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Abstract— Finite automata have proven their usefulness in
high-profile domains ranging from network security to machine
learning. While prior work focused on their applicability for
purely regular expression workloads such as antivirus and
network security rulesets, recent research has shown that
automata can optimize the performance for algorithms in other
areas such as machine learning and even particle physics.
Unfortunately, their emulation on traditional CPU architectures
is fundamentally slow and further bottlenecked by memory.
In this paper, we present REAPR: Reconfigurable Engine for
Automata PRocessing, a flexible framework that synthesizes
RTL for automata processing applications as well as I/O to
handle data transfer to and from the kernel. We show that even
with memory and control flow overheads, FPGAs still enable
extremely high-throughput computation of automata workloads
compared to other architectures.

I. INTRODUCTION

Many modern applications essential to domains such as
high-performance computing, network security, and machine
learning benefit from an approach based on finite automata.
For instance, in the case of network security, regular ex-
pressions used for deep packet inspection are represented in
memory as their equivalent nondeterministic finite automata;
RegEx engines such as Intel HyperScan [1] perform au-
tomata transformations to maintain excellent performance in
terms of both runtime and memory utilization. In the field of
machine learning, Tracy et al. [2] have shown that automata
can even be used for a high performance implementation of
the Random Forest classification algorithm.

Previously, engineers have relied on Moore’s Law scaling
for computing power to keep up with demands for these
workloads, despite the fact that traditional von Neumann
architectures are poorly suited for automata processing.
Now in the “post-Moore” era, it is no longer prudent to
rely on advances in manufacturing for improvements in
computational throughput. The unsuitability of traditional
CPU architectures for automata processing is amplified by
the increasing demand for such applications; heterogeneous
accelerator-based solutions are the way forward.

Specifically, prior work [3] [4] has shown that digital
circuits enable a one-to-one spatial mapping between au-
tomata states and circuit components such as registers and
wires. Due to the volatility of many automata processing
workloads such as network security and machine learning,
in which the rulesets and algorithms change frequently,
non-reprogrammable application-specific integrated circuits
(ASICs) are too inflexible and too costly to be commercially
viable, and therefore reconfigurable platforms such as FP-

GAs and the Micron Automata Processor [4] are an ideal
target for these workloads.

Our goal in this paper is to develop a high throughput and
scalable engine for enabling spatial automata processing on
FPGAs, as opposed to prior work which focused purely on
regular expressions. To achieve this goal, we have developed
REAPR (Reconfigurable Engine for Automata PRocessing),
a flexible and parameterizable tool that generates RTL to
emulate finite automata.

The major contributions of REAPR are the following:
• The first effort to characterize automata performance

for applications other than regular expressions on the
FPGA using the ANMLZoo benchmark suite [5];

• A head-to-head comparison of FPGA computational
throughput against a best-effort CPU automata process-
ing engine (Intel HyperScan) and the Micron Automata
Processor;

• The first automata-to-RTL translation tool with I/O
generation capability;

• To our knowledge, the first attempt to run an automata
processing application (Random Forest) on actual hard-
ware by using AXI and PCI-Express to enable CPU-
FPGA communication;

• A maximally-sized Levenshtein automaton to determine
peak state capacity with complex routing;

II. PRIOR WORK

A. CPU Automata Engines

In a nondeterministic finite automaton (NFA), symbols
from the input stream are broadcast to each state simulta-
neously, and each state connects to several other states, each
of which may or may not activate depending on whether a
given state matches the incoming symbol. For each symbol,
an NFA engine must determine the next set of activated
states, which involves a linear-time scan of the adjacency
lists of all states in the current activated set. In the worst
case, the adjacency list may contain nearly all of the states
in the automaton; therefore, the run-time on a CPU for
simulating an m-state automaton on n symbols is O(n ·m),
and for non-trivial data with non-trivial automata (n = m),
the overall runtime is quadratic. CPU NFA processing is
additionally hampered by the so-called “memory wall” due
to the NFA’s pointer-chasing execution model, and therefore
it is desirable to drastically reduce the number of memory
accesses per input item. In order to mask memory latency,
state-of-the-art NFA engines such as Intel HyperScan [1]



perform SIMD vector operations to execute as many state
transitions as possible for a given memory transaction. Even
so, such optimizations can not escape the fact that sequential
von Neumann architectures are fundamentally ill-suited for
these type of workloads.

In order to improve the run-time complexity of automata
traversals, some regular expression engines transform the
NFA into its equivalent deterministic finite automata (DFA).
A DFA only has one state active for any given symbol
cycle and is functionally equivalent to an NFA; this is
achieved through a process known as subset construction,
which involves enumerating all possible paths through an
NFA. Converting an NFA to DFA has the benefit of reducing
the runtime to O(n) for n symbols (note that now the
runtime is independent of automaton size) and only requires
one memory access per input symbol, but frequently causes
an exponential increase in the number of states necessary;
this phenomenon is often referred to as state explosion.
Subset construction for large automata incurs a huge memory
footprint, which may actually cause performance degradation
due to memory overhead in von Neumann machines.

Prior work by Becchi [6] attempted to leverage the best
of both types of finite automata (the spatial density of NFA
and temporal density of DFA). By intercepting the subset
construction algorithm and not expanding paths that would
result in a state explosion, Becchi achieved 98-99% reduction
in memory capacity requirement and up to 10x reduction in
memory transactions.

B. Automata on FPGA

1) NFA: Past implementations of NFAs on FPGA [3] [7]
focused on synthesizing only regular expression matching
circuits for applications such as antivirus file scanning and
network intrusion detection. REAPR extends this prior work
by focusing on a more diverse set of finite automata to
address the fact that the workload for automata processing is
much richer and more diverse than regular expressions. We
extend the underlying approaches for NFA RTL generation
from prior work, adapt it for other NFA applications, and
detail our process in Section IV.

2) DFA: Several efforts [8] in accelerating automata
processing with FPGAs use Aho-Corasick DFAs as the
underlying data structures. A major motivator behind this
design choice is the ease of translation between a DFA
and a simple transition table, which is easily implemented
using BRAM. One benefit to this approach is that BRAM
contents can be hot-swapped easily, whereas a spatial design
requires a full recompilation to realize even a single change.
Because DFAs do not exploit the native bit-level parallelism
in digital hardware and are much better suited to memory-
bound CPU architectures, REAPR only focuses on the spatial
implementation of NFAs.

C. The Micron Automata Processor

1) Architecture and Overview: The Micron Automata
Processor (AP) [4] is a reconfigurable fabric for emulating
finite automata in hardware, designed in a 50nm DRAM

process. Its fundamental building block is the State Tran-
sition Element (STE), which is the hardware realization of
an automaton state as well as the next-state transition logic.
The first generation AP packs roughly 49,000 states per chip,
and with 32 chips per board, one AP card holds nearly
1.6 million states. REAPR implements automata states in
a similar manner but is more extensible due to the flexibility
of the FPGA.

2) Programming Interface: In addition to a multi-lingual
(C, Python, Java) SDK, Micron offers the Automata Network
Markup Language (ANML), a format based upon XML for
describing the interconnectivity of AP components such as
STEs, booleans, and counters. Developers can either gen-
erate their own ANML files or generate them from regular
expressions using the SDK’s apcompile command [9].

D. Other Architectures

Several past efforts have proposed modifications to exist-
ing von Neumann architectures to specifically increase per-
formance of automata processing workloads. HARE (Hard-
ware Accelerator for Regular Expressions) [10] uses an array
of parallel modified RISC processors to emulate the Aho-
Corasick DFA representation of regular expression rulesets.
The Unified Automata Processor (UAP) [11] also uses an
array of parallel processors to execute automata transitions
and can emulate any automaton, not just Aho-Corasick.
However, because these works are 1) not FPGA-centric
(both are ASICs), 2) based on the von Neumann model and
not spatially distributed like REAPR, and 3) confined to a
limited set of just regular expressions (as opposed to general
automata applications), we do not directly compare to them.

III. BENCHMARKS

We synthesize the ANMLZoo [5] automata benchmark
suite developed by Wadden et al. to determine the efficiency
of REAPR. ANMLZoo contains several applications falling
into three broad categories: regular expressions, widgets, and
mesh. The applications, along with their categories, are listed
below in Table I. Detailed descriptions of these benchmarks
can be found in the ANMLZoo paper [5].

Benchmark Name Category States
Snort RegEx 69,029

Dotstar RegEx 96,438
ClamAV RegEx 49,538
PowerEN RegEx 40,513

Brill Tagging RegEx 42,658
Protomata RegEx 42,009

Hamming Distance Mesh 11,346
Levenshtein Distance* Mesh 2,784

Entity Resolution Widget 95,136
Sequential Pattern Mining (SPM) Widget 100,500

Fermi Widget 40,738
Random Forest Widget 33,220

TABLE I: ANMLZoo is a benchmark suite for automata
engines, suitable for many platforms such as traditional
CPUs, GPUs, FPGAs, and the Micron Automata Processor.
*ANMLZoo’s Levenshtein benchmark is actually three 24x20 au-
tomata, each with 928 states.



ANMLZoo is normalized for one AP chip, so these
benchmarks synthesized for the FPGA will provide a direct
comparison of equivalent kernel performance between the
two platforms.

A. Maximally-Sized Levenshtein Automaton

In addition to comparing the relative performance of the
AP versus an FPGA, it is also useful to know exactly what
the upper bounds are for FPGA capacity. For this reason,
we resize the Levenshtein benchmark such that it completely
saturates the FPGA’s on-chip LUT resources. We have cho-
sen Levenshtein specifically because it is the smallest and
therefore worst-performing application in ANMLZoo, due
to the clash between its 2D-mesh topology and the AP’s
tree-based routing. The poor routing can be observed in the
fact that Levenshtein has the smallest number of states in
ANMLZoo, thus wasting the most computational potential.
We believe that Levenshtein represents an application that
not only is inefficient on the AP, but is very well-suited to
the FPGA and its 2D-mesh routing network.

IV. RTL GENERATION

This work focuses mainly on the hardware synthesis of
nondeterministic finite automata rather than DFA. The NFA’s
highly parallel operation of matching one single datum for
many states (“Multiple Instruction Single Data” in Flynn’s
taxonomy) maps very well to the abundant parallelism of-
fered by spatial architectures such as the FPGA and AP.
While DFAs can also be implemented spatially, the argument
is less compelling because 1) DFAs only need to perform a
single symbol match per cycle, and therefore are better suited
for von Neumann architectures and 2) DFAs often have a
huge area requirement.

Spatial architectures implement automata states as transi-
tion logic ANDed with a single register representing whether
the state is activated. This is the case for the AP as well as
prior work [3] [7]. In the case of REAPR and the AP, the
transition logic is actually merged with the state to transform
a traditional NFA into a homogeneous finite automaton [12].
In these homogeneous FAs, the combined state-transition
structure is referred to as a state-transition element (STE).
Each STE’s transition logic is one-hot encoded as a 1x256
memory column (the “character class”) and is ANDed with
the activation state register, the input to which is the reduc-
tion OR of enable signals coming from other states. With this
design, a single STE will only output “1” when its activation
state is driven high by other states and the current symbol
is accepted in its character class. Algorithm 1 describes this
process and Figure 1 shows a visual representation of it.

We propose two design methodologies to represent char-
acter classes in hardware using either the FPGA’s lookup
tables (LUTs) or BRAM.

A. LUT-Based Design

Each state must accept a range of characters corresponding
to outgoing transitions in a canonical finite automaton. LUTs
are well-suited for this task, due to their proximity to the state

Algorithm 1 NFA-RTL Translation Algorithm

1: procedure NFA2RTL(incoming symbol)
2: for each STE do
3: generate DFF dff
4: generate 1bx256 character class RAM cc
5: generate 1b signal activated
6: for each incoming iSTE do
7: activated |= iSTE.output
8: end for
9: generate 1b signal char matches

10: char matches = cc[incoming symbol]
11: generate 1b output signal output
12: output= char matches AND activated
13: end for
14: end procedure
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Fig. 1: Automata states can be easily mapped to registers
and look-up tables (“logic”).

registers within a CLB; a LUT-based flow will not need to
use as much long-distance wiring to connect to a far-away
BRAM.

B. BRAM-Based Design

The main disadvantage of using LUTs for storing the char-
acter class is the long compilation time; FPGA compilers ag-
gressively minimize logic for LUT designs, which drastically
increases compiler effort. Using BRAMs for transition logic
circumvents the expensive optimization step and therefore
significantly decreases compile time.

The AP’s approach to generating hardware NFAs is very
similar to the BRAM design, except that Micron stores the
256-bit columns into DRAM banks instead of FPGA BRAM.
This has the benefit of high state density due to the higher
density of DRAM compared to SRAM.

C. I/O

Prior works considered only kernel performance rather
than system performance. While this approach has the ben-
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Fig. 2: Execution flow of AXI and PCI-Express transactions for automata processing kernels.

efit of greatly reducing the implementation difficulty of a
research project, it does not provide a full analysis because
real systems are not I/O-agnostic. A main contribution of
REAPR is the inclusion of I/O circuitry over PCI-Express
and AXI for the Random Forest benchmark, making REAPR
the first work to offer a truly end-to-end automata accelerator
design flow for FPGAs.

We adopt a high level synthesis (HLS)-centric approach
by designing the I/O interface using HLS and modifying the
generated Verilog code to integrate our automata kernels.
Xilinx SDAccel [13] then generates AXI and PCI-Express
circuitry for our kernels. Testing automata circuits with real
data on real hardware allows us to obtain more realistic
benchmark results compared to simulations, as prior works
have done. The overall execution flow of REAPR with I/O
is shown in Figure 2.

To integrate our RTL kernels into HLS-generated Verilog,
we design the I/O kernel to have some very basic dummy
computation. A simplified code snippet is shown in Listing
1, which shows data being copied from the input buffer to
the output buffer after being added to 0xFA. In the Verilog,
we can search for this dummy addition, and substitute the
addition operation with our automata RTL kernel.

Listing 1: I/O kernel with dummy computation
void i o k e r n e l ( d i n ∗ i n d a t a , dou t ∗ o u t d a t a ) {

f o r ( i n t i =0 ; i<DATA SIZE ; i ++) {
o u t d a t a [ i ] = i n d a t a [ i ] + 0xFA ;

}
}

D. Reporting

A major challenge to implementing automata on FPGAs
is not in the kernel itself, but rather in the I/O. For every 8-
bit symbol processed by REAPR, thousands of reports may
fire, requiring per-cycle storage on the order of kilo-bits.
This massive amount of data transfer has a non-negligible
overhead on overall throughput.

To illustrate the detrimental effects of I/O on performance,
consider the following example. In the Random Forest appli-
cation, there are 1,661 reporting states corresponding to 10
feature classifications [2]. The host CPU post-processes this
report data, so all of it must be preserved. A 10 MB input
file will therefore generate 16.61 GB worth of output signals.
Assuming 250 MHz kernel clock rate and a 10 GBps PCI-
Express link with a single-stream blocking control flow, the
overall end-to-end throughput of the system can be expressed

as follows:

Throughput =
10MB

10MB
10GBps + 10MB

250MBps + 16.61GB
10GBps

Evaluating the above expression gives an overall through-
put of just 5.8 MBps, only about 20% of the expected
250 MBps. Efficient reporting is therefore a crucial part of
developing high performance automata processing kernels.
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Fig. 3: The pipelined voter module for Random Forest
compresses the output size from 1,661 to just 8 bits.

To demonstrate an example of efficient report processing,
we delegate the voting stage of the Random Forest algorithm
on-chip so that instead of exporting 1,661 bits of report in-
formation per cycle, we can just export the vote instead. The
Random Forest (“RF”) kernel in the ANMLZoo benchmark
suite is trained for the MNIST hand-writing database for
digits 0-9 [2], so only four bits are necessary to encode the
vote per cycle. However, because the minimum word width
of SDAccel is 8 bits (one byte), we set the vote output width
to be 8 bits instead. This enables a factor of 207 reduction
in necessary report storage compared to the original 1,661
bits.

Each of the report bits in the RF kernel corresponds to
one of ten possible feature classifications. The voter module,
shown in Figure 3, contains ten identical stages. Each voter
stage vi takes as input 10 classification vectors (c0 - c9),
the determined vote from the previous stage (vote), and
the number of votes corresponding to that classification
(max). Each stage i will calculate the Hamming Weight
w of classification vector ci and compare that to max. If
w > max, then the current stage passes i as vote and w as
max. All of the classification vectors ci are passed to the
next stage. Because the throughput of this voter module is
one vote per cycle, it has no negative impact on the overall
throughput of the Random Forest kernel.



V. EVALUATION

All FPGA metrics were obtained for the Xilinx Kintex
UltraScale 060 FPGA (Alpha Data ADM-PCIE-KU3 board)
with an X16 PCI-Express interface, 2,160 18 Kb BRAMs and
331k CLB LUTs. The FPGA’s host computer has a quad-core
Intel Core i7-4820k CPU running at 3.70 GHz and 32 GB
of 1866 MHz DDR3 RAM. CPU performance results were
obtained on a six-core Intel Core i7-5820k running at 3.30
GHz with 32 GB of 2133 MHz DDR4 RAM.

To obtain the synthesis and place & route results, we use
Xilinx Vivado’s Out of Context (OOC) synthesis and imple-
mentation feature. OOC allows us to synthesize RTL designs
for which the number of pins exceeds the maximum number
on our selected chip (1,156) in the absence of a general-
purpose report-offloading architecture. For future work, we
hope to implement such an architecture to obtain more
confident data regarding throughput, power consumption, and
resource utilization.

All CPU benchmark results are obtained by running a
modified version of VASim [14] that uses Intel’s HyperScan
tool as its automata processing back-end and an ANML
(instead of regular expression) parser as its front-end. We
choose HyperScan as a general indicator of a state-of-the-art
highly optimized CPU automata processing engine.

Because the AP and REAPR have similar run-time ex-
ecution models and are both PCI-Express boards, we can
safely disregard data transfer and control overheads to make
general capacity and throughput comparisons between the
two platforms. While in reality the I/O circuitry has a non-
negligible effect on both capacity and performance for both
platforms, we aim to draw high-level intuitions about the
architectures rather than the minutia of reporting.

A. ANMLZoo Benchmark Results

Our primary figure of merit to quantify capacity is the
CLB utilization for the FPGA chip. CLB usage is a function
mainly of two variables: state complexity and routing com-
plexity. Automata with very simple state character classes
will require very few CLBs to implement. Similarly, very
complexly routed applications (for instance, Levenshtein)
have so many nets that the FPGA’s dedicated routing blocks
are insufficient so the compiler instead uses LUTs for rout-
ing. The CLB utilization can be observed in Figure 4.

CLB utilization ranges from 2-70% for the LUT-based
design and 1.4-46% for the BRAM-based design. In most
cases, using BRAM results in a net reduction in CLB
utilization because the expensive state transition logic is
stored in dedicated BRAM instead of distributed LUTs.

Figure 4 also shows the results of compiling ANMLZoo
in the BRAM flavor. Theoretically, the total state capacity
for BRAM automata designs is the number of states per 18
Kb BRAM cell multiplied by the number of cells. Ideally,
we would be able to map transition logic to a 256-row by w-
column block, where w = 18Kb

256b = 72. The closest BRAM
configuration we can use is 512 × 36, which means that
we can only fit 36 256-bit column vectors into one BRAM
cell instead of 72. Multiplying the number of states per

cell (36) by the number of cells (2,160) gives a per-chip
BRAM-based state capacity of 77,760. Most applications’
BRAM utilization is almost exactly their number of states
divided by the total on-chip BRAM state capacity except for
Dotstar, ER, and SPM. In these cases, the applications have
more than the 77k allowable states for the BRAM design, so
REAPR starts implementing states as LUTs after the limit is
surpassed.

Figure 5 shows the state complexity in ANMLZoo ap-
plications, which ranges from 1-3 CLBs per state. While
the complexity for logic-based automata varies dramatically
based on the complexity of transition logic and enable signals
(node in-degree), for BRAM it remains relatively consistent
at roughly 1 CLB per state. Notable exceptions to this trend
are Hamming, Levenshtein, and Entity Resolution. Hamming
and Levenshtein are mesh-based automata with high routing
congestion, and ER is so large that the on-chip BRAM
resources are exhausted and LUTs are used to implement
the remaining states.

We use Vivado’s estimated maximum frequency (Fmax)
to approximate throughput for REAPR, the results of which
are displayed in Figure 6. Because the hardware NFA con-
sumes one 8-bit symbol per cycle, the peak computational
throughput will mirror the clock frequency. For ANMLZoo,
REAPR is able to achieve between 222 MHz (SPM) and 686
MHz (Hamming Distance) corresponding to 222 MBps and
686 MBps throughput.

One interesting result of the estimated power analysis
reported by Vivado (see Figure 7) is the observation that the
BRAM implementation consumes much more power (1.6W
- 28W) than the LUT designs (0.8W - 3.07W). The reason
for this discrepancy is twofold: 1) BRAMs in general are
much larger circuits than LUTs, and powering them at high
frequencies is actually quite expensive; 2) routing to and
from BRAM cells requires using many of the FPGA’s larger
long-distance wires which tend to dissipate more energy. In
future work, we hope to program all of these BRAM-based
circuits onto actual hardware and measure TDP to verify the
power consumption.

Figure 8 shows the power efficiency of ANMLZoo appli-
cations, which we define as the ratio between throughput and
power consumption. In all cases, the LUT-based designs are
significantly more power efficient than the BRAM designs
due to the much lower power consumption.

Using Fmax (without any reporting or I/O circuitry) as
the computational throughput, we can determine the speedup
(seen in Figure 9) against a high-end CPU running Intel
HyperScan. In the worst case, REAPR is on par with
HyperScan and in the best case achieves over a 2,000x
speedup for the SPM application for both the BRAM- and
LUT-based designs.

B. Random Forest with I/O Circuitry

Using the pipelined voter module, we are able to achieve
an average throughput of 240 MBps for the Random Forest
kernel, including data transfer and control overheads. Com-
pared to HyperScan’s performance of 1.31 MBps for this
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application, we achieve a 183x speedup on real hardware.

C. Maximally-Sized Levenshtein Automaton

To demonstrate the true power of FPGAs for automata
processing, we have developed a new “standard candle” 1

for the Levenshtein benchmark using the approach described
by Tracy et al. [15]. By generating and synthesizing larger
and larger edit distance automata, we have discovered that
for a distance of 20 (the same as the ANMLZoo Leven-
shtein), the longest Levenshtein kernel we can fit on our
Kintex Ultrascale FPGA has a length of 1,550, requiring
63,570 states. Compared to the 2,784 states in the 24x20
ANMLZoo Levenshtein benchmark, the FPGA achieves a
22.8x improvement in per-chip capacity.

VI. DISCUSSION

A. The Importance of I/O

Our implementation of Random Forest, including the
pipelined voter mechanism, achieved 240 MBps overall
throughput. This data point proves that I/O handling can have
a substantial impact on overall system performance. By dele-
gating the voting portion of the Random Forest algorithm on-
chip, REAPR enables FPGA developers to achieve a 40.7x
speedup over the estimated worst-case performance of 5.8
MBps. Moreover, the compacted output data stream allows
the kernel to operate at 96% of its estimated 250 MBps
throughput, indicating that I/O overheads are minimized with
our approach.

Assuming that similar high performance reporting can be
implemented for other benchmarks (i.e. these other protocols
are also roughly 73% efficient), REAPR is still in the worst
case roughly on-par with a best-effort CPU approach, and
in the best case orders of magnitude faster. This verifies
that FPGAs are an excellent platform for automata, and that
future work should focus on efficient reporting protocols.

B. The Importance of Application and Platform Topology

In the case of the Hamming and Levenshtein benchmarks,
both of which have 2D mesh topologies, the AP compiler
was unable to efficiently place and route due to a clash
with the AP’s tree-like hierarchical routing network. Such
a limitation does not exist on the FPGA, which has a
2D mesh routing topology, exemplified in the FPGA’s 28x
capacity improvement for Levenshtein compared to the AP.
Additionally, Hamming and Levenshtein were among the two
best-performing benchmarks in terms of power efficiency.
Therefore, applications using 2D mesh-like automata are
better suited for the closer-matching 2D routing network
available on an FPGA.

C. Logic vs. BRAM

In general, using BRAM to hold state transition logic
enables significant savings in terms of CLB utilization; in
the BRAM design methodology, CLBs are only used for
combining enable signals and in some cases routing rather

1A standard candle in the context of spatial automata processing is an
automaton that completely saturates on-chip resources.

than those two tasks as well as transition logic. In most
ANMLZoo benchmarks except for the synthetic benchmark
PowerEN, the overall CLB utilization decreases by an av-
erage of 16.33%. Similarly, the average state complexity is
greatly improved (except for PowerEN), in some cases by
as much as 2.7x. We suspect PowerEN is an outlier due to
its high BRAM utilization and high routing complexity. The
compiler is forced to route complex enable logic to far-away
BRAMs, and doing so exhausts on-chip routing resources,
so Vivado defaults to using LUTs as “pass-through” LUTs
to successfully place and route the design.

Improved CLB utilization comes primarily at the cost of
both maximum clock rate and power consumption. Routing
to far-off block RAM cells requires using expensive long-
distance wiring in the FPGA fabric, which causes clock
speed to be degraded and power consumption to increase
significantly. The effect can be observed in Figures 6 and 7.

If an engineer wants to fit as many states as possible into
an FPGA, it would be ideal to use a combined LUT and
BRAM approach. For applications where state capacity is a
limiting factor, an engineer can pass arguments to REAPR to
completely saturate BRAM first, and then start using LUTs
to implement states after that. This feature in REAPR has
already been employed to synthesize ANMLZoo benchmarks
with more than 77k states when targeting BRAM. For future
work we anticipate maximally sizing other benchmarks using
both BRAM and LUTs.

D. FPGA Advantages Over the Micron Automata Processor

One FPGA chip offers significantly greater per-chip ca-
pacity compared to the first generation AP. Whereas one AP
chip is maximally utilized for all ANMLZoo benchmarks,
we have shown that FPGAs in the worst case are only filled
to less than 70% of logic and 99.7% of BRAM, and in
the best case only 2% of logic and 3.24% of BRAM are
utilized. Simultaneously, FPGAs run at higher clock speeds
(222 MHz - 686 MHz) for all ANMLZoo applications.
Theoretically, the speedup of a high-end FPGA chip versus
the AP ranges from 1.7x to 5.2x, disregarding the effects of
I/O and reporting.

E. FPGA Disadvantages Compared to the Micron Automata
Processor

Despite that FPGAs excel in per-chip capacity, their per-
board capacity lags far behind the AP. Whereas an FPGA
board such as the Alpha Data KU3 typically contains just
one chip, the AP board contains 32. In an exceedingly
large application, an automata developer would need multiple
FPGA boards whereas the AP compiler natively supports
partitioning automata across multiple chips [9]. Assuming
that the per-board cost is relatively similar for an AP and
a high-end FPGA, then the AP has a significant capacity-
per-dollar advantage over FPGAs. Furthermore, the AP can
process multiple streams simultaneously on its many chips.
In the best case, each chip may process its own stream,
resulting in an aggregate throughput of 4.2 GBps. For the
same form factor, an AP board is capable of achieving



roughly 6x the performance of one FPGA board. This is
especially important because datacenters typically optimize
their hardware purchase decisions based on total cost of
ownership (TCO), and the AP’s significant advantage in
multi-chip capacity and throughput makes it an excellent
platform if the datacenter wishes to specialize some nodes
for automata processing.

Another important metric for datacenter-scale deployment
is productivity. Compiling the ANMLZoo applications re-
quires on average about 10 hours for the LUT-based designs
and 5 hours for the BRAM-based designs. Static applica-
tions easily tolerate this long implementation latency, but
latency-sensitive domains like network security and machine
learning can not. In the example of network security, a
10-hour downtime when fixing a zero-day vulnerability is
completely unacceptable. Meanwhile, compiling these AN-
MLZoo benchmarks with the AP tools takes only minutes,
orders of magnitude faster than the FPGA compilation. This
can be attributed to the fact that the AP is specialized for
automata processing, so there are fewer degrees of freedom
for the compiler to consider.

F. Normalizing for Process Node

The AP is designed in 50 nm DRAM while our Kintex
Ultrascale FPGA is based on a 20 nm SRAM process,
roughly 2.5 ITRS generations ahead. To compare against
the AP fairly, we can project expected capacity for a next-
generation AP manufactured in a similar process, albeit for
DRAM. With 2x transistor density increases per generation,
the same chip area has 5.7x the capacity of the 50 nm AP.
Therefore, an AP made in a modern process theoretically
could pack 285k states in one chip, or roughly 9.1 million
per board.

Per-chip capacity is additionally affected by the overall
chip size. Judging by the package sizes, an FPGA chip is
much larger than an AP chip, and therefore is able to fit more
states simply due to its larger area. State capacity per unit
area for both platforms would have been a very informative
metric, but unfortunately the die size of our FPGA is not
available online, so we are unable to make this comparison.

VII. CONCLUSION

In this paper we presented REAPR, a tool that gener-
ates RTL and I/O circuitry for automata processing. Us-
ing REAPR, we showed that the spatial representation of
nondeterministic finite automata intuitively maps to spatial
reconfigurable hardware, and that these circuits offer ex-
tremely high performance on an FPGA compared to a best-
effort CPU automata processing engine (up to 2,188x faster).
We compared REAPR’s performance to a similar spatial
architecture, the Micron Automata Processor (AP), in terms
of capacity and throughput, and found that generally the
FPGA outperforms the AP in both of those areas on a per-
chip basis. However, since there are many chips per AP
board, the Micron product outperforms the FPGA on a per-
board basis.

We analyzed two different methods of generating automata
RTL: LUT-based and BRAM-based, and found that LUT
representations are more compact and lower power, and that
BRAM designs are faster to compile. We determined that for
Levenshtein distance, the FPGA is capable of achieving over
28x higher capacity than the AP, and that an application-
specific reporting protocol for Random Forest on FPGA
resulted in a 183x speedup over the CPU. In summary,
we have extended prior work about regular expressions on
FPGAs and extended it for a more diverse set of finite
automata to show how FPGAs are efficient for automata
applications other than regular expressions.
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