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Abstract

This paper proposes DBP, an automatic technique that

transparently parallelizes a sequential binary executable

while it is running. A prototype implementation in sim-

ulation was able to increase sequential execution speeds

by up to 1.96x, averaged over three benchmarks suites.

1 Introduction

Fundamental issues in microprocessor technologies have

led designers to increase the number of cores on a chip

instead of increasing its single-threaded performance.

Multi-core designs with 4 to 8 cores are ubiquitous, and

trends suggest that core counts will continue to grow

for the foreseeable future [24, 27]. Unfortunately, most

existing software is designed for single-core processors,

and is therefore unable to fully exploit the increased pro-

cessing power offered by many-core processors. Thus,

emerging microprocessor architectures are leaving be-

hind a large and important base of existing software that

represents years and sometimes decades of investment.

Existing parallelization technologies are not always

practical for existing software. Many existing techniques

require source code to be rewritten using parallel lan-

guages [14, 25] or libraries [26, 68], but this is often

impractical due to cost: efforts to analyze, fix, and test

existing software due to the Y2K bug alone are esti-

mated to have cost about $20 billion in the 1990’s [60],

and rewriting code to find opportunities for parallelism

would be a much larger task. Alternatively, automatic

parallelization techniques do not require code to be

rewritten, but they typically do require access to the

source code for analysis. In many cases, all or some

of the source code and development tool chain has been

lost or, in the case of third-party software, was never

available. Furthermore, software systems often involve

componentswritten in different programming languages,

which makes cross-module parallelization difficult, if at

all possible. Some parallelization techniques do not re-

quire source code and analyze the binary executable di-

rectly [19, 36, 73], but even these techniques are typically

static and so cannot parallelize across dynamically linked

executables and libraries, which are not known until run

time and can change or be upgraded.

We are currently exploring a novel technique called

dynamic binary parallelization (DBP) that can automat-

ically parallelize software without access to the source

code. DBP is based on the insight that many programs

tend to frequently repeat long sequences of instructions

called hot traces [47, 53]. DBP monitors a program at

run time and dynamically identifies these hot traces, par-

allelizes them, and caches them for later use so that the

program can execute in parallel every time a hot trace re-

peats. The main advantage of DBP is that it can transpar-

ently parallelize any sequential binary instruction stream;

if the software can execute, then DBP can parallelize it.

Thus, DBP can operate on any program, even when ex-

isting techniques have difficulty. For example, DBP can

parallelize both legacy and third-party software when the

source code is not available; it can parallelize across dif-

ferent program components that were originally written

in different languages; it can also parallelize across dy-

namically linked executables and libraries. In this paper,

we describe a prototype implementation in simulation

and present preliminary evaluation results that demon-

strate that the approach is promising.

2 Alternative Approaches

Several other approaches can transparently parallelize

sequential binary executables, but each has important

limitations. One natural approach is a distributed super-

scalar design. For example, core fusion [31] and core

federation [65] use non-centralized hardware to combine

simple cores to provide a wider superscalar width. How-

ever, scalability is limited by branch prediction, memory

addresses, and instruction window size. In comparison,



the trace-based approach we are exploring has two ad-

vantages. First, holistically predicting a trace is easier

than predictingmultiple branches separately [32, 62], en-

larging the effective instruction window. Second, a trace

can be further optimized off-line to avoid pipeline stalls

by rearranging the order of its instructions [28].

Another approach is to build a CFG by directly an-

alyzing the binary [19, 29, 36, 70, 73]. This approach

can exploit more coarse-grained parallelism, but to do so

must take every possible execution path into considera-

tion, also known as the path explosion problem. This can

introduce many spurious data dependencies that reduce

parallelism but do not appear in the execution path that

is actually taken. In comparison, a trace-based approach

can parallelize more aggressively because it must only

consider a single execution path for each trace.

Previous research has used traces to produce new tech-

niques for extracting more parallelism, including trace

processing [59], dynamic multi-threading [3], and spec-

ulative multi-threading [45, 46]. More recently, simi-

lar approaches have been adopted by several Java vir-

tual machines to extract parallelism from DOALL loops

and recursive functions [9, 10, 11]. However, these

approaches all speculate multiple consecutive tasks or

traces, and run them in parallel. In our work, instead

of predicting multiple consecutive traces, we use and im-

prove techniques to find very long hot traces [53] and

then parallelize within the trace instead of across traces.

Not only does this simplify and improve prediction, it

also enables off-line optimization of a much longer se-

quence of instructions.

3 Approach Overview

A conceptual overview of DBP is illustrated in Figure 1.

Core 1 is equipped with trace management functional-

ity and starts to execute the unmodified, sequential bi-

nary. Simultaneously, the trace creator monitors the in-

struction stream and identifies traces from frequently-

repeating instruction sequences. The traces are then pro-

cessed by the trace parallelizer and stored in the trace

cache. This parallelization process is offloaded to spare

cores or special accelerators in order not to affect the

sequential execution. The optimization and paralleliza-

tion algorithms ignore control dependencies introduced

by side exits in order to fully exploit the parallelism in a

trace. This allows for very aggressive parallelization, but

also entails that traces must be run speculatively becase

a parallelized trace can produce incorrect program state

if a side exit is taken.

Therefore, at every point during execution, the trace

predictor checks for candidate traces: parallelized traces

in the trace cache that (i) begin with the instruction that

is about to be executed by the sequential binary, and
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Figure 1: The DBP system uses one core for trace man-

agement plus sequential execution, and the remaining

cores for speculative execution of parallelized candidate

traces.

(ii) have a high probability to run to completion. If any

exist, it suspends the sequential execution and launches

them in the remaining available cores (Cores 2-7). The

speculated traces operate on copies of the actual program

state. If a trace reaches a side exit, it aborts and its copy

of program state is discarded. If any traces run to com-

pletion, one of them is selected and its copy of program

state is committed to the suspended sequential execution,

which “skips forward” in time to the end of the selected

trace. This copy or discard [67] mechanism eliminates

the need for roll-back on failed speculation, which can

be expensive for buffering the outputs of all speculative

instructions. The figure illustrates three example scenar-

ios. First, the right trace aborts and the left trace suc-

ceeds, causing the sequential execution to skip forward.

Second, both traces abort and so the sequential binary

continues running from the last dispatch point. Third,

both traces succeed and the copy of program state from

the left trace is chosen to commit.

DBP is a sub-class of dynamic binary translation

(DBT), which is a general approach to modify a bi-

nary during execution. Previously, DBT systems have

demonstrated their benefits for compatibility [20, 22],

profiling [43, 49, 72], security [30, 34], and perfor-

mance [7, 12, 23, 48, 74]. However, unlikemost DBT ap-

plications, DBP must create very long traces in order to

be effective; short traces would not contain enough par-

allelism to outweigh the overhead of dispatching parallel

tasks to different cores. Longer traces are more likely

to have both fine-grained and coarse-grained parallelism.

Another challenge for DBP is that speculative trace ex-

ecution will certainly use more hardware resources and

hencemore energy in the processor than conventional ex-
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ecution. However, even if DBP does require much more

energy, single-threaded performance remains important

for a wide variety of real-time and interactive applica-

tions. Furthermore, our results show that, even with ex-

tremely simple prediction techniques, the overall number

of instructions executed by DBP is only 2.18x that of se-

quential execution.

4 Proof-of-Concept Prototype

To prove the feasibility of DBP, we created a proof-

of-concept prototype by extending the SESC simulation

framework [57]. The assumed architecture comprises a

number of clusters and each cluster comprises 8 in-order

cores. Clusters are connected via a mesh-based multi-

hop network [66] and cores within each cluster are con-

nected via a crossbar-based synchronization array [56].

Some of the cores are equipped with DBP functionality,

such as Core 1 illustrated in Figure 1.

Trace creation occurs at the retire stage of each in-

struction, and has no additional overhead since it is not

on the critical path of pipeline execution [52, 59]. We

rely on internal code structures (e.g., loops, functions) to

restrict the starting and ending points of each primitive

trace, which may contain (i) one complete subroutine in-

vocation, (ii) one or several iterations of the same loop, or

(iii) one basic block of 16 or more instructions. Several

short primitive traces are also chained together to form a

compound trace until the minimum trace length of 64 in-

structions is reached. We start to exploit code structures

in the outermost scope of the binary to maximize trace

length. However, for each code structure, if the number

of created traces exceeds that can be predicted simulta-

neously, it is abandoned and the next level of scope is en-

tered. To give an example, we assume a simple program

comprising a nested loop with the outer loop L1 and two

separate inner loops L2 and L3. Initlally, traces can only

start with the head of L1. When too many traces are cre-

ated, the head of L1 is no longer allowed to start traces

and the heads of L2 and L3 are used instead, since they

contain a smaller number of potential execution paths.

The hierarchy of code structures is built by DBP when

the program is initially loaded and filled on demand to

an on-chip table with 16K entries.

The trace parallelization process comprises four steps.

First, we build the SSA form to eliminate anti and output

dependencies. Second, we aggressively apply dynamic

binary optimization (DBO), including constant propaga-

tion, value propagation, common subexpression elimi-

nation, redundancy elimination, and dead code elimina-

tion. These optimizations either eliminate unnecessary

data dependencies or increase data dependency lengths,

providing more parallelization opportunities. Third, we

use the modified critical-path algorithm [71] to schedule

instructions across many cores and insert necessary syn-

chronizations to maintain the correct register and mem-

ory access order. Two memory references are only con-

sidered non-aliased if they access either different mem-

ory regions or their effective addresses have the same

base register and different offsets. Finally, we perform

graph-based register allocation [13] to each parallel task

separately. All parallelized traces are stored in the main

memory and only the metadata is stored on chip for quick

accesses. In this implementation, we mainly extract ILP

from the entire trace, which is essential to the assumed

architecture in which every single core is in-order. In

future work, we will explore how more coarse-grained

parallelism can be extracted from traces.

Trace prediction occurs simultaneously with normal

instruction fetch, and has no additional overhead [52,

59]. Inspired by multi-path execution [2, 6, 35], we sim-

ply launch all enabled traces that start with the next exe-

cuted instruction, and use the multi-hop network to trans-

fer live-in and live-out registers in bulk. If multiple traces

run to completion, program state from the longest one is

chosen to commit. Also, if a particular trace is mispre-

dicted too many times in a row, it is disabled temporarily

until being identified again. The L1 data cache is used

to hold the speculative program state and the trace exe-

cution is considered unsuccessful if a cache line replace-

ment is encountered.

5 Evaluation

We evaluated our prototype using the SPEC2000 (both

integer and floating point) and MediaBench benchmark

suites. In our simulation, we made the following simpli-

fied architectural assumptions: 1) each instruction takes

exactly 1 clock cycle to execute; 2) the synchronization

array takes 1 clock cycle to access and has 8 request ports

shared by all cores in the cluster; 3) the multi-hop net-

work has 2-clock-cycles-per-hop latencies and can route

up to 32 bytes at a time; 4) the overhead to actually par-

allelize each trace is not modeled since it can eventually

be amortized if the program is executed long enough.

We calculated the speedup of DBP over sequential ex-

ecution using instruction count, and used arithmetic av-

erages through the entire evaluation.

Figure 2 shows the speedup of DBP over sequential

execution of three different configurations: (i) DBO with

no parallelization to isolate its own benefits, (ii) DBO

and 2-way parallelization using 64 cores (8 clusters), and

(iii) DBO with 8-way parallelization using 256 cores (32

clusters). Thus, in all configurations, at most 32 candi-

date traces can be speculated simultaneously.

Although the measurements are based on several sim-

plifying assumptions, the results are promising for DBP.

The speedup of floating point benchmarks using 2-way
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Figure 2: This figure shows the speedups of DBP over sequential execution by applying optimization only, 2-way

parallelization on 64 cores, and 8-way parallelization on 256 cores, respectively.

parallelization can even exceed 2x for 7 out of 10 ap-

plications, because the optimization and parallelization

gains are multiplicative. A speedup of at least 1.27x can

be expected for 5 out of 7 integer benchmarks. This more

modest speedup is not surprising, since integer programs

normally have more complicated control flows that are

hard to predict and pointer-based memory accesses that

are hard to disambiguate. When using 8-way paralleliza-

tion, DBP only achieves a propotional speed increase in

a handful of benchmarks, such as epic-enc, mgird and

applu. This is mainly because spurious memory depen-

dencies could not be effectively detected, and indicates

an area for future exploration. The average speedup for

DBO alone is 1.14x.

One clear takeaway from the figure is that DBP per-

forms best on floating point benchmarks, followed by

media benchmarks, and could only achieve moderate

speedup on integer benchmarks. Table 1 helps explain

this difference with a statistical analysis of the trace cre-

ation and prediction algorithms. Column 3 shows the

percentage of instructions executed by the unmodified

program that are contained in correctly predicted traces.

This number is typically over 90% for floating point and

media benchmarks, which indicates that almost all dy-

namic instructions can be executed in a parallelized trace.

However, the average percentage for integer benchmarks

is only 61.35%. Column 4 shows the number of traces

that are created during the entire program execution,

which affects the cache size required. Although DBP

creates many traces for a couple of benchmarks (e.g.,

crafty, parser), it also deletes most of them afterward.

Thus, only a small number of traces actually reside in

the trace cache when a program enters the steady state

of execution. Also, the small gap between created and

committed traces indicates that the current algorithm is

sophisticated enough to only generate useful traces. Col-

umn 5 shows that the fraction of dispatches for which all

traces aborted is typically less than 5-8%. This indicates

fairly high speculation accuracy, even with a very simple

trace prediction algorithm. Furthermore, Column 6 illus-

trates that only 7 or fewer traces are actually dispatched

on average, despite the possibility to execute up to 32

traces on our hardware models.

In practice, far fewer than 7 candidate traces actually

run at any given time, because failed speculations end

more quickly on average while successful speculations

run to completion. Our results show that the overall num-

ber of instructions executed by DBP is only 2.18x that of

sequential execution, averaged over all benchmarks, and

in the worst case, it can be as high as 6.82x (adpcm-

dec). Thus, speculative trace execution increases core

utilization by a little more than the average performance

improvement of 1.96x, indicating a reasonable energy

overhead. On the other hand, reducing the number of

possible traces below 32 does affect performance, which

indicates that sometimes dispatch of 32 traces is neces-

sary. This opens an opportunity to combine DBP with

multiprogramming to increase core utilization by multi-

plexing cores across multiple applications, dynamically

allocating as many cores as an application can utilize.

Column 7 indicates that the average trace length varies

drastically for each benchmark, ranging from 100s of

instructions for integer benchmarks to 1000s of instruc-

tions for floating point benchmarks. The trace length is

determined by the repeatability of paths in each program

and, not surprisingly, is highly correlated to the speedup

for each class of benchmarks shown in Figure 2. In fu-

ture work, we will use insights from these statistics and
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Benchmark Exec. on Traces % Trace # Misp. Rate Ave. Candidate # Ave. Trace Length

gzip 86.97 % 1,030 - 909 - 541 1.95 % 2.56 108.63
vpr 80.90 % 1,176 - 1,085 - 627 3.92 % 4.40 125.33
mcf 31.28 % 531 - 468 - 364 11.77 % 5.88 93.70

INT crafty 61.48 % 13,008 - 12,569 - 11,122 2.53 % 2.93 78.58
parser 32.99 % 7,228 - 6,844 - 6,100 4.30 % 3.12 101.17
eon 74.53 % 575 - 544 - 247 3.03 % 3.51 122.10
bzip2 61.31 % 958 - 798 - 476 7.61 % 3.84 112.86

adpcm-dec 95.69 % 16 - 13 - 1 1.53 % 6.43 73.40
adpcm-enc 97.10 % 28 - 26 - 5 0.42 % 5.82 83.06
epic-dec 89.08 % 135 - 102 - 38 7.63 % 2.42 136.15
epic-enc 96.52 % 131 - 117 - 42 8.11 % 2.75 862.21
g721-dec 86.64 % 160 - 147 - 27 5.37 % 6.85 103.30

Media g721-enc 70.55 % 197 - 185 - 108 5.27 % 6.68 105.52
gsm-dec 97.93 % 80 - 74 - 7 8.06 % 4.23 1,098.80
gsm-enc 97.23 % 134 - 131 - 6 2.54 % 3.21 756.13
jpeg-dec 87.97 % 525 - 453 - 340 4.21 % 3.73 240.80
jpeg-enc 59.23 % 762 - 708 - 530 2.55 % 2.78 138.48
mpeg2-dec 91.31 % 608 - 567 - 326 2.17 % 2.70 175.21
mpeg2-enc 68.81 % 678 - 540 - 319 10.56 % 4.61 394.59

wupwise 99.12 % 82 - 78 - 6 2.24 % 2.40 2,179.74
swim 96.74 % 68 - 52 - 16 4.38 % 2.52 836.16
mgrid 99.85 % 207 - 194 - 10 0.19 % 1.13 7,890.64
applu 97.58 % 100 - 85 - 7 0.96 % 1.84 4,583.59

FP mesa 98.06 % 113 - 105 - 12 0.52 % 1.92 567.40
art 99.07 % 67 - 64 - 3 0.76 % 1.96 3,986.86

equake 95.55 % 231 - 221 - 94 2.60 % 4.25 638.74
ammp 79.64 % 782 - 652 - 394 1.71 % 2.76 182.15
sixtrack 89.88 % 1,809 - 1,656 - 897 0.70 % 1.85 119.37
apsi 98.62 % 470 - 442 - 155 1.23 % 1.62 3,362.69

Table 1: This table shows 1) the percentage of instructions executed by the unmodified program that are covered by

correctly predicted traces, 2) the total number of created traces, the number of traces that commit at least once, and the

number of deleted traces, 3) the trace misprediction rate, 4) the average number of candidate traces for each prediction,

and 5) the average length of the trace that commits in each correct prediction.

analyses to drive the development of new techniques for

each individual class of programs.

6 Related Work

Traces have long been used to improve program per-

formance. For example, a trace cache can increase

the instruction fetch width [58]; a trace processor [59]

speeds up control prediction by speculating on traces in-

stead of branches; dynamic optimization [7, 12, 23, 48,

74] exploits optimization opportunities on traces which

were not available on CFGs; clustered architectures rely

on statically generated traces to schedule instructions

among different functional units [16, 17, 42].

Hyperblocks are different from traces in that they con-

tain multiple execution paths instead of a single one [44].

Instructions from different execution paths are guarded

by hardware-supported predicates to maintain correct

control flows. Recently, hyperblocks have been used by

the TRIPS processor [62] to exploit ILP.

Static parallelization approaches analyze the source

code to extract all parallelism at compile time [1, 4, 5,

37, 38, 50, 51, 55, 61, 75]. Lacking run-time informa-

tion, these techniques must perform a conservative de-

pendency analysis that includes dependencies from all

possible paths through execution, and cannot adapt to

other dynamics during execution.

Ever since the multiscalar architecture [63], thread-

level speculation techniques have been used to release

spurious dependency constraints caused by conservative

static analysis [8, 21, 33, 40, 67, 69]. Generally, a high

speculation accuracy requires heavy programmer anno-

tation or comprehensive profiling, both of which can be

difficult in practice.

Most dynamic parallelization approaches insert con-

trol logic into the source code statically, and use it to se-

lect the best strategy at run time [39, 41]. Binary transla-

tion has been considered to support legacy software [64],

but due to the complexity of decompilation, such tech-

niques have only been used to reconstruct simple pro-

gram structures such as DOALL loops [73].

Several papers have argued for a JVM-like layer to dy-

namically optimize and parallelize programs [15, 18, 54].

However, such techniques assume a dominant program-

ming language just as Java.

7 Conclusion

This paper proposes DBP and uses a prototype imple-

mentation in simulation to prove its feasibility. Exper-

imental results indicated DBP as a promising approach

for transparent parallelization, and also suggest areas of

future work, such as creating longer traces for integer

benchmarks and improving trace prediction algorithms.
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