
Brill Tagging on the Micron Automata Processor

Keira Zhou; Jeffrey J. Fox; Ke Wang; Donald E. Brown, Fellow IEEE; Kevin Skadron, Fellow IEEE
University of Virginia

Charlottesville, VA 22904 USA
{qz4aq, jjf5x, kewang, brown, skadron}@virginia.edu

Abstract – Semantic analysis often uses a pipeline of Natural
Language Processing (NLP) tools such as part-of-speech
(POS) tagging. Brill tagging is a classic rule-based
algorithm for POS tagging within NLP. However,
implementation of the tagger is inherently slow on
conventional Von Neumann architectures. In this paper, we
accelerate the second stage of Brill tagging on the Micron
Automata Processor, a new computing architecture that can
perform massive pattern matching in parallel. The designed
structure is tested with a subset of the Brown Corpus using
218 contextual rules. The results show a 38X speed-up for
the second stage tagger implemented on a single AP chip,
compared to a single thread implementation on CPU. This
speed-up is linear with the number of rules, thus making
large and/or complex rule sets computationally practical.
This paper introduces the use of this new accelerator for
computational linguistic tasks, particularly those that
involve rule-based or pattern-matching approaches.

Keywords-Part-of-speech tagging; Brill tagging;
Automata Processor; Natural Language Processing

I. INTRODUCTION

Semantic analysis often uses a pipeline of Natural
Language Processing (NLP) tools such as part-of-speech
(POS) tagging [14]. POS tagging makes assignments of a
tag to input tokens, such as, nouns, verbs, adjectives, etc
[1]. Accelerating these tools may be a promising
approach for increasing the speed and potentially the
sophistication of semantic analysis. We evaluate
acceleration of POS tagging as a case study.

Brill Tagging is a classic rule-based POS tagging
algorithm [9]. The algorithm is one of the most widely
used rule-based approaches [6]. However, the
computational time is slow for both training and tagging.
Specifically, it may require RKn elementary steps to tag
an input of n words with R contextual rules with at most
K tokens of context [8].

The Micron Automata Processor (AP) [10] is a novel
non-Von Neumann architecture that can be programmed
to run thousands of Non-deterministic Finite Automata
(NFA), i.e. regular-expression rules, in parallel to
identify patterns in a data stream. The work described
here shows that the AP’s parallelism can significantly

reduce the tagging time of Brill Tagging compared to
implementation on a single-core CPU.

II. BACKGROUND AND RELATED WORK

A. POS tagging
Manually tagged corpora provide training data for

automated taggers. POS tagging algorithms can be
categorized into two groups: rule-based and stochastic
(statistical) approaches. State-of-art stochastic based
approaches include conditional random field models [7]
and maximum entropy Markov models [12]. Brill tagging
is one of the first and most widely used rule-based
approaches [6]. When performing a POS tagging task,
choosing a standard tagset is important. Two commonly
used tagsets for POS tagging are the Brown (87 tags) [4]
and Penn Treebank (36 tags) [5] tagsets.

The Brill algorithm proceeds in training and tagging
steps. During the training, it identifies the most frequent
tag for all recorded tokens as well as contextual rules for
updating the tags. After training, a two-stage process tags
new untagged corpora. The first stage assigns the most
frequent tag to the new corpora. In the second stage, the
initial tags are updated based on the contextual rules. Our
work focuses on reducing the computational time of the
second stage of the tagging by exploiting the fact that
rules can be easily implemented in parallel as regular
expressions on the AP.

III. AUTOMATA PROCESSOR

A physical embodiment of the AP is not yet available;
however, we do have access to Micron’s simulator (SDK)
of the AP. This allows us to design automata and
simulate the on-chip processes and performance.

There are three major components on the AP: State-
Transition-Element (STE), Counter Element, and
Boolean Elements, among which STE is the core
component. The Counter and Boolean elements are not
needed for Brill tagging. One STE can match an 8-bit
user-specified symbol in a clock cycle and STEs can
activate each other via a reconfigurable routing network.
Each STE has three states: inactive, activated and
matched. Only activated STEs will be able to inspect the
next input symbol to perform a match against symbols

This work was supported by the Army Research Laboratory under
grant number W911NF-10-2-0051; C-FAR, one of six centers of
STARnet, a Semiconductor Research Corporation program sponsored by
MARCO and DARPA; and a grant from Micron Technology.

skadron
Typewritten Text
This is the authors' version of the final manuscript. The authoritative
version can be found in the Proceedings of the 2015 IEEE International
Conference on Semantic Computing, Feb. 2015.

skadron
Typewritten Text

accepted by that STE. Once the symbol on an STE is
matched, the STEs connected to it will be activated to
accept the next input and match that against their
programmed symbol matches. Table I provides
illustrations of basic STE functions.

One AP chip contains a total of 49,152 STEs, among
which 6144 can report. There are expected to be 32 chips
on a PCI Express AP board, which thus has 1,572,864
STEs that can all operate in parallel [3]. The CPU
initializes the AP chips, sends data, and fetches results
using PCIe transactions. Given the AP chips' 7.5ns clock
period, one chip can process data at 128 M symbols/sec;
higher processing rates are possible by sharing the AP
resources among multiple streams Our design easily fits
inside a single AP chip, so multiple input streams or
much larger rulesets could easily be supported.

IV. DESIGN ON THE AUTOMATA PROCESSOR

A. Brill Tagging initial steps
Brill tagging is implemented in C and source code is

openly available [2]. This implementation uses the Penn
Treebank tagset and contains 218 contextual rules. We
use this implementation to run the first stage tagging and
write the intermediate result into a separate file that
serves as the input for the second stage tagging.

B. Design on the AP
The input data for the AP consists of a stream of the

words and initial tags. The rules are implemented on the
AP as described below. All of the rules operate in
parallel, inspecting the input stream for a potential match.
Among the 218 rules, there are 19 different structures.
The simplest rule structure matches a sequence of two
tagged words, while the most complex structures look for
patterns in sequences of up to seven tagged words. Fig. 1
provides an example design of an automaton with a
simple structure that matches a sequence of two tags. We
use “_” to represent white space. The reporting element
ID contains a rule ID as well as the update tag. This
information is needed for post processing (Section IV.C.)

We illustrate the design with an example input:

… to/TO conflict/NN with/IN…

The starting STE for the rule has a symbol “*”. This
means that the STE will be matched by any input
symbols. The symbol on the second STE is “^/”. Thus the
second STE will be matched on any symbols that are
NOT a “/”. This activates both the third STE and itself.
The self-activating function will keep the second STE
activated and accepting input symbols until a “/” appears.
This ignores the actual words; the Brill rules are based on
patterns of tags. When the “/” is seen, the third STE will
be matched and activate the forth STE; the next
characters, up to a “_”, constitute a tag.

TABLE I. GRAPHIC ILLUSTRATIONS OF BASIC STE FUNCTIONS

A starting STE: It can either be start-of-data, which
only matches the first symbol of the input and matches
against A; or all-input-start, which accepts every
symbol from the input and matches against Symbol A

Matching - Activating: Symbol A is matched on the
first STE, and the second STE is activated; a “*” means
to match any input symbols; “^” means a negation of
the symbol

Self-activating: The STE activates itself when Symbol
A is matched

A reporting STE: Reports when the symbol A is
matched

This design assumes that every word is followed by a
“/” and then its tag. Each word/tag pair ends with a “_”.
If, at any point, a rule no longer matches the input, the
“*” STE keeps the rule actively processing subsequent
input.

C. Post processing
As the input data stream is being inspected by the

rules on the AP, reporting elements generate output
whenever a match is found. The output consists of an
offset number that specifies the input symbol cycle on
which one or more reporting elements fired, as well as
the ID of the reporting elements. A post processing step
is needed to use this output to update the tags and thus
complete the second stage of Brill Tagging. We modified
the openly available Brill code to conduct the post
processing. In the original code, a word and a tag array
are created when reading in the first-stage-tagged file.
Our post processing requires another array that matches
each character in the file with the word to which the
character belongs. Table II shows this array for the
example sentence we used previously.

After all the arrays are created, the baseline CPU code
then reads in the contextual rule file that contains 218
rules and applies one rule at a time to the entire corpus.
For the AP, we modified this part of the code. Instead of
reading in the contextual rule file, the code now reads the
output file from the AP Emulator and performs post-
processing. Both rule ID and the update tag information
can be obtained from the ID of the reporting STEs. The
offset number indicates the character position at which an
entire rule is matched. Using the offset number, we can
use the character position array to look up the index of
the word that needs to be updated. An example report we
get from the AP looks like:

Offset 28 Reporting Element ID: rule2_VB

Figure 1. Example design of a simple automaton structure for the rule

described in Section IV.B.

From the character position array, we find that the word
associated with the 28th character is the 6th word. We thus
update the tag of that word in the original corpus.

Fig. 2 shows the steps involved for the CPU and AP
implementation. The bold-italicized parts are the
execution time we included in the comparison. For the
original Brill code on the CPU, for the most direct
comparison with the AP, we only count the step for
reading the rules, matching the rules, and updating tags.
For the AP implementation, we include the estimate of
the matching time on the AP (see Fig. 3, last column),
and the pre/post processing time on the CPU to: 1) create
the character position array; 2) read the file with the
reported rules and 3) update the tags. The steps we ignore
are identical in both the CPU and AP implementations.

V. TEST DATA AND RESULT

A. Test data
To test our design we use a subset of the Brown

Corpus [4] downloaded from the NLTK website [7]. We
combined the files into 5 different sizes: 40KB, 60KB,
79KB, 99KB to test the impact of input size on execution
time for both the CPU and AP implementations. We also
tested the largest file (99KB) with different numbers of
rules ranging from 20 to 218 rules to test the impact of
the number of rules on the execution time.

TABLE II. THE CHARACTER POSITION ARRAY

Characters … t o / T O _
Index of the Char
Position Array … 11 12 13 14 15 16

Array Content (Index
of Word Array) … 4 4 4 5 5 5

Characters c o n f l i c

Index 17 18 19 20 21 22 23

Array Content 5 5 5 5 5 5 5

Characters t / N N _ w i

Index 24 25 26 27 28 29 30

Array Content 5 5 5 5 5 6 6

Characters t h / I N _ …

Index 31 32 33 34 35 36 …

Array Content 6 6 6 6 6 6 …

Figure 2. The CPU and AP Processes

B. Execution environment
For the CPU implementation, we used the published

C code [2] and ran it on an Intel Core i5 machine with a
single thread. The execution time recorded for the CPU
implementation is the wall clock time for the step of
updating the tags measured in microseconds.

For the AP implementation, one character is
processed per clock cycle, so on-chip time is a direct
function of the input size. Post processing is conducted
on the same CPU. The execution time included for the
post processing is the wall clock time for the steps of
creating the extra character position array and updating
the tags based on the output report from the AP.

C. Results

1) Execution time for different input data size
Table IV shows the execution time of the CPU and

AP implementation for different sizes of input data (Time
in microsecond). The speed-ups are within the range of
38.3X to 41.0X. This suggests that the size of the input
does not have a significant impact on the speed-up.

2) Execution time for different number of rules
Fig. 3 shows the speed-up in relation to number of

rules. We can see that there is an approximately linear
growth of the speed-up with the number of rules.
Although we only tested with up to 218 rules, the largest
number of rules mentioned in the literature is 1729 [12].
Based on the regression line (y = 0.1577x + 3.3794), we
estimate that the potential speed-up for such a rule set
could be 276.0X.

TABLE III. EXECUTION TIME FOR DIFFERENT SIZES OF INPUT

Time in
microsecond 40 KB 60 KB 79 KB 99 KB

CPU 56130 86545 112289 141810

A
P

On chip 298 453 594 741
Create Array 372 596 875 1031
Post process 747 1063 1462 1935

Total 1417 2112 2931 3707
Speed-up 39.6X 41.0X 38.3X 38.3X

Figure 3. Speedup in Relation to Number of Rules

VI. ACCURACY AND DISCREPANCY

The Association for Computational Linguistics
provides the accuracies of several POS tagging systems
for the Wall Street Journal corpus [13]. The accuracy of
Brill Tagging is listed at 96.5%, while Hidden Markov
model is 96.96% and Maximum Entropy Markov Model
is 97.32%. The implementation of Brill Tagging
described here could make larger and more complex rule
sets computationally practical. Such rule sets could allow
Brill Tagging to achieve higher accuracy. On the other
hand, the CPU implementation of Brill Tagging applies
one rule at a time, while the AP implementation matches
all rules in parallel, which can lead to differences in
updating tags. For example, in the CPU version, for a
given word, after rule 1 is applied and the tag is updated,
rule 2 may not be triggered; while in the AP version, both
rules will be triggered, thus the order of updating the tag
will depend on the AP output. We used 4 different input
files to estimate these discrepancies. We obtained the
annotated Brown Corpus, which used the Brown tagset to
determine the correct tag when the two methods
disagreed. However, the 218 rules within the published
software use the Penn Treebank tagset. Thus, the correct
tags for a few tag differences were categorized as
unknown. To set an upper bound for the decrease in
accuracy, we count all unknown differences for the CPU
implementation as correct and AP implementation as
wrong. Table IV shows that such discrepancies are rare.

TABLE IV. TAGGING DISCREPANCIES FOR DIFFERENT SAMPLES

ca01
(2242

words)

cb01
(2200

words)

cc01
(2415

words)

cd01
(2213

words)
CPU Correct 5 2 6 6
AP Correct 2 1 1 3
Both Wrong 0 1 1 1

Unknown 2 3 2 5
Difference in

Accuracy 0.223% 0.182% 0.290% 0.362%
Average 0.264%

VII. CONCLUSIONS AND FUTURE WORK

The Micron AP is a novel non-Von Neumann
architecture that can test for thousands or even hundreds
of thousands of patterns in parallel. This paper introduces
an AP implementation of Brill tagging, and shows that
the AP achieves a significant speed-up.

We plan to implement this design on hardware once
the AP is available. In addition, we will more rigorously
evaluate the accuracy of the CPU and AP designs relative
to each other (combining rules may be one promising
approach to reduce differences in tagging) and relative to
state-of-the-art stochastic POS-tagging techniques.

This study suggests that the AP may be a promising
platform for other semantic analysis tasks. We plan to
explore other applications within NLP domain such as
parsing and machine translation.

ACKNOWLEDGMENTS

The authors thank Mateja Putic for assistance in the
initial setup, Micron Technology for providing access to
the AP SDK, Matt Tanner for his insights into using the
AP, and the anonymous reviewers for their helpful
comments.

REFERENCES
[1] Voutilainen, A. "Part-of-speech tagging." The Oxford handbook of

computational linguistics (2003): 219-232.
[2] Brill, E. CIS, Univ. of Pennsylvania, and the Spoken Language

Systems Group, Laboratory for Computer Science, MIT, 1994.
http://www.tech.plym.ac.uk/soc/staff/guidbugm/software/RULE_
BASED_TAGGER_V.1.14.tar.Z

[3] Roy, I. and S. Aluru. "Finding Motifs in Biological Sequences
Using the Micron Automata Processor." IPDPS, 2014.

[4] Francis, W.N. and H. Kucera. Brown Corpus Manual, 1964.
[5] Santorini, B. "Part-of-speech tagging guidelines for the Penn

Treebank Project (3rd revision)." 1990.
[6] Mohammad, S. and T.Pedersen. "Guaranteed pre-tagging for the

brill tagger." CICLing’03. Springer Berlin, 2003. 148-157.
[7] NLTK Corpora. Natural Language Toolkit. Web. 2013.
[8] Roche, E. and Y. Schabes. "Deterministic part-of-speech tagging

with finite-state transducers." Computational linguistics 21.2
(1995): 227-253.

[9] Brill, E. "Transformation-based error-driven learning and natural
language processing: A case study in part-of-speech
tagging." Computational linguistics21.4 (1995): 543-565.

[10] Dlugosch, P., D. Brown, P. Glendenning, M. Leventhal, and H.
Noyes, “An efficient and scalable semiconductor architecture for
parallel automata processing,” IEEE TPDS, 2014.

[11] Brill, E. "Unsupervised learning of disambiguation rules for part
of speech tagging." WVLC-3. Vol. 30. New Jersey: ACL, 1995.

[12] McCallum, A., D. Freitag, and F. CN Pereira. "Maximum Entropy
Markov Models for Information Extraction and
Segmentation." ICML. 2000.

[13] “POS Tagging (State of the art)”. Wiki of the ACL. Web. 2013.
[14] Sheu, P., et al., eds. Semantic Computing. John Wiley & Sons,

2011.

