD from Tsinghua
University in 2007. After receiving his PhD, he
worked as a postdoctoral research associate in
the Department of Computer Science and Tech-
nology at the Tsinghua University. He joined
the University of Virginia in 2012. His research
interests include applications and design of hard-
ware accelerators, and more generally the design
and optimization of heterogeneous computer ar-

chitectures.

