
Regular Expression Acceleration on the Micron Automata Processor: Brill Tagging 
as a Case Study 

 
Keira Zhou; Jack Wadden; Jeffrey J. Fox; Ke Wang; Donald E. Brown, Fellow IEEE; Kevin Skadron, Fellow 

IEEE 
University of Virginia 

Charlottesville, VA 22904 USA 
{qz4aq, jpw8bd, jjf5x, kewang, brown, skadron}@virginia.edu 

 
 

Abstract—Brill tagging is a classic rule-based algorithm for 
part-of-speech (POS) tagging that assigns tags, such as nouns, 
verbs, adjectives, etc., to input tokens. Due to the the intense 
memory requirements of rule matching, CPU implementations 
of the Brill tagging algorithm have been found to be slow. We 
show that Micron’s Automata Processor (AP)d—a new 
computing architecture that can perform massively parallel 
pattern matching—can greatly accelerate the second stage of 
Brill tagging via rule template matching. The 218 contextual 
rules are first converted into regular expressions (regex). 
Regex is used widely in natural language processing (NLP) 
tasks, thus, this case study involving Brill Tagging also shows 
how the AP might accelerate other applications that are able to 
be framed as regexes. We compare single-threaded, and multi-
threaded versions of Regex matching on an Intel i7 CPU, an 
Intel XeonPhi co-processor, and the AP. The results show a 
63.90X speed-up using the AP as a regex accelerator over the 
fastest multi-threaded CPU version. We also investigate how 
performance of regex matching on both CPU architectures 
varies depending on the complexity of the regex. Taken 
together, these results demonstrate the potential for significant 
performance improvements by using accelerators for various 
NLP computational tasks, particularly those that involve rule-
based or pattern-matching approaches.  

Keywords-Part-of-speech tagging; Regular Expressions; the 
Automata Processor; Natural Language Processing; 
Multithreading 

I.  INTRODUCTION  
Natural Language Processing (NLP) allows human-

machine interactions, drawing insights from data contained 
in the emails, documents and other unstructured materials, 
translation between languages, etc., and has become 
increasingly important in the era of big data. There are many 
tasks in an NLP pipeline and they all contribute to the final 
quality of the results for the goal task. Therefore, increasing 
both the speed and the accuracy of different NLP tasks is an 
important area of research. 

Part-of-speech (POS) Tagging assigns a part of speech 
tag, such as noun, verb, adjective, adverb, etc. to input 
tokens, [1]. This has an important role in NLP as it prepares 
the tokens with information needed for other tasks, such as 
question answering [2] and information retrieval [3]. POS 
tagging algorithms are commonly categorized into two 
groups: rule-based approaches and stochastic approaches. 

Brill Tagging is a classic rule-based POS tagging 
algorithm that is widely used [25]. It is also called a 
transformation-based error-driven tagging algorithm [6]. 

After the tagger is trained on a corpus, a two-stage process 
is applied to new untagged corpora. The first stage tags each 
word to its most frequent POS based on the training 
corpora, and a second stage updates the tags, correcting 
possible errors based on some contextual rules. The Brill 
algorithm has shown relatively high accuracy in some 
applications [9]. However, both training and tagging of 
corpora using Brill tagging is computationally expensive 
[7]. Specifically, it may require RKn elementary steps to tag 
an input of n words with R contextual rules with at most K 
tokens of context [8]. 

Because traditional single-threaded implementations of 
these algorithms on CPUs do not perform well, these 
algorithms cannot scale to the massive amount of 
information being created in the midst of the “Big Data” era. 
Therefore researchers are now exploring multi-threaded 
implementations, exploiting parallel programming 
frameworks such as MPI, OpenCL, MapReduce, etc. on 
multiple servers, or individual multi-core processors. 
However, while parallelism does increase the number of 
problems that can be solved simultaneously, it does not 
address the poor performance of individual CPU cores. 

The Micron Automata Processor (AP) [10] is a novel 
non-Von Neumann semiconductor architecture that can be 
programmed to execute thousands of non-deterministic 
finite automaton (NFA) in parallel to identify patterns in a 
data stream. Zhou et al. [28] proposed an implementation of 
the second stage of Brill tagging on the AP. The AP’s 
massively parallel rule matching capability was shown to 
significantly improve the performance of Brill Tagging 
compared to implementation on a single CPU. However, 
Brill rule matching is embarrassingly parallel, and might 
easily be accelerated by matching rules in parallel on multi-
core CPUs or many-core accelerators like Intel’s 
XeonPhi™. Prior work did not address the potential of new, 
general purpose accelerators. 

In this work, we convert Brill rules into regular 
expressions and compare multi-threaded regular expression 
matching performance of three different parallel 
architectures, a 6-core (12 thread) Intel i7-5820k CPU, 
Intel’s Knights Corner XeonPhi™3100 many-core co-
processor, and Micron’s AP. We also investigate resource 
utilization on the AP, showing that the device is 
underutilized for this task, and could support many more, or 
more complex contextual rules to improve accuracy.  
Finally, we study how the complexity of the regular 
expression impacts the performance of matching on the AP 

skadron
Typewritten Text
In BigData, Oct. 2015.  This is the authors' final manuscript. The authoritative version appears in Xplore.

skadron
Typewritten Text



versus the chosen CPU architectures. The results of this 
work motivates using the AP to accelerate all regex related 
NLP tasks. 

II. BACKGROUND AND RELATED WORK 
A. POS tagging 

POS Tagging can be viewed as a preprocessing stage for 
other common NLP tasks. The task was initially done 
manually and these manually tagged corpora provide 
training data for automated taggers [11] [12].  

POS tagging algorithms can be categorized into two 
groups: rule-based approaches and stochastic (statistical) 
approaches. State-of-art stochastic based approaches include 
conditional random field models [7], maximum entropy 
Markov models [13], and hidden Markov models [14]. Brill 
tagging is one of the first and most widely used rule-based 
approaches [25]. While Brill tagging has comparable 
accuracy to state-of-the-art POS tagging algorithms, its 
potential for parallel acceleration could offer a dramatic 
speed advantage over the most accurate state-of-the-art 
techniques. Thus, we focus on Brill tagging as our target 
application for evaluation. 

When performing a POS tagging task, choosing a 
standard tagset is important. Larger tagsets provide more 
information about the corpora but are harder to accurately 
tag. Smaller tagsets are easy to tag but leave out information 
about the corpora [24]. Two commonly used tagsets for 
POS tagging are the Brown (87 tags) [4] and Penn Treebank 
(36 tags) [5] tagsets.  
B. Brill Tagging 

The Brill algorithm has three steps. 1) It first trains on a 
corpus. This generates the most frequent tag for all recorded 
tokens as well as contextual rules for updating the tags. 
After training a two-stage process tags new untagged 
corpora. 2) The first stage assigns the most frequent tag to 
the tokens in the new corpora. 3) The initial tags are then 
updated based on the rules generated from the training 
corpora. This process produces 218 rules for the Brown 
Corpus and 284 rules for the Wall Street Journal corpus. 
Two rules from Brown Corpus are shown below: 

1)  NN (noun) VB (verb) PREVTAG TO (to) [15] 
Explanation: If current word is tagged as NN, the 
preceding word is tagged as TO, then change the 
current tag into VB 
Example: to/TO conflict/NN with/IN [updated into] 
to/TO conflict/VB with/IN 

2) IN (preposition) RB (adverb) WDAND2AFT (current 
word and 2 words after) as as [16] 

Explanation: The Penn Treebank tagging style 
manual specifies that in the collocation as…as, the 
first as is tagged as an adverb and the second is 
tagged as a preposition. Since as is most frequently 
tagged as a preposition in the training corpus, the 
initial state tagger will mis-tag the phrase as tall as as 
as/preposition tall/adjective as/preposition. 
Example: as/IN tall/JJ (adjective) as/IN [updated 
into] as/RB tall/JJ as/IN 
Our work focuses on reducing computational cost in the 

second stage of the tagging process (step 3 above). Because 

each rule in this stage tags the words in a window spanning 
three positions before and after the focus word [17], these 
contextual rules can be easily implemented in parallel on the 
AP, thus reducing a task of RKn steps (input of n words 
with R contextual rules with at most K tokens of context) to 
n steps. 
C. Regular Expressions 

Regular expressions (regex) are a compact language for 
representing patterns in strings of characters. They were 
defined alongside regular languages and are only capable of 
matching, or recognizing strings in regular languages. There 
is a many-to-one mapping between regular expressions and 
regular languages. The following are some major 
components of regex: 

Grouping Or: Parenthesis indicates a grouping of 
multiple different expressions. Each expression is separated 
by a ‘|’ indicating that any of the expressions within the 
parenthesis can match in parallel. 

Wildcards: Wildcards are additions to represent 
arbitrary characters in an input string. The ‘.’ for example is 
meant to represent a single character of the input string. 

Quantifiers: Quantifiers act on the previous expression 
and define repeating characters or sequences. The symbol 
‘?’ specifies that there are must be either zero or exactly one 
of the previous expression. 

Character Classes: Character classes represent sets of 
characters and are shorthand for groupings of individual 
characters. 

III. MICRON’S AUTOMATA PROCESSOR 
A physical embodiment of the AP is not yet available; 

however, we do have access to Micron’s simulator (SDK) of 
the AP. This allows us to design automata and simulate the 
on-chip processes and performance without access to 
physical silicon.  
A. Major Components of the AP 

There are three major components on the AP: State-
Transition-Elements (STEs), Counter Elements and Boolean 
Elements, among which, the STE is the core component 
used for matching characters and character sets of the input 
stream.  

One STE can match an 8-bit user-specified character 
symbol or set of symbols in a single clock cycle and STEs 
can connect to each other via edges. Each STE has two 
states: activated and matched. Only activated STEs will be 
able to accept the next input symbol to perform a match 
against the user-specified symbol within that STE. Once the 
symbol on an STE is matched, the STEs connected to it will 
be activated to accept the next input symbol and match that 
against their user-specified symbols. 

Besides STEs, the Counter Element is used to count 
activations. It only activates once incoming activations 
reach a user-specified threshold. Once the threshold is 
reached, the counter can produce a report or activate STEs 
that are connected to it. There are also Boolean Elements 
that function as logic gates on activation signals such as 
AND, OR, NOR, etc. 



B. Programming and Execution Environment 
Users can design their Automata structures using an 

XML-like language, Automata Network Markup Language 
(ANML).  The ANML code is then compiled and loaded 
onto the processor. 

Once the design code is loaded onto the chip, then a 
scanning-matching task is performed. The processor will 
take the input data as a stream and each STE in every 
automaton on the device will consume at a rate of 133 
MB/s.  

STEs can be configured as “starting STEs”. Starting 
STEs are either always activated, matching against the 
entire input data stream, or only activated on the first input 
symbol. STEs can be configured to “accept” outputting a 
single bit report. The reporting STEs will report if they are 
activated and matched. Each report bit contains an offset 
number of the cycle each reporting element reported, as well 
as the ID of the reporting element. Table I provides graphic 
illustrations of basic STE functions. 

TABLE I.  GRAPHIC ILLUSTRATIONS OF BASIC STE FUNCTIONS 

 

A starting STE: It can either be start-of-data, 
which will only match the first symbol of the 
input data and matches against A; Or all-
input-start, which accepts every symbol 
from the input and matches against Symbol 
A 

 

Matching - Activating: Symbol A is matched 
on the first STE, and the second STE is 
activated 

 

Negation Matching – Activating: Whenever 
Symbol A is NOT matched on the first STE, 
the second STE is activated 

 

Any Symbol Matching – Activating: A “*” 
means to match any input symbols 

 

Self-activating: The STE activates itself 
when the symbol A is matched 

 

Matching – Activating 2 STEs: Symbol A is 
matched on the first STE, and both of the 
STEs on the right are activated 

 

A reporting STE: Reports when the symbol 
A is matched 

 

C. Hardware Resources 
One single AP chip contains two independent half-cores, 

each of which has 24,576 STEs.  Thus a chip contains a 
total of 49,152 STEs among which 6144 can report. One 
chip also has 768 Counter Elements and 2304 
Combinatorial Elements.  

An AP board contains 32 chips totaling 1,572,864 STEs 
that can work in parallel. This enables fast, and highly 
parallel pattern matching operations [18]. The designs 
presented in this work can easily fit inside a single AP chip. 

IV. CONVERTING BRILL RULES INTO REGEX 
Zhou, et al. [28] describe one way of implementing the 

second stage of Brill tagging on the AP with a resulting 
speed-up of 40X using the AP compared to a single-
threaded CPU.  

This exciting result motivates us to explore other 
applications that can benefit from the AP. In particular, 
since the Brill rules can be expressed as a regex matching 
problem, we convert these 218 rules into regex and compare 
the matching performance on the AP with both top-of-the-
line multithread CPUs and many-core CPU accelerators. 
This experiment not only shows the promising matching 
ability of the AP, it also provides motivation for using the 
AP for other NLP tasks that have regex or pattern matching 
components. 
A. Brill Tagging Initial Steps 

Brill tagging is implemented in C and openly available 
[19]. The public implementation uses the Penn Treebank 
tagset and contains 218 contextual rules trained from the 
Brown Corpus. The original Brill tagging also contains 
Lexical rules as well as rules for tagging unknown words, 
but our work focuses solely on the contextual rules.  

We use this implementation to run the first stage tagging 
and write the intermediate result into a separate file. This 
intermediate result serves as the input for the second stage 
tagging. Table II shows the sample input data. 
B. Brill Rules as Regular Expressions 

Among the 218 rules, there are 19 different structures. 
The example structures and their meanings [20][21] are 
listed in Table III. We will use the two rules mentioned in 
Section II.B as our example: 

NN VB PREVTAG TO: / [^/]+/TO [^/]+/NN / 
IN RB WDAND2AFT as as: / as/IN [^/]+/[^ ]+ as/[^ ]+ / 

TABLE II.  EXAMPLE INPUT DATA 

 

TABLE III.  19 STRUCTURES OF 218 RULES 
Rule ID Rule Content Rule Meaning 
1 PREVWD Preceding word is … 

2 PREVTAG Preceding Tag is … 
3 PREV1OR2TAG One of the two preceding 

words is tagged as 
4 PREV1OR2OR3TAG One of the three 

preceding words is tagged 
as 

5 WDAND2AFT The current word is … 
and the word two after 
is … 

6 PREV1OR2WD One of the two preceding 
words is 

7 NEXT1OR2TAG One of the two following 
words is tagged as 

8 NEXT1OR2OR3TAG One of the three 
following words is tagged 
as 

9 NEXTTAG Following word is tagged 

This/DT session/NN ,/, for/IN instance/NN ,/, may/MD 
have/VBP insured/VBN a/DT financial/JJ crisis/NN 

two/CD years/NNS from/IN now/RB ./. 



as 
10 NEXTWD Following word is 
11 WDPREVTAG The preceding word is 

tagged as … and the 
current word is … 

12 WDNEXTTAG The current word is … 
and the following word is 
tagged as … 

13 SURROUNDTAG The preceding word is 
tagged as … and the 
following word is tagged 
as … 

14 PREVBIGRAM The two preceding words 
are tagged as … and … 

15 NEXTBIGRAM The two following words 
are tagged as … and … 

 

We converted all 218 rules into equivalent regex. There is 
an API in the AP workbench that takes regex, converts them 
to NFAs, and optimizes and compiles them onto the AP chip 
directly. 

V. TEST DATA AND RESULT 
A. Test Data 

To test our design we used a subset of the Brown Corpus 
[4] downloaded from NLTK website [22].  

Brown Corpus is an American English corpus that is 
divided into 500 samples with over 2000 words each. Each 
sample begins at the beginning of a sentence. The Corpus 
represents varieties of prose such as political, sports, 
financial press, government documents. We tested our 
implementation with a file of size 2.2MB which has 
2,198,493 characters. 
B. Execution Environment 

We compared the matching performance of the AP, 
multithread CPU and Intel’s XeonPhiTM many-core 
accelerator. The CPU we used is a 6-core (12 thread) Intel 
i7-5820K running at 3.30GHz. The Knight’s Corner 
XeonPhiTM3100 chip used in the experiment has 61, small, 
in-order cores, of which one is a master core. The 
XeonPhiTM co-processor is supported by an i7 CPU host 
processor. 

There are two different ways of running a program on 
XeonPhiTM. One is to cross-compile the program on the host 
CPU and then offload the executable onto the XeonPhiTM 
and run the entire program on the device. The other is to 
specify which part of the program to offload onto the device 
in advance. After compiling the program on the host CPU, 
the executable is run on the host but only the offloaded 
portion will run in parallel on the device. For our 
experiments, we used the first method of execution, which is 
to run the program “natively” on XeonPhiTM. 

For the i7 CPU and XeonPhiTM implementations, we 
used the POSIX regex library [29] for regex matching and 
parallelized matching using POSIX pthreads in C++ . The 
execution time recorded for the C++ implementation is the 
wall clock time for regex matching only. 

Because the AP consistently consumes one symbol, and 
accomplishes all parallel NFA transitions, per cycle, we can 
easily estimate AP performance by multiplying the number 
of input bytes by the cycle time. The frequency of the first 
generation AP architecture is advertised as 133MHz or 7.5 

nanoseconds per clock cycle. Thus the number of clock 
cycles necessary to accomplish any task equals the number 
of characters contained in a single file. 
C. Results 

1) Matching performance of regex implementation for 
the original 218 rules across all computer architectures 

Figure 1 shows the execution time comparison between 
Intel i7, XeonPhi™, and the AP. We can see that for both 
the i7 and the Xeon Phi, the performance reaches a plateau 
at a certain number of threads, indicating an on-chip 
bottleneck other than parallelism (number of parallel 
threads) limiting overall performance.  

By comparing the performance of Intel i7 and 
XeonPhiTM, we can see a clear advantage of running the 
program on the host Intel i7. Even a single thread on the i7 
is about ~28X faster than on the XeonPhiTM. There are 12 
cores on the i7 and 60 cores on the XeonPhiTM. Comparing 
the best performance of the i7 and the XeonPhiTM, we still 
see a 14X advantage using the Intel i7.  Clearly performance 
is limited by a feature other than the number of cores, such 
as an architectural difference, or oversubscribed shared on-
chip, such as memory bandwidth. We leave a detailed 
performance analysis for future work. 

There are a couple of possible reasons behind this 
behavior of the device. The i7 is arguably the highest-
performing general purpose out-of-order CPU available 
today, while the Knight’s Corner XeonPhi™ uses slower in-
order cores. Another possibility is that the much larger 
caches in Intel i7 most likely give a huge benefit for rule 
fetches for the NFAs used for regex processing in the 
POSIX regex library. Thus, regex processing, even if 
embarrassingly parallel, may not always benefit from a 
greater number of cores over other resources such as cache 
size or memory bandwidth. 

 

Figure 1. Execution Time Comparison between XeonPhi™, 
Intel i7 and the AP. The XeonPhi™ implementation always 
performs worse that even a single i7 core, suggesting 
resources other than core-count as the application bottleneck. 

2) Matching performance of regex with different 
complexity 

In order to test how the complexity of the regex impacts 
performance on different hardware, we separate regex rules 

10

100

1000

10000

100000

1 2 4 8 10 12 14 30 60 90 120

R
un

tim
e 

(m
s)

Number of Threads

AP i7 XeonPhi



into 3 different categories – 200 simple (exact match), 200 
original (200 regexes from the original 218 rules), and 200 
complex (all the regexes have “alternation” e.g. boy|girl). 
Complexity is measured by counting the number of STEs 
required to implement the automata on the AP. Table IV 
reports the STE usage of all three categories.  

 

TABLE IV.  RESOURCE UTILIZATION DIFFERENCE OF THE AP CHIP FOR 
THREE CATEGORIES 

 STE Usage 

200 Simple 2737 
200 Original 2934 
200 Complex 5843 

 

Table V shows the performance of Intel i7 with 12 
threads and the best performance on XeonPhiTM comparing 
to the AP in each category. Since the Intel i7 always has 
better performance when compared to the XeonPhiTM, we 
only report AP speed-up over the Intel i7. Figure 2 plots the 
speed-up the AP can gain over the Intel i7 in terms of the 
complexity of the rules. The XeonPhi™ incurs a similar 
penalty for complexity increase as the Intel i7, indicating 
that complexity of regex rules is not the main bottleneck to 
performance, and any regex matching is extremely 
expensive on a XeonPhi™ core compared to an i7 core. 
TABLE V.  BEST MATCHING PERFORMANCE COMPARISON BETWEEN 

XEONPHITM, INTEL I7 AND THE AP ON DIFFERENT RULE COMPLEXITY 

 

 

    

Figure 2. Speed-up of regex processing on the AP over the Intel i7 

From the result, we can see that the execution time on 
both Intel i7 and the XeonPhi™ increases as the complexity 
of regex increases. This is expected; more complex rules 
require more CPU instructions to process. On the other 
hand, the matching time on the AP is only related to the 
length of the input string, regardless of the complexity of the 
regex. Although more complex regexes will require more 
STEs, the 218 implemented Brill rules occupy only about 
6% of the resources of a single AP chip, allowing for many 
more complex rules without any performance penalty. Even 
if all rules do not fit onto a single AP chip, other chips can 
be added to scale to the required number of resources. As 
long as all the regexes can fit onto the available AP chips, 
the execution time will stay the same if the length of the 
input string does not change. 

VI. CONCLUSIONS AND FUTURE WORK 
The Micron Automata Processor (AP) is a novel non-Von 
Neumann semiconductor architecture which can be 
programmed to implement massively parallel pattern 
matching. 

In this work, we investigated how to implement Brill 
tagging, an important step in part-of-speech tagging, on the 
AP. By converting the Brill rules into regular expressions 
(regex), we could compare regex matching performance 
across three different architectures, an Intel i7 CPU, Intel’s 
XeonPhiTM  many-core co-processor, and the AP.  

This work also analyzed the Regex matching 
performance differences across these same computer 
architectures. In theory, the AP can achieve a significant 
speed-up in terms of regex matching function, a function 
small cores in common scientific accelerators are bad at. The 
AP is capable of processing more complex rules and larger 
rule sets; furthermore, the more complex the rules are and 
the larger the rule set is, the bigger the improvement the AP 
can gain over any von-Neumann processor. The results also 
show a great potential of using the AP for other NLP tasks 
with the same pattern matching nature.  

Future work should also explore other regex matching 
libraries other than POSIX for the C++ implementation, 
especially given the vastly different performance of the 
POSIX regex library on different CPU architectures. 
Different libraries may have different matching speeds, and 
should be investigated. 

Another extension of this work is to compare the regex 
performance on the AP, against GPU and FPGA 
implementations [30,31], although we suspect NFA-based 
pattern matching on the GPU’s SIMD cores will suffer 
similar limitations as the XeonPhi™ cores. Furthermore, the 
advantages of the AP for regex processing--especially 
complex rules and large rule sets—over FPGA solutions has 
been described by Dlugosch et al [32]. 

ACKNOWLEDGMENTS 
The authors thank the Center for Future Architectures 

Research (C-FAR), Micron Technology for providing 
access to the AP SDK, and Matt Tanner for his insights into 
using the AP.  

 
 

2.2 MB file size (2,198,493 characters); Time in microseconds (µs) 

 200 Simple  
(2737 STEs) 

200 Original  
(2934 STEs) 

200 Complex  
(5843 STEs) 

Xeon Phi 8,159,165µs 
(20 Threads) 

8,367,107µs 
(100 Threads) 

8,882,996µs 
(200 Threads) 

Intel i7  
(12 Threads) 513,631µs 563,720µs 1,053,676µs 

AP 16,489 �µs 
AP Speed-up 
over Intel i7 31.15X 34.19X 63.90X 



REFERENCES 

[1] Voutilainen, Atro. "Part-of-speech tagging." The Oxford 
handbook of computational linguistics (2003): 219-232. 

[2] Yu, Hong, and Vasileios Hatzivassiloglou. "Towards 
answering opinion questions: Separating facts from opinions 
and identifying the polarity of opinion 
sentences." Proceedings of the 2003 conference on Empirical 
methods in natural language processing. Association for 
Computational Linguistics, 2003. 

[3] Krovetz, Robert. "Homonymy and polysemy in information 
retrieval." Proceedings of the 35th Annual Meeting of the 
Association for Computational Linguistics and Eighth 
Conference of the European Chapter of the Association for 
Computational Linguistics. Association for Computational 
Linguistics, 1997. 

[4] Francis, W.N. & Kucera, H. Brown Corpus Manual. Brown 
University, 1964. 

[5] Santorini, Beatrice. "Part-of-speech tagging guidelines for the 
Penn Treebank Project (3rd revision)." 1990. 

[6] Brill, Eric. "A simple rule-based part of speech 
tagger." Proceedings of the workshop on Speech and Natural 
Language. Association for Computational Linguistics, 1992. 

[7] Lafferty, John, Andrew McCallum, and Fernando CN Pereira. 
"Conditional random fields: Probabilistic models for 
segmenting and labeling sequence data.", 2001. 

[8] Roche, Emmanuel, and Yves Schabes. "Deterministic part-of-
speech tagging with finite-state transducers." Computational 
linguistics 21.2 (1995): 227-253. 

[9] Hasan, Fahim Muhammad, Naushad UzZaman, and Mumit 
Khan. "Comparison of different POS Tagging Techniques (N-
Gram, HMM and Brill’s tagger) for Bangla." Advances and 
Innovations in Systems, Computing Sciences and Software 
Engineering. Springer Netherlands, 2007. 121-126. 

[10] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and 
H. Noyes, “An efficient and scalable semiconductor 
architecture for parallel automata processing,” IEEE 
Transactions on Parallel and Distributed Systems, 2014. 

[11] B. Greene and G. Rubin, “Automatic Grammatical Tagging of 
English”, Technical Report, Department of Linguistics, 
Brown University, Providence, Rhode Island, 1971. 

[12] S. Klein and R. Simmons, “A computational approach to 
grammatical coding of English words”, JACM 10, 1963. 

[13] McCallum, Andrew, Dayne Freitag, and Fernando CN 
Pereira. "Maximum Entropy Markov Models for Information 
Extraction and Segmentation." ICML. 2000. 

[14] Kupiec, Julian. "Robust part-of-speech tagging using a hidden 
Markov model." Computer Speech & Language 6.3 (1992): 
225-242. 

[15] Brill, Eric. "Transformation-based error-driven learning and 
natural language processing: A case study in part-of-speech 
tagging." Computational linguistics21.4 (1995): 543-565. 

[16] Brill, Eric. "Some advances in transformation-based part of 
speech tagging." arXiv preprint cmp-lg/9406010 (1994). 

[17] Van Halteren, Hans, Jakub Zavrel, and Walter Daelemans. 
"Improving data driven wordclass tagging by system 
combination." Proceedings of the 36th Annual Meeting of the 
Association for Computational Linguistics and 17th 

International Conference on Computational Linguistics-
Volume 1. Association for Computational Linguistics, 1998. 

[18] Roy, Indranil, and Srinivas Aluru. "Finding Motifs in 
Biological Sequences Using the Micron Automata 
Processor." Parallel and Distributed Processing Symposium, 
2014 IEEE 28th International. IEEE, 2014. 

[19] Brill, Eric. the Department of Computer and Information 
Science, University of Pennsylvania, and the Spoken 
Language Systems Group, Laboratory for Computer Science, 
MIT, 1994. 
http://www.tech.plym.ac.uk/soc/staff/guidbugm/software/RU
LE_BASED_TAGGER_V.1.14.tar.Z 

[20] Yonghong Mao Natural Language Processing Module. 
Cornell University, October 1997.    
http://www.csic.cornell.edu/201/natural_language/. 

[21] Megyesi, Beáta. "Brill’s rule-based part of speech tagger for 
Hungarian." Master's thesis, University of Stockholm, 1998. 

[22] NLTK Corpora. Natural Language Toolkit. Web. 2013. 
[23] Brill, Eric. "Unsupervised learning of disambiguation rules 

for part of speech tagging." Proceedings of the third 
workshop on very large corpora. Vol. 30. Somerset, New 
Jersey: Association for Computational Linguistics, 1995. 

[24] Xia, Fei. "The part-of-speech tagging guidelines for the Penn 
Chinese Treebank (3.0).", 2000. 

[25] Mohammad, Saif, and Ted Pedersen. "Guaranteed pre-tagging 
for the brill tagger." Computational Linguistics and Intelligent 
Text Processing. Springer Berlin Heidelberg, 2003. 148-157. 

[26] Ratnaparkhi, Adwait. "A maximum entropy model for part-
of-speech tagging." Proceedings of the conference on 
empirical methods in natural language processing. Vol. 1. 
1996. 

[27] “POS Tagging (State of the art)”. Wiki of the Association for 
Computational Linguistics. Web. 2013. 

[28] Zhou, Keira, Jeffrey J. Fox, Ke Wang, Donald E. Brown, and 
Kevin Skadron. "Brill Tagging on the Micron Automata 
Processor." Semantic Computing (ICSC), 2015 IEEE 
International Conference on. IEEE, 2015. 

[29] "The GNU C Library: Regular Expressions." The GNU C 
Library: Regular Expressions. 2015. 

[30] Becchi, Michela, and Gerard Allwein. "Hardware Synthesis 
from Functional Embedded Domain-Specific Languages: A 
Case Study in Regular Expression Compilation." Applied 
Reconfigurable Computing: 11th International Symposium, 
ARC 2015, Bochum, Germany, April 13-17, 2015, 
Proceedings. Vol. 9040. Springer, 2015. 

[31] Yu, Xiaodong, and Michela Becchi. "Exploring different 
automata representations for efficient regular expression 
matching on GPUs." ACM SIGPLAN Notices. Vol. 48. No. 8. 
ACM, 2013. 

[32] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and 
H. Noyes, “Supplementary material for an efficient and 
scalable semiconductor architecture for parallel automata 
processing,” IEEE Transactions on Parallel and Distributed 
Systems, 2014. 
 

 

 




