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1 Introduction 
 

Current cache configurations are inflexible. They cannot be 
customized for the needs of individual programs. Concurrent 
processes often have negative effects on each other’s cache en-
tries. A further problem is that real-time applications that need 
guaranteed cache access times might not always get these 
guarantees in a multitasking environment. We propose a frame-
work for customizing the cache configurations to individual 
programs using dynamic way allocation (DWA). We then 
describe cache configuration methodologies that permit DWA. 
 

2 The Proposed Reconfigurable Cache Model 
 

DWA provides flexibility for favoring higher performance, 
lower energy dissipation, or any combination of the two, 
depending on the overall goals of the system. This technique 
treats the ways of a set-associative cache as discrete units that 
can be independently allocated. DWA supports such goals as 
scratchpad memory for DSP or real-time applications, stream 
buffering for media processing, load balancing for SMT 
paradigms, and reduced power for portable computing 
platforms. The model dynamically allocates ways to individual 
processes, similar to tinting columns, which has the benefits of 
cache reconfiguration for scratchpad memory, multitasking and 
stream processing [1]. However, our model maps each process 
to a set of ways allowing a unique configuration per process. 
The number of ways needed in the cache for a process is 
specified with a way-request. A process’s cache configuration 
is determined via a programmable software routine, static 
compiler hints, or recalling previous configurations.  
 

2.1 The Dynamic Way Mapper and the Way-Vector 
 

A hardware unit called the dynamic way mapper (DWM) takes 
a way-request as an input and produces a way-vector based on
the availability of ways and the current mappings of other 
processes. More than one process can be mapped to the same 
way. The DWM attempts to efficiently match the cache 
configuration specified by a way-request to a set of physical 
ways. We include the concept of a priority process for 
processes that need guaranteed cache access times, e.g.
scratchpad memory in DSP applications. The DWM simply 
locks ways assigned to priority processes, preventing their use 
in other way-vectors. This means that a process may not always 
get the requested way-vector when priority processes have been 
mapped. The DWM balances allocations so that way-vectors 
are evenly divided among the ways, maximizing way utili-
zation. Way balancing may be implemented by attaching a 
counter to each column and incrementing the counter whenever 
a new process is mapped to a column. The dynamic way 
mapper can read the counters and determine the most efficient 
mapping.  

The way-vector represents a mask for ways that are 
accessible by a particular process. Initially, a process provides a 
way-request to the DWM producing a way-vector, which is 
stored in a register (having one bit per way). During a context-
switch, the process saves its way-vector along with other state 
information. When the process regains control of the processor, 
the DWM attempts to restore the previously stored way-vector. 
If a priority process has locked ways, then the DWM restores 
the ways that are not locked, but common to the previous 
configuration. If this is not possible, it tries to allocate as many 
ways as requested in the way-request. 

2.2 Reconfiguration Framework 
 

Ideally, we want each program phase to have its optimal cache 
configuration. We present three ways to configure the cache for 
phases in the program at runtime: static compiler-hinted 
reconfiguration, dynamic program profiling and a hybrid of the 
two. Static compiler-hinted reconfiguration exploits compiler-
based profiling to identify phases and suggest optimal cache 
configurations. Dynamic program profiling uses a program-
mable software routine to identify when and how to reconfigure 
the cache. It also has the ability to record a trace of config-
urations for a program. In case the compiler can only identify 
phases but not optimal configurations, the hybrid configuration 
scheme uses the compiler hints to pinpoint program phases, 
which then triggers the software routine. Static compiler hints 
allow faster cache reconfiguration, as they do not incur the 
overhead of software-based configuration. These compiler hints 
can be as small as one instruction indicating the way-request for 
the corresponding program phase. However, many pro-grams 
have no idea of available cache size at compile time, and 
neither target runtime environment nor program behavior can 
be determined at compile time. The software configuration 
routine provides an alternative till such a compiler is available. 

The software routine overcomes the drawbacks of static 
reconfiguration. It also allows reconfiguration of caches for 
legacy code or code that cannot be recompiled. To be effective, 
the software routine may need to run frequently, and must run 
without high overhead. While the software routine could run as 
a process causing a low-overhead context switch, we feel that it 
would be beneficial to have a small, dedicated register file 
allowing it to run without causing a full context switch. 
Programs often may have different cache access trends for 
different phases of a program, e.g., the optimal cache config-
uration for a subroutine may differ from that for the main 
program body. The main body of the program may itself have 
phases that favor different cache configurations. Ways can be 
dynamically adjusted at runtime to accommodate the cache 
needs of program phases.  

The flexibility of our cache model to target a variety of 
system goals, such as high performance or low power, stems 
from its ability to program the software-configurable allocation 
routine. A different routine can thus be designed to reconfigure 
the cache to a variety of system goals, like high performance 
and low power, with existing hardware. Albonesi et al. uses a 
performance degradation threshold to determine a desired 
cache configuration with appreciable results [2]. Our model 
uses common runtime statistics such as IPC, miss rate, and 
cache references, that performance counters already provide, 
plus additional parameters like operating temperature and 
power dissipation statistics to trigger reconfiguration. These are 
held in dedicated registers, and are accessed by the software 
routine to determine when and how to reconfigure the cache.  

For e.g., the software routine could be written to be energy 
aware. As one part of this, we would like to be able to control 
the number of active ways in the cache to manage static power. 
We can use the available runtime statistics to design a power 
metric that accounts for both dynamic and static power cons-
umption. Dynamic power could be measured as the number of 
cache misses times the estimated power consumed by each 
cache miss. Static power could be measured as the instruction 
count times the number of active ways times the static power 
consumed by a way per instruction (which is a function of 



 

 
 

 
 

 may cause execution time to increase, which may cause the 
total energy to increase. We must consider these secondary 
effects of reducing cache size when attempting to minimize 
energy. Further, static power is exponentially dependent on the 
temperature. Thus, an accurate estimate of static power versus 
the secondary effects of reducing cache size cannot be made 
unless the system temperature is monitored. 
 

2.5 Full-Way Power Down vs. Partial-Way Power Down 
 

There are two techniques to reduce static power consumption. 
One is powering down a way or a number of ways. However, 
this poses a problem when we want to power down a portion of 
the D-cache holding dirty data (configuration consistency). 
The dirty columns in the cache cannot be immediately shut 
down because information will be lost. We may either write 
back all the dirty cache lines immediately or write-back some 
lines while transferring some others to an active portion of the 
cache. Regardless of which method is used, we need a 
mechanism to determine when the portion in question has been 
“cleansed”. This may be expensive and will create power 
overhead for turning off a cache portion. This is not a problem 
with the I-cache because the I-cache is never dirty. Another 
type of configuration consistency concerns both D and I-
caches, and arises when a process has useful cache entries in 
columns not included in the column vector. There are two 
methods to handle this situation, hard partitioning and lazy 
partitioning [2], [4]. Hard partitioning only accesses the ways 
specified by the way-vector, by pre-charging the valid columns 
for a cache access. But the secondary effects of increased 
cache misses may negate the energy saved from less pre-
charging. Lazy partitioning accesses all ways.  

The second approach is to partially power down some ways 
by lowering the Vdd. The technique avoids losing the data, but 
does not provide as much static power saving as the first low 
power method.  
 

3 Simulation Methodology 
 

We will use the Wattch Toolkit [5] for simulating our re-
configurable cache model. We intend to emulate a 
multithreaded environment by modifying the toolkit. Running 
two or more benchmarks in our multithreaded environment, we 
will compare conventional caching techniques against our 
proposed model. The Wattch framework will allow us to 
observe the performance and power characteristics of the 
proposed cache model. 
 

4 Concluding Remarks 
 

The proposed reconfigurable cache model will allow cache 
customization on a program-to-program level. The model 
profiles program execution, identifies optimal cache 
configurations and reconfigures the cache accordingly. The 
reconfiguration framework permits configuration to be based 
on global system goals, trading off performance and power for 
a desired optimal combination. 
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Fig.1: Reconfiguration operations of the proposed cache architecture 

operating temperature). We could then write the software 
configuration routine to minimize the power metric either by 
adding more active ways (to reduce dynamic power from cache 
misses) or by reducing the number of active ways, thus 
reducing static power. The flexibility of the software 
configuration routine allows configuration metrics and controls 
to be as simple or as complex as the system designer desires.  

Fig.1 shows the reconfiguration operation from the time a 
process switches in. Our approach permits us to build a trace of 
possible cache configurations for a process and then use the 
trace when the process is next switched in. 

 

2.3 Configuration Recall 
 

If a program uses dynamic reconfiguration via the software 
routine, it is useful to store the way-vectors for various phases 
of the program. We include a mechanism called the way-history 
table (WHT) in our cache model to record the optimal 
configurations for the different phases and then recall them at a 
future time. The WHT stores the PC and the way-vector of a 
process at certain phases of the program. It is useful to only 
store way-vectors that are optimal, and therefore we erase way-
vectors that are not performing well. We reduce the size of the 
WHT by storing only differential way-vectors i.e., the PC and 
way-vector that start a new program phase. Since the storage 
overhead is low we may store the WHT to memory when the 
process loses context, allowing it to be recalled when the 
process regains context. We extend this concept by storing the 
WHT to memory with the program. At this point we reduce 
overhead further by storing only way-requests instead of way-
vectors. This can be viewed as an attempt to customize a cache 
to an individual program. 

 

2.4 Low Power Modes 
 

Turning off portions of the cache helps curb current leakage in 
unused columns, thus reducing static power dissipation, and it 
lowers dynamic power dissipation by reducing the number of 
ways requiring pre-charging. The effectiveness of turning off 
columns, for appreciable power savings, has been 
demonstrated in [3]. Our concept provides the means to 
tradeoff performance and power depending on the chosen 
system goals. The significance of static power dissipation 
increases as transistor gate lengths are reduced, i.e., as 
technology scales. However, if the goal is an overall energy 
savings for the system, it is important that the amount of static 
energy saved be more than the increase in dynamic energy 
caused by the smaller cache. In many cases, a smaller cache 
will cause an increased number of cache misses, resulting in 
increased dynamic energy dissipation. Since energy can be 
measured as the power times execution time, a smaller cache 


