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Abstract

Power management in data centers has become an increas-
ingly important concern. Large server installations are
designed to handle peak load, which may be significantly
larger than in off-peak conditions. The increasing cost of
energy consumption and cooling incurred in farms of high-
performance web servers make low-power operation during
off-peak hours desirable. This paper investigates adaptive
algorithms for dynamic voltage scaling in QoS-enabled web
servers to minimize energy consumption subject to service
delay constraints. We implement these algorithms inside the
Linux kernel. The instrumented kernel supports multiple
client classes with per-class deadlines. Energy consump-
tion is minimized by using a feedback loop that regulates
frequency and voltage levels to keep the synthetic utiliza-
tion1 around the aperiodic schedulability bound derived in
an earlier publication. Enforcing the bound ensures that
deadlines are met. Our evaluation of an Apache server run-
ning on the modified Linux kernel shows that non-trivial off-
peak energy savings are possible without sacrificing timeli-
ness.

Keywords: Dynamic Voltage Scaling, Web Servers, Aperi-
odic Task Scheduling, Utilization Bounds, Linux

1 Introduction

As chip-manufacturing firms continue to increase process-
ing power in accordance with Moore’s law, high energy

�The work reported in this paper was supported in part by the National
Science Foundation under grants CCR-0093144, CCR-0098269, CCR-
0133634, and CCR-0306404.

1Also known as instantaneous utilization

consumption of chips has become an increasingly important
concern. IBM first made the case for power management in
web servers indicating dynamic voltage scaling as a means
to save energy not only in embedded devices but in high
performance web servers as well [5]. Further work [8, 9]
has argued that power management in web servers is highly
desirable due to technical, financial and environmental rea-
sons.

In large data centers, node failures have been increas-
ingly reported due to the high concentration of nodes and
high power consumption per unit space. Energy costs alone
could account for 23-50% of the revenue [9]. Hence, even
moderate energy savings of can make a tangible difference.
While the motivation for power management is clearly un-
derstood by the research community, there are still some
areas where more work is required. One such area is rec-
onciling energy minimization with meeting QoS guarantees
in the case where input workloads do not exhibit periodic
behavior. In this paper, we specifically target the research
issues in incorporating power management in QoS-aware
web servers and the systems issues in designing and imple-
menting such web servers with energy-saving schemes. Our
main contribution is the design, implementation, and ex-
perimental evaluation of an architecture for minimizing en-
ergy consumption subject to meeting per-class service delay
constraints. The novelty of this architecture lies in its inte-
gration of timing requirements and power management in
the context of aperiodic tasks. This integration is achieved
by a feedback mechanism that relies on a recent utilization
bound for schedulability of aperiodic tasks derived by the
authors [2]. Prior work on power management in real-time
computing has typically addressed periodic task sets. Our
mechanisms are evaluated experimentally on a real proto-
type and not by simulation common to many prior publica-
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tions.
The need to maintain timeliness guarantees is motivated

by the requirements of contemporary computing services.
Today, many high-performance computing services operate
under revenue-critical time constraints. These constraints
arise from the fact that customer behavior is affected by the
quality of their sessions with the server. A very slow or
overloaded server will drive away customers due to unsatis-
factory performance. Hence, a trade or e-commerce server,
for example, should produce a response to the clients within
a sufficiently small amount of time, or else loss of customers
(and revenue) may ensue. Servers which support multi-
ple classes of clients may want to export multiple levels
of delay guarantees such that higher-paying client classes
are guaranteed a shorter delay. Acceptable delay bounds
may be obtained from user studies and represent soft QoS
requirements.

Synthetic utilization bounds [2, 1] have been shown to
be an efficient mechanism to provide absolute delay guar-
antees. Synthetic utilization bounds can serve as control
set points in dynamic voltage (and frequency) scaling loops
that allow a web server to save power while maintaining the
delay constraints on the different classes of clients. Such
loops select a frequency/voltage combination among those
supported by the hardware in a way sensitive to load and
deadlines. This paper presents the first use of synthetic
utilization bounds for power management, and the first in-
kernel implementation and evaluation of a deadline-aware
power management scheme in Web servers.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the problem and presents the general de-
sign of the solution approach. Section 3 presents the system
implementation. Performance results are presented in Sec-
tion 4. Section 5 briefly relates this work to current ongoing
research efforts on power management and scheduling. The
paper concludes with Section 6, which summarizes the re-
sults and presents avenues for future work.

2 Problem and Solution Overview

The ultimate goal of this work is to develop mechanisms for
energy saving that reduce energy costs in QoS-enabled web
server farms. A typical web server farm is shown in Fig-
ure 1. It consists of a front-end node which forwards client
HTTP requests to back-end nodes where these requests are
served. When the load is less than system capacity, energy
can be saved in two different manners; (i) some back-end
machines can be turned off, and (ii) frequency and voltage
can be scaled down on the remaining machines. The former
approach has a high overhead and it introduces a high la-
tency when turned-off machines are needed again. It should
therefore be applied on a large timescale and should allow
for a sufficient capacity margin to accommodate transient

load disturbances and bursts. Such coarse-grained policies
would typically use some simple hysteresis-like heuristics
such as “turn off a machine if average load (averaged over
some appropriately long time interval) is below a threshold,
and turn on a machine when average load rises above an-
other threshold”. Such policies are investigated in [8]. Tun-
ing these policies (e.g., for particular workload conditions)
may be left to system administrators and is not addressed in
this paper. Instead, we concern ourselves with finer-grained
scheduling of machines that are turned on at a particular
time.

It is easy to see that energy savings are maximized when
load is exactly balanced among the back-end machines.
This follows directly from the nonlinear power voltage re-
lation and the fact that the sum of squares (or higher order
functions) of numbers that add up to the same total is mini-
mized when these numbers are equal. Efficient load balanc-
ing algorithms have been proposed for web server farms in
past literature [6]. Experience with current farms shows that
these algorithms are very successful in practice. Thus, we
can assume that a good load balancing algorithm is used at
the front-end, which makes the power management problem
symmetric across the back-ends. In other words, it needs to
be solved for only one machine. The solution is then sym-
metrically carried out by all.

We assume that incoming requests are assigned to back-
end nodes depending on their connections. All requests on
the same connection are served by the same back-end node.
This approach alleviates problems with migrating connec-
tion state across different machines. Responses could be
sent back to the client directly by using techniques like Net-
work Address Translation (NAT). NAT is a widely used
capability provided in Linux kernels as part of the Netfil-
ter framework. It allows changing of the IP header fields
of a packet (incoming or outgoing). The translation rules
can be specified using the common iptables interface. NAT
has been particularly useful in Linux clusters to re-direct re-
quests to back-ends based on appropriate policies by mod-
ifying the destination address on the IP packets. Similarly
outgoing packets at the backend can have their source ad-
dress field modified to be the IP address of the front-end
node.

......

Back-end Nodes

Front-End

Client Requests

Server Responses

Figure 1. Web server farms
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Since back-ends in a load-balanced farm have roughly
equal load characteristics, the fundamental question an-
swered in this paper is the following. Given aperiodically
arriving clients at a particular back-end, partitioned into a
number of classes with different maximum delay require-
ments, how to minimize the energy used by that back-end
while maintaining service delay guarantees? Simple rea-
soning is then used to scale the results to a larger farm.

Our experimental results confirm that the incremental
energy savings from turning a machine off are greater than
those from slowing down all CPUs (and scaling down their
voltage) to reduce farm capacity by the same amount. Since
we do not turn machines off in our experimental evaluation,
the savings we present are a pessimistic lower bound on sav-
ings achievable in a scheme that combines powering down
some machines with load balancing across the remaining
ones in which dynamic voltage scaling, described in this
paper, is used to reconcile power management with meet-
ing response-time requirements.

We implement our power management solution inside
the Linux kernel and test the architecture with an actual
Apache web server. The architecture would be symmetri-
cally installed on all back-ends of the farm in a real appli-
cation. To the authors’ knowledge, this is the first work
that designs and experimentally evaluates power manage-
ment techniques in web servers that provide absolute delay
guarantees.

2.1 In-kernel Architecture

In our architecture, the user-level server code remains un-
modified, while the kernel combines a scheduling policy,
an admission control scheme, and a dynamic voltage scal-
ing scheme to minimize power while meeting deadlines.
The decision to use a kernel-level solution has two main
advantages. First, it is more efficient than application-level
solutions. Second, it is more general. Utilizing a few load-
able kernel modules, we can apply deadline-aware power
minimization to different application servers, as opposed to
having to instrument every Web server product. Our solu-
tion requires per-class prioritization while servers such as
Apache schedule requests in FIFO order. To overcome this
problem, we run multiple instances of the server at differ-
ent priority levels such that each is responsible for serving
a particular request class. This solution has been previ-
ously proposed in [23] and found to be successful in cir-
cumventing the lack of priority-based scheduling in several
best-effort server systems. Figure 2 illustrates the resulting
architecture applied to a single back-end server. The main
components of this architecture are discussed in the subsec-
tions below.

. . . . . . . . 

. . . . . . . . 

Apache
Web Servers

Class 1 Class 2 Class n

Port 8081 Port 8082 Port 8080+n

Admission
Controller

DVS

Module
HTTP
Parser

Port 80

CLIENTS

Kernel Module

HTTP Requests

Figure 2. Architecture for single node web
server

2.2 Extending kHTTPd

Linux (version 2.4) provides an in-kernel web server, called
kHTTPd, as a dynamically loadable kernel module. The
in-kernel web server was designed to serve static requests
while dynamic requests were forwarded onto a user-space
web server (for example, Apache). The motivation was to
make the simple case of serving static files faster by serving
them in the kernel itself.

We have used kHTTPd’s connection handling and HTTP
header parsing implementations for our purpose. We have
modified kHTTPd to accept connections, parse the first
HTTP request and make admission control decisions before
forwarding the connection onto a user-space web server.
The implementation is shown in Figure 3. The connection
is handed off by inserting the socket data structure directly
into the Accept Queue of the user-space web server.

This modified server runs in the kernel at port 80 where
the first request on a connection is received. The server
parses the first HTTP request and determines the priority
of the request based on any value or combination of val-
ues in the HTTP header (for example - Cookie information)
or network layer information such as the IP address of the
client.

2.3 Dynamic Voltage Scaling

The heart of our algorithm is implemented in the DVS mod-
ule which attempts to reduce voltage and frequency as much
as possible but not enough to cause per-class response-time
constraints. These constraints define a deadline associated
with each request. Violation of a response-time constraint
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Figure 3. Session-based admission control

is a deadline miss. A trivial approach is to reduce speed
until the first deadline misses are observed. This solution,
by its very nature, however, requires that some misses be
tolerated. Instead, we use a recently derived utilization
bound for schedulability of aperiodic tasks. It is proved
in [2] that maintaining a quantity called synthetic utiliza-
tion below the bound guarantees that no deadline misses
are observed. The bound presents a sufficient condition
for schedulability. Exceeding it does not necessarily imply
deadline misses. Hence, we take this bound as a control set
point. When synthetic utilization is lower than the bound,
processor speed is reduced until the utilization reaches the
bound. Conversely, when synthetic utilization exceeds the
bound, processor speed is increased. An appropriate sam-
pling rate is chosen that is large enough to prevent excessive
overhead due to voltage switching, but small enough (with
respect to task deadlines) such that the system remains suf-
ficiently responsive to load variations. We allow the syn-
thetic utilization to exceed the bound within a sampling pe-
riod instead of clipping the load at the bound by applying
admission control. At the end of the sampling period the
difference between the measured synthetic utilization and
the utilization bound determines the extent of speed change
required. An exception to that rule is when the processor
operates at maximum speed. In this case we employ an ad-
mission controller to prevent synthetic utilization from ex-
ceeding the bound.

2.4 Session-based Admission Control

When admission control is called for, a choice we made was
to do admission control at the granularity of sessions rather
than individual HTTP requests. This is motivated by the fact
that aborting already established sessions wastes all server
resources expended on the aborted sessions. We assume
HTTP/1.1 connections where requests could be pipelined

and multiple requests could be sent over a single TCP con-
nection to the server. Since HTTP/1.1 is becoming the norm
in web servers, we focus on this version of the HTTP pro-
tocol and do not explicitly discuss HTTP/1.0 connections.2

In this paper, a session corresponds to a single HTTP/1.1
connection. Admission control for a session is done when
the first HTTP request is received by the server and subse-
quent requests on the same connection are always admitted.
While no admission control is done for subsequent requests
on a persistent connection, these requests are accounted for
by adding their synthetic utilization to the system utilization
counter as they arrive in the system.

Thus, synthetic utilizationU�t� at time t is the sum of the
ratio of computation times Ci over relative deadlinesDi for
all requests, i, that have arrived but whose deadlines have
not expired. (Let us call it the set of current tasks V �t�.)
Hence:

U�t� �
X

Ti�V �t�

Ci

Di

(1)

If this summation is below the bound derived in [2], all
requests meet their response-time constraints. The scheme
mentioned above requires the knowledge of execution times
of individual requests. This can be done by parsing the
HTTP header and extracting the URL requested. The iden-
tity of the requested file or script gives some idea of the
time it may take to serve it. However, for the case of high
performance servers, individual requests have very low ex-
ecution times on the CPU and during high load, the number
of requests is large. Hence, one can make use of the law of
large numbers and use the mean computation time instead
of the actual value. We therefore formulate an approximate
admission control policy as follows:

X

Ti�V �t�

Cmean

Di

� Ubound (2)

or,
X

Ti�V �t�

�

Di

�
Ubound

Cmean

(3)

In the rest of this paper, we use the mean computation
time instead of individual computation times. The mean
computation time is easy to calculate from statistical mea-
surements of load and request rate on the web server.

3 Implementation Issues

In this section, we highlight some of the implementation
challenges we faced when developing our architecture in-

2HTTP/1.0 connections can be thought of as a special case of HTTP/1.1
connections, in which a single request arrives per connection, and the
keepalive timeout is zero.
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side the Linux kernel. It must be mentioned that we de-
nied ourselves the freedom of changing the core kernel and
hence operated under the constraint of implementing every-
thing as kernel modules. While being inflexible, this allows
the solution to be generic to other applications and available
as an option to the server administrator.

The main issues were - modifying kHTTPd and porting it
to the 2.5 kernel versions of Linux, enabling voltage scaling,
maintaining the synthetic utilization counter and the DVS
module itself.

3.1 Enabling Deadline Monotonic Scheduling in
Linux

We chose to run Apache servers on multiple ports at dif-
ferent static priorities. Standard Linux provides the ca-
pability to assign static priorities to processes and FIFO
scheduling within each priority level. This is done by
using the sched setscheduler system call which takes in
three arguments - PID of process, scheduling strategy to
use to schedule the process, and priority. There are three
scheduling strategies possible in Linux - SCHED FIFO,
SCHED RR and SCHED OTHER. SCHED FIFO enables
FIFO scheduling within each priority level with preemp-
tion by higher priority levels. SCHED RR is similar to
SCHED FIFO except that when a request is preempted it
is sent back to the end of the priority queue rather than
at the beginning. SCHED OTHER is the weighted round
robin dynamic priority scheduling policy used by default in
Linux.

Hence using SCHED FIFO scheduling capability, multi-
ple Apache servers can be run at different static priorities to
essentially enable Deadline Monotonic Scheduling. While
better scheduling policies like Earliest Deadline First could
be used to schedule requests, we chose the mentioned al-
ternative because high performance web servers today use
standard operating systems that do not provide scheduling
capabilities for policies like Earliest Deadline First. Real-
time operating systems provide EDF capabilities but are not
likely to be used on mainstream web servers. Since we
wanted our implementation to be applicable to a wide set
of scenarios and portable to current systems, we chose to
use the standard Linux operating system and a fixed prior-
ity scheduling policy which is supported by it.

Moreover, while Earliest Deadline First is an optimal
scheduling policy, implementing the policy could have
some additional overhead as compared to a fixed priority
scheduling policy as the priority depends on dynamic pa-
rameters like the arrival time of the task. While use of EDF
is prevalent in hard real-time systems, we feel that dead-
line monotonic scheduling is sufficient for the case of high
performance servers.

3.2 Porting kHTTPd

While kHTTPd was available with 2.4 kernels of Linux, the
support for it has been discontinued from the 2.5 series of
kernels due to issues of kernel bloat and arguments against
having a web server in the kernel. Due to better support
for voltage scaling drivers in Linux 2.5, we decided to port
kHTTPd to the 2.5 version of Linux. Since there have been
significant changes in 2.5 as compared to 2.4, this required
adapting kHTTPd to the changes. Since kHTTPd needs
socket-related data structures and functions, it is most af-
fected by changes in these structures in Linux 2.5. Addi-
tionally, some of the code for kernel modules has changed
needing modifications. In particular, the socket data struc-
ture in 2.4 was bloated contained information from other
layers, such as the IP layer. This data structure has been
pruned and additional functions have been added to access
lower level information. The code in kHTTPd that needs
this information had to be changed.

Further, signal handling for tasks in the task data struc-
ture has changed to include signaling for groups of tasks.
The signal enabling/disabling code in kHTTPd had to be
updated.

There have been many changes with respect to improv-
ing the performance of Linux for SMP systems as well
as to make the kernel preemptible. We chose to disable
these modules. We disabled SMP since we did not need
it, and disabled preemptibility because we weren’t adven-
turous enough!

3.3 Voltage Scaling Drivers

The AMD Athlon PowerNow drivers were used on 2.5 ver-
sions of Linux due to the good support for voltage scaling
drivers. The drivers provide the capability of scaling the
frequency and voltage. The range is shown in Table 1. We
found the CPUFreq drivers to be the most useful and easy
to use to modulate the frequency and hence the voltage of
the processor. CPUFreq allows simple manipulation of the
processor frequency via the /proc interface, via user-space
applications. The driver exports two functions - cpufreq get
and cpufreq set which can be used to get and set the fre-
quency of the processor respectively. The voltage gets ad-
justed according to Table 1. We found these functions suf-
ficient for our cause.

3.4 DVS Module

In the simplest design, the voltage scaling module could be
implemented as a separate daemon with high priority. The
daemon would wake up every specified interval and depend-
ing on the energy management policy (discussed in the next
section) could modulate the frequency/voltage.
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Since this design would require having a separate pro-
cess and performing a context switch every interval, we
opted instant that the DVS module be clubbed in together
within kHTTPd.

3.5 Synthetic Utilization Update

Since we implement session-based admission control, once
a connection is handed off to an Apache server, the admis-
sion controller does not have any control over subsequent
requests. However, the synthetic utilization of subsequent
requests has to be added onto the system utilization counter
at the time each request arrives. This is done by extensions
to the Netfilter module available in Linux as a dynamically
loadable kernel module.

Netfilter provides hooks into the IP layer processing
stages to implement functionality like packet filtering, con-
nection tracking, and network address translation. With-
out going into too much detail on the capabilities of Net-
filter, we mention how we use it to enable keeping track of
synthetic utilization for HTTP requests. Netfilter allows in-
coming packets to be applied against a filter (usually based
on IP/TCP header values) and corresponding actions to be
taken if the match is successful. We add two modules to the
Netfilter framework. The first module is the string match-
ing module which provides the capability to search for any
string in the IP or TCP payload of a packet. If a match
is successful, a target module is invoked. We have imple-
mented a new target module called - UTIL to do the actual
synthetic utilization accounting. The accounting is simply
to increment synthetic utilization upon the arrival of each re-
quest (by the ratio of average request processing time to the
desired response time). The utilization is decremented by
the contributions of requests whose deadlines have passed.
The module also resets the synthetic utilization to zero if the
processor has been idle.

Having loaded the string matching and the UTIL mod-
ules, the following command shall invoke the UTIL module
if the string matching module finds the word “GET” in the
TCP payload portion of the packet:

iptables -t filter -A INPUT -p tcp -m string –string
“GET” -j UTIL

Iptables is the tool to add filtering/forwarding rules for
execution on packet arrival. INPUT refers to incoming
packets and filter refers to the filter table.

3.6 Other Implementation Issues

� Deadline Expirations: A task contributes a synthetic
utilization of Ci

Di

from the instant of its arrival to when
its deadline expires. Hence, when the deadline of a
task expires, the synthetic utilization of the task has
to be subtracted from the total synthetic utilization at

the resource. In our implementation, a queue of times-
tamps corresponding to expiration of requests (arrival
timestamp + deadline) is maintained for every priority
level. Since, the deadline is the same for every priority
level, the queue is already in sorted order. Whenever
the Netfilter module sees a GET request, it increments
the system synthetic utilization and adds a timestamp
to the corresponding priority level timestamp queue.
Every time kHTTPd starts the admission test stage (for
all pending requests), a check is made to see if any
timestamps have expired and if so those entries are
purged and the synthetic utilization reclaimed. This
enables quick and efficient implementation of deadline
expirations.

� CPU-Bound Requests: It is also important to note
that a web server typically has multiple bottlenecks.
Depending on the type of requests, the server accept
queue, the CPU, the Apache process pool or the net-
work interface could be the bottleneck. Hence, CPU
scheduling might not suffice to provide overall delay
guarantees. However, for this work we shall focus
only on the CPU as the bottleneck resource. Hence, in
our admission control we assume large enough process
pools and unsaturated network interfaces (this would
be the case for small static requests and CPU-bound
dynamic requests).

� Efficient Rejection: Admission control is done in the
kernel so that rejection of requests takes up very few
resources at the server. If we were to incorporate ad-
mission control using an Apache proxy, the imple-
mentation would be inefficient because each request
would have to go through the involved request process-
ing stage of Apache and the request would have to be
copied into a user-space buffer. A simple HTTP header
parser is much more efficient.

� Kernel Module: The admission controller and dy-
namic voltage scaling algorithm are implemented as
kernel modules which can be dynamically loaded or
un-loaded and does not required any changes in the
kernel. Hence, we provide the flexibility of being able
to turn off the feature easily if desired.

� Header Parsing Overhead: Each initial request on a
persistent connection is parsed in the kernel to get the
HTTP header values so as to determine the priority of
the client. This is a price that has to be paid to sup-
port HTTP layer-based admission control. Classifica-
tion based on the HTTP header values provides more
flexibility and allows the service hosting entity to dif-
ferentiate service across clients based on a richer set of
policies.
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Frequency (MHz) Voltage (Volts)
1529 1.55
1197 1.35
798 1.2
665 1.2
532 1.2

Table 1. Frequency and voltage levels avail-
able with AMD Athlon/Powernow

� Connection Handoff: Once the socket is handed off
to the respective Apache web server, the kernel mod-
ule loses all control over subsequent requests. Hence
admission control cannot be done at the granularity of
each individual HTTP request using this infrastructure.
However, as we have mentioned, we focus on session-
level admission control and consider aborting of ses-
sions undesirable. So, admission control is done only
once for each session. The next module keeps track of
subsequent HTTP requests so that their synthetic uti-
lization is accounted for.

4 Performance Results

We have evaluated the implemented prototype experimen-
tally on a testbed that consists of a Compaq laptop for the
web server and some traffic generators connected by an Eth-
ernet hub. The Compaq laptop has an AMD Athlon 1800+
processor and we use the PowerNow drivers to scale the
voltage. We ran Linux 2.5.65 on the laptop (we chose the
experimental version rather than the stable 2.4 version due
to better support for voltage scaling available with 2.5).
The frequencies and voltages that can be achieved using the
PowerNow driver are shown in Table 1.

To measure the power being dissipated by the system,
a sense resistor is used to determine the current level of
the system. The voltage drop is measured across the sense
resistor, amplified, and sent into a Data Acquisition Card.
A National Instruments PCI-6034E DAQ card was used to
sample data at a sampling rate of 1000/sec. The voltage is
sent through a voltage divider circuit and then into the DAQ
card. (The DAQ card accepts only +/-10V. The AC adapter
has a nominal voltage of 18.5V.)

The first part of our experimental study is to profile the
execution times of different requests at different frequen-
cies in order to determine the slow-down factor of com-
putation time as processor frequency is reduced. Requests
are generated using a standard workload generator, namely,
httperf [17]. We use CGI scripts profiled at different fre-
quencies and estimate changes in their computation times
on the server. The profiling was done by requesting each

CGI script at varying rates and noting the maximum rate
the server can support before timeouts occur. The inverse
of the maximum attainable rate gives us the processing time
of each script at the frequency at which the experiment was
conducted. This processing time is attributed to execution
on the CPU and to various other overheads such as net-
work and disk I/O operations. Figure 4 shows the maxi-
mum server throughput at different frequencies as a frac-
tion of that at the highest frequency. Multiple curves are
shown, each for a different frequency. The X-axis shows
the computation time of the scripts (measured at the high-
est frequency), ordered from the less computationally in-
tensive to the more computationally intensive. It can be
seen that the curves tend to saturate in the region towards
the higher execution times. This is because the decrease
in server throughput becomes more a factor of processor
speed as the scripts become more CPU intensive. With less
computationally intensive scripts (the left of the graph), the
difference between execution times at various voltage lev-
els is gradually decreased. This is because the throughput
in this region is also affected by I/O operations whose du-
ration does not change with frequency scaling. Hence, the
effect of frequency scaling on server throughput is reduced.

In subsequent experiments an average execution time
was obtained for the current workload for the purposes
of computing synthetic utilization. When the voltage was
scaled from one level to another, the utilization was scaled
in accordance with the ratios shown in Figure 4. The factors
corresponding to compute-intensive scripts were used.
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Figure 4. Ratio of throughput at different fre-
quencies

Next, we demonstrate the performance of a DVS scheme
that attempts to keep synthetic utilization around the uti-
lization bound. In this experiment, we generate a session-
oriented workload using httperf to read out logs of persis-
tent connection-based requests. The sample workload con-
sists of 1000 persistent connections. Each connection has
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a length chosen randomly from the interval (1,10). Each
of the files in the sessions could be one of the 10 scripts
profiled above. The inter-arrival time of the sessions at the
server can be specified as an exponential distribution with
varying means. This provides the ability to generate differ-
ent loads. Further, the same workload was generated from
four client machines which were assigned different priori-
ties. The deadlines for the four classes were 1, 2, 3 and 4
seconds respectively. The average power consumption and
deadline miss ratio were measured in each experiment.

The average power consumed (as measured by the DAQ
setup mentioned previously) is shown in the Figure 5. The
plot shows the power consumed when the workload is ex-
ecuted with our DVS scheme, versus when it is executed
with the default setup on Compaq AMD laptops. Observe
that in the default setup, power consumption is decreased
at low loads due to the HLT instruction which shuts down
the clock grid when the processor is idle. As mentioned
earlier, a DVS scheme on back-ends in a web server farm
would typically be used in conjunction with a heuristic that

switches some machines off or on depending on load condi-
tions. Since such switching is time consuming and expen-
sive, the heuristic will attempt to leave enough machines
on, such that an adequate capacity leeway is provided to
accommodate bursts. Due to this leeway, we expect that
the load on an individual server will rarely approach maxi-
mum capacity. The X-axis in Figure 5 therefore goes only
up to loads that are 70% of maximum machine capacity. A
comparison reveals that we outperform the default scheme
by up to 20% in that load range (Figure 6). When the
load is very low, the performance of both schemes is the
same. The convergence between the compared schemes is
because when processor idle time increases, both schemes
become equally opportunistic in saving energy. When the
load grows, the real-time DVS scheme takes advantage of
its additional knowledge of the actual deadlines to reduce
power consumption beyond what is attainable simply by
monitoring processor idle time. Hence, additional savings
of 15-20% are made possible beyond the default power sav-
ing scheme. If load is increased further (not shown in fig-
ure), both schemes eventually become identical again be-
cause the potential for energy saving is eliminated at very
high loads.

In the DVS experiments conducted above, the deadline
miss ratio was less than 2%, which confirms that our scheme
is able to maintain the system in the schedulable region
while reducing power consumption.

Finally, we compute the savings that might be expected
in a server farm running our algorithm. While we surveyed
many server load statistics available from different web
sources, in this paper we show one example that presents
trade volume statistics of stock-market servers. Figure 7
shows the trade volume of the Dow Jones Industrial Av-
erage over the last two years. The average volume is ap-
proximately 300 million trades/day, which amounts to an
average of 625,000 trades/second assuming a uniform trad-
ing volume throughout an 8-hour day. Assuming that a
server farm running at capacity can support around 620 mil-
lion trades/day (the maximum volume that occurs in the
trade graph), a volume of 300 million corresponds to 46%
load. From Figure 6, a reduction of approximately 17% is
observed at that load over the default power management
scheme.

If machines could be turned off with zero overhead and if
the remaining machines could meet all deadlines even when
100% loaded, an optimal algorithm would turn off all ma-
chines that are not needed (i.e., 100% - 46% = 54%) lead-
ing to 54% energy savings. This can be construed as an
unattainable upper bound. Realistic algorithms that com-
bine turning off a fraction of the machines with running the
algorithm proposed in this paper on the remaining machines
are therefore expected to save up to 54% of total energy ac-
cording to measurements from our laptop.
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Figure 7. Server Load Statistics (Dow Jones
Industrial Average)

5 Related Work

Initial work on power management has focussed on sav-
ing power in battery-constrained wireless embedded de-
vices [10]. Dynamic voltage scaling was developed as an
architectural tool for energy saving [7, 14]. This work
was soon adopted for real-time computing giving rise to
power management algorithms that are cognizant of time
constraints. A common feature of most existing algorithms
is that they assume a periodic task model.

Several variations of real-time DVS schemes have been
investigated for periodic tasks. The basic problem of max-
imizing energy savings subject to meeting periodic task
deadlines is presented in [15, 19, 16]. In [3], an optimal
algorithm is described for assigning processor speeds to pe-
riodic tasks such that power is minimized. Extensions of
power minimization to real-time tasks on multiprocessors
are published in [24]. Dynamic adjustment for early task
completions is investigated in [4]. Extensions to periodic
tasks with blocking sections are presented in [22]. In [20]
optimization under overload is addressed, which picks a
subset of tasks, as well as a processor speed for each, such
that energy constraints and deadlines are met while system
utility is maximized. A similar performance optimization
algorithm is presented in [12], except that some task exe-
cution parameters are assumed to be negotiable. The goal
is to find the optimal parameter settings for each task to
maximize system utility under energy and resource con-
straints. A performance comparison of several dynamic
voltage scaling schemes for real-time systems is presented
in [13]. Practical issues that arise from non-ideal character-
istics of actual DVS implementations are addressed in [21].

As mentioned earlier, a common focus of the above al-
gorithms is on periodic tasks. The effort in [11] is one of
the few works which has focused on aperiodic tasks. How-
ever, they do so without considering QoS requirements. The
authors of [18] focus on minimizing energy while meeting
aperiodic task deadlines. However, their voltage scaling al-
gorithm has high complexity and is unsuitable for large task
sets.

Bohrer et. al [5] have made the case for power manage-
ment in web servers. Subsequent work out of IBM Research
labs has proposed algorithms for power efficient load bal-
ancing and request batching techniques to save power while
maintaining a fair level of performance [9, 8]. As part of this
work, a web server simulator, called Salsa, was built, which
has been extensively validated for both energy and response
time against measurements from a commodity web server.

While the simulator gives a good idea of the power sav-
ings for validated web server workloads, the lack of a real
testbed makes it hard to identify systems issues in applying
the power management policies to a real server.

This paper attempts to bridge the gap between the real-
time community and the power saving efforts for high per-
formance web servers by presenting a policy for power sav-
ing that maintains QoS guarantees on HTTP requests. Fur-
ther, this paper presents a system implementation of the
scheme and discusses the problems from the systems per-
spective.

6 Conclusions

This paper addressed the important problem of energy sav-
ing in web servers subject to meeting real-time constraints.
The work is an extension of prior approaches that addressed
a similar optimization in the case of periodic tasks. A re-
cently derived utilization bound for schedulability of ape-
riodic tasks was used to determine the extent of processor
slow-down that will not interfere with meeting individual
deadlines. This bound provides a basis for a new varia-
tion of dynamic voltage scaling schemes that minimizes en-
ergy consumption subject to aperiodic deadline constraints.
Evaluation of the approach on an actual server prototype
reveals that significant energy savings are possible while
meeting request deadlines. Server load traces show that
large variations in server workload allow the server to op-
erate at a reduced speed a significant fraction of the time,
which makes our scheme particularly useful.

Future work of the authors will focus on identifying effi-
cient algorithms that maximize energy savings by combin-
ing the mechanism described in this paper with switching
machines off or on depending on load conditions. While
in this paper we provide a proof of concept evaluation, in
subsequent work we shall explore the sensitivity of vari-
ous algorithm parameters such as sampling time and input
workload distribution to the amount of savings attained.
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