
Brill Tagging on the Micron Automata Processor 
 

Keira Zhou; Jeffrey J. Fox; Ke Wang; Donald E. Brown, Fellow IEEE; Kevin Skadron, Fellow IEEE 
University of Virginia 

Charlottesville, VA 22904 USA 
{qz4aq, jjf5x, kewang, brown, skadron}@virginia.edu 

Abstract – Semantic analysis often uses a pipeline of Natural 
Language Processing (NLP) tools such as part-of-speech 
(POS) tagging. Brill tagging is a classic rule-based 
algorithm for POS tagging within NLP. However, 
implementation of the tagger is inherently slow on 
conventional Von Neumann architectures. In this paper, we 
accelerate the second stage of Brill tagging on the Micron 
Automata Processor, a new computing architecture that can 
perform massive pattern matching in parallel. The designed 
structure is tested with a subset of the Brown Corpus using 
218 contextual rules. The results show a 38X speed-up for 
the second stage tagger implemented on a single AP chip, 
compared to a single thread implementation on CPU.  This 
speed-up is linear with the number of rules, thus making 
large and/or complex rule sets computationally practical. 
This paper introduces the use of this new accelerator for 
computational linguistic tasks, particularly those that 
involve rule-based or pattern-matching approaches.  

Keywords-Part-of-speech tagging; Brill tagging;  
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I. INTRODUCTION 

Semantic analysis often uses a pipeline of Natural 
Language Processing (NLP) tools such as part-of-speech 
(POS) tagging [14]. POS tagging makes assignments of a 
tag to input tokens, such as, nouns, verbs, adjectives, etc 
[1]. Accelerating these tools may be a promising 
approach for increasing the speed and potentially the 
sophistication of semantic analysis. We evaluate 
acceleration of POS tagging as a case study. 

Brill Tagging is a classic rule-based POS tagging 
algorithm [9]. The algorithm is one of the most widely 
used rule-based approaches [6]. However, the 
computational time is slow for both training and tagging. 
Specifically, it may require RKn elementary steps to tag 
an input of n words with R contextual rules with at most 
K tokens of context [8]. 

The Micron Automata Processor (AP) [10] is a novel 
non-Von Neumann architecture that can be programmed 
to run thousands of Non-deterministic Finite Automata 
(NFA), i.e. regular-expression rules, in parallel to 
identify patterns in a data stream. The work described 
here shows that the AP’s parallelism can significantly 

reduce the tagging time of Brill Tagging compared to 
implementation on a single-core CPU.  

II. BACKGROUND AND RELATED WORK 

A. POS tagging 
Manually tagged corpora provide training data for 

automated taggers. POS tagging algorithms can be 
categorized into two groups: rule-based and stochastic 
(statistical) approaches. State-of-art stochastic based 
approaches include conditional random field models [7] 
and maximum entropy Markov models [12]. Brill tagging 
is one of the first and most widely used rule-based 
approaches [6].  When performing a POS tagging task, 
choosing a standard tagset is important. Two commonly 
used tagsets for POS tagging are the Brown (87 tags) [4] 
and Penn Treebank (36 tags) [5] tagsets.  

The Brill algorithm proceeds in training and tagging 
steps. During the training, it identifies the most frequent 
tag for all recorded tokens as well as contextual rules for 
updating the tags. After training, a two-stage process tags 
new untagged corpora. The first stage assigns the most 
frequent tag to the new corpora. In the second stage, the 
initial tags are updated based on the contextual rules. Our 
work focuses on reducing the computational time of the 
second stage of the tagging by exploiting the fact that 
rules can be easily implemented in parallel as regular 
expressions on the AP. 

III. AUTOMATA PROCESSOR 

A physical embodiment of the AP is not yet available; 
however, we do have access to Micron’s simulator (SDK) 
of the AP. This allows us to design automata and 
simulate the on-chip processes and performance.  

There are three major components on the AP: State-
Transition-Element (STE), Counter Element, and 
Boolean Elements, among which STE is the core 
component. The Counter and Boolean elements are not 
needed for Brill tagging. One STE can match an 8-bit 
user-specified symbol in a clock cycle and STEs can 
activate each other via a reconfigurable routing network. 
Each STE has three states: inactive, activated and 
matched. Only activated STEs will be able to inspect the 
next input symbol to perform a match against symbols 
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accepted by that STE. Once the symbol on an STE is 
matched, the STEs connected to it will be activated to 
accept the next input and match that against their 
programmed symbol matches. Table I provides 
illustrations of basic STE functions.  

One AP chip contains a total of 49,152 STEs, among 
which 6144 can report. There are expected to be 32 chips 
on a PCI Express AP board, which thus has 1,572,864 
STEs that can all operate in parallel [3]. The CPU 
initializes the AP chips, sends data, and fetches results 
using PCIe transactions.  Given the AP chips' 7.5ns clock 
period, one chip can process data at 128 M symbols/sec; 
higher processing rates are possible by sharing the AP 
resources among multiple streams Our design easily fits 
inside a single AP chip, so multiple input streams or 
much larger rulesets could easily be supported. 

IV. DESIGN ON THE AUTOMATA PROCESSOR 

A. Brill Tagging initial steps 
Brill tagging is implemented in C and source code is 

openly available [2]. This implementation uses the Penn 
Treebank tagset and contains 218 contextual rules. We 
use this implementation to run the first stage tagging and 
write the intermediate result into a separate file that 
serves as the input for the second stage tagging. 

B. Design on the AP 
The input data for the AP consists of a stream of the 

words and initial tags.  The rules are implemented on the 
AP as described below.  All of the rules operate in 
parallel, inspecting the input stream for a potential match. 
Among the 218 rules, there are 19 different structures. 
The simplest rule structure matches a sequence of two 
tagged words, while the most complex structures look for 
patterns in sequences of up to seven tagged words. Fig. 1 
provides an example design of an automaton with a 
simple structure that matches a sequence of two tags. We 
use “_” to represent white space. The reporting element 
ID contains a rule ID as well as the update tag. This 
information is needed for post processing (Section IV.C.) 

We illustrate the design with an example input: 

… to/TO conflict/NN with/IN… 

The starting STE for the rule has a symbol “*”. This 
means that the STE will be matched by any input 
symbols. The symbol on the second STE is “^/”. Thus the 
second STE will be matched on any symbols that are 
NOT a “/”.  This activates both the third STE and itself. 
The self-activating function will keep the second STE 
activated and accepting input symbols until a “/” appears. 
This ignores the actual words; the Brill rules are based on 
patterns of tags. When the “/” is seen, the third STE will 
be matched and activate the forth STE; the next 
characters, up to a “_”, constitute a tag.  

TABLE I.  GRAPHIC ILLUSTRATIONS OF BASIC STE FUNCTIONS 

 

A starting STE: It can either be start-of-data, which 
only matches the first symbol of the input and matches 
against A; or all-input-start, which accepts every 
symbol from the input and matches against Symbol A 

 

Matching - Activating: Symbol A is matched on the 
first STE, and the second STE is activated; a “*” means 
to match any input symbols; “^” means a negation of 
the symbol 

 

Self-activating: The STE activates itself when Symbol 
A is matched 

 

A reporting STE: Reports when the symbol A is 
matched 

 

This design assumes that every word is followed by a 
“/” and then its tag. Each word/tag pair ends with a “_”.  
If, at any point, a rule no longer matches the input, the 
“*” STE keeps the rule actively processing subsequent 
input. 

C. Post processing 
As the input data stream is being inspected by the 

rules on the AP, reporting elements generate output 
whenever a match is found.  The output consists of an 
offset number that specifies the input symbol cycle on 
which one or more reporting elements fired, as well as 
the ID of the reporting elements.  A post processing step 
is needed to use this output to update the tags and thus 
complete the second stage of Brill Tagging. We modified 
the openly available Brill code to conduct the post 
processing. In the original code, a word and a tag array 
are created when reading in the first-stage-tagged file. 
Our post processing requires another array that matches 
each character in the file with the word to which the 
character belongs. Table II shows this array for the 
example sentence we used previously. 

After all the arrays are created, the baseline CPU code 
then reads in the contextual rule file that contains 218 
rules and applies one rule at a time to the entire corpus. 
For the AP, we modified this part of the code. Instead of 
reading in the contextual rule file, the code now reads the 
output file from the AP Emulator and performs post-
processing. Both rule ID and the update tag information 
can be obtained from the ID of the reporting STEs. The 
offset number indicates the character position at which an 
entire rule is matched. Using the offset number, we can 
use the character position array to look up the index of 
the word that needs to be updated. An example report we 
get from the AP looks like: 

Offset 28 Reporting Element ID: rule2_VB 



 

Figure 1.  Example design of a simple automaton structure for the rule 

described in Section IV.B. 

From the character position array, we find that the word 
associated with the 28th character is the 6th word. We thus 
update the tag of that word in the original corpus. 

Fig. 2 shows the steps involved for the CPU and AP 
implementation. The bold-italicized parts are the 
execution time we included in the comparison. For the 
original Brill code on the CPU, for the most direct 
comparison with the AP, we only count the step for 
reading the rules, matching the rules, and updating tags. 
For the AP implementation, we include the estimate of 
the matching time on the AP (see Fig. 3, last column), 
and the pre/post processing time on the CPU to: 1) create 
the character position array; 2) read the file with the 
reported rules and 3) update the tags. The steps we ignore 
are identical in both the CPU and AP implementations. 

V. TEST DATA AND RESULT 

A. Test data 
To test our design we use a subset of the Brown 

Corpus [4] downloaded from the NLTK website [7]. We 
combined the files into 5 different sizes: 40KB, 60KB, 
79KB, 99KB to test the impact of input size on execution 
time for both the CPU and AP implementations. We also 
tested the largest file (99KB) with different numbers of 
rules ranging from 20 to 218 rules to test the impact of 
the number of rules on the execution time. 

TABLE II.  THE CHARACTER POSITION ARRAY 

Characters … t o / T O _ 
Index of the Char 
Position Array … 11 12 13 14 15 16 

Array Content (Index 
of Word Array) … 4 4 4 5 5 5 

Characters c o n f l i c 

Index 17 18 19 20 21 22 23 

Array Content 5 5 5 5 5 5 5 

Characters t / N N _ w i 

Index 24 25 26 27 28 29 30 

Array Content 5 5 5 5 5 6 6 

Characters t h / I N _ … 

Index 31 32 33 34 35 36 … 

Array Content 6 6 6 6 6 6 … 

 

Figure 2.  The CPU and AP Processes 

B. Execution environment 
For the CPU implementation, we used the published 

C code [2] and ran it on an Intel Core i5 machine with a 
single thread. The execution time recorded for the CPU 
implementation is the wall clock time for the step of 
updating the tags measured in microseconds. 

For the AP implementation, one character is 
processed per clock cycle, so on-chip time is a direct 
function of the input size. Post processing is conducted 
on the same CPU. The execution time included for the 
post processing is the wall clock time for the steps of 
creating the extra character position array and updating 
the tags based on the output report from the AP.   

C. Results 

1)  Execution time for different input data size 
Table IV shows the execution time of the CPU and 

AP implementation for different sizes of input data (Time 
in microsecond). The speed-ups are within the range of 
38.3X to 41.0X. This suggests that the size of the input 
does not have a significant impact on the speed-up.  

2) Execution time for different number of rules 
Fig. 3 shows the speed-up in relation to number of 

rules. We can see that there is an approximately linear 
growth of the speed-up with the number of rules. 
Although we only tested with up to 218 rules, the largest 
number of rules mentioned in the literature is 1729 [12]. 
Based on the regression line (y = 0.1577x + 3.3794), we 
estimate that the potential speed-up for such a rule set 
could be 276.0X. 

TABLE III.  EXECUTION TIME FOR DIFFERENT SIZES OF INPUT  

Time in 
microsecond 40 KB 60 KB 79 KB 99 KB 

CPU 56130 86545 112289 141810 

A
P 

On chip 298 453 594 741 
Create Array 372 596 875 1031 
Post process 747 1063 1462 1935 

Total 1417 2112 2931 3707 
Speed-up 39.6X 41.0X 38.3X 38.3X 



 

Figure 3.  Speedup in Relation to Number of Rules 

VI. ACCURACY AND DISCREPANCY 

The Association for Computational Linguistics 
provides the accuracies of several POS tagging systems 
for the Wall Street Journal corpus [13]. The accuracy of 
Brill Tagging is listed at 96.5%, while Hidden Markov 
model is 96.96% and Maximum Entropy Markov Model 
is 97.32%. The implementation of Brill Tagging 
described here could make larger and more complex rule 
sets computationally practical. Such rule sets could allow 
Brill Tagging to achieve higher accuracy. On the other 
hand, the CPU implementation of Brill Tagging applies 
one rule at a time, while the AP implementation matches 
all rules in parallel, which can lead to differences in 
updating tags. For example, in the CPU version, for a 
given word, after rule 1 is applied and the tag is updated, 
rule 2 may not be triggered; while in the AP version, both 
rules will be triggered, thus the order of updating the tag 
will depend on the AP output. We used 4 different input 
files to estimate these discrepancies. We obtained the 
annotated Brown Corpus, which used the Brown tagset to 
determine the correct tag when the two methods 
disagreed. However, the 218 rules within the published 
software use the Penn Treebank tagset. Thus, the correct 
tags for a few tag differences were categorized as 
unknown. To set an upper bound for the decrease in 
accuracy, we count all unknown differences for the CPU 
implementation as correct and AP implementation as 
wrong. Table IV shows that such discrepancies are rare. 

TABLE IV.  TAGGING DISCREPANCIES FOR DIFFERENT SAMPLES 

 
ca01 
(2242 

words) 

cb01 
(2200 

words) 

cc01 
(2415 

words) 

cd01 
(2213 

words) 
CPU Correct 5 2 6 6 
AP Correct 2 1 1 3 
Both Wrong 0 1 1 1 

Unknown 2 3 2 5 
Difference in 

Accuracy 0.223% 0.182% 0.290% 0.362% 
Average 0.264% 

VII. CONCLUSIONS AND FUTURE WORK 

The Micron AP is a novel non-Von Neumann 
architecture that can test for thousands or even hundreds 
of thousands of patterns in parallel. This paper introduces 
an AP implementation of Brill tagging, and shows that 
the AP achieves a significant speed-up.  

We plan to implement this design on hardware once 
the AP is available. In addition, we will more rigorously 
evaluate the accuracy of the CPU and AP designs relative 
to each other (combining rules may be one promising 
approach to reduce differences in tagging) and relative to 
state-of-the-art stochastic POS-tagging techniques.  

This study suggests that the AP may be a promising 
platform for other semantic analysis tasks.  We plan to 
explore other applications within NLP domain such as 
parsing and machine translation. 
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