

Dynamic Way Allocation for High Performance, Low Power Caches

Matthew Ziegler, Adam Spanberger, Ganesh Pai, Mircea Stan, Kevin Skadron†
Departments of ECE and †Computer Science, University of Virginia, 22904
{ ziegler, spanberger, gpai, mircea} @virginia.edu, skadron@cs.virginia.edu

1 Introduction

Current cache configurations are inflexible. They cannot be
customized for the needs of individual programs. Concurrent
processes often have negative effects on each other’s cache en-
tries. A further problem is that real-time applications that need
guaranteed cache access times might not always get these
guarantees in a multitasking environment. We propose a frame-
work for customizing the cache configurations to individual
programs using dynamic way allocation (DWA). We then
describe cache configuration methodologies that permit DWA.

2 The Proposed Reconfigurable Cache Model

DWA provides flexibility for favoring higher performance,
lower energy dissipation, or any combination of the two,
depending on the overall goals of the system. This technique
treats the ways of a set-associative cache as discrete units that
can be independently allocated. DWA supports such goals as
scratchpad memory for DSP or real-time applications, stream
buffering for media processing, load balancing for SMT
paradigms, and reduced power for portable computing
platforms. The model dynamically allocates ways to individual
processes, similar to tinting columns, which has the benefits of
cache reconfiguration for scratchpad memory, multitasking and
stream processing [1]. However, our model maps each process
to a set of ways allowing a unique configuration per process.
The number of ways needed in the cache for a process is
specified with a way-request. A process’s cache configuration
is determined via a programmable software routine, static
compiler hints, or recalling previous configurations.

2.1 The Dynamic Way Mapper and the Way-Vector

A hardware unit called the dynamic way mapper (DWM) takes
a way-request as an input and produces a way-vector based on
the availability of ways and the current mappings of other
processes. More than one process can be mapped to the same
way. The DWM attempts to efficiently match the cache
configuration specified by a way-request to a set of physical
ways. We include the concept of a priority process for
processes that need guaranteed cache access times, e.g.
scratchpad memory in DSP applications. The DWM simply
locks ways assigned to priority processes, preventing their use
in other way-vectors. This means that a process may not always
get the requested way-vector when priority processes have been
mapped. The DWM balances allocations so that way-vectors
are evenly divided among the ways, maximizing way utili-
zation. Way balancing may be implemented by attaching a
counter to each column and incrementing the counter whenever
a new process is mapped to a column. The dynamic way
mapper can read the counters and determine the most efficient
mapping.

The way-vector represents a mask for ways that are
accessible by a particular process. Initially, a process provides a
way-request to the DWM producing a way-vector, which is
stored in a register (having one bit per way). During a context-
switch, the process saves its way-vector along with other state
information. When the process regains control of the processor,
the DWM attempts to restore the previously stored way-vector.
If a priority process has locked ways, then the DWM restores
the ways that are not locked, but common to the previous
configuration. If this is not possible, it tries to allocate as many
ways as requested in the way-request.

2.2 Reconfiguration Framework

Ideally, we want each program phase to have its optimal cache
configuration. We present three ways to configure the cache for
phases in the program at runtime: static compiler-hinted
reconfiguration, dynamic program profiling and a hybrid of the
two. Static compiler-hinted reconfiguration exploits compiler-
based profiling to identify phases and suggest optimal cache
configurations. Dynamic program profiling uses a program-
mable software routine to identify when and how to reconfigure
the cache. It also has the ability to record a trace of config-
urations for a program. In case the compiler can only identify
phases but not optimal configurations, the hybrid configuration
scheme uses the compiler hints to pinpoint program phases,
which then triggers the software routine. Static compiler hints
allow faster cache reconfiguration, as they do not incur the
overhead of software-based configuration. These compiler hints
can be as small as one instruction indicating the way-request for
the corresponding program phase. However, many pro-grams
have no idea of available cache size at compile time, and
neither target runtime environment nor program behavior can
be determined at compile time. The software configuration
routine provides an alternative till such a compiler is available.

The software routine overcomes the drawbacks of static
reconfiguration. It also allows reconfiguration of caches for
legacy code or code that cannot be recompiled. To be effective,
the software routine may need to run frequently, and must run
without high overhead. While the software routine could run as
a process causing a low-overhead context switch, we feel that it
would be beneficial to have a small, dedicated register file
allowing it to run without causing a full context switch.
Programs often may have different cache access trends for
different phases of a program, e.g., the optimal cache config-
uration for a subroutine may differ from that for the main
program body. The main body of the program may itself have
phases that favor different cache configurations. Ways can be
dynamically adjusted at runtime to accommodate the cache
needs of program phases.

The flexibility of our cache model to target a variety of
system goals, such as high performance or low power, stems
from its ability to program the software-configurable allocation
routine. A different routine can thus be designed to reconfigure
the cache to a variety of system goals, like high performance
and low power, with existing hardware. Albonesi et al. uses a
performance degradation threshold to determine a desired
cache configuration with appreciable results [2]. Our model
uses common runtime statistics such as IPC, miss rate, and
cache references, that performance counters already provide,
plus additional parameters like operating temperature and
power dissipation statistics to trigger reconfiguration. These are
held in dedicated registers, and are accessed by the software
routine to determine when and how to reconfigure the cache.

For e.g., the software routine could be written to be energy
aware. As one part of this, we would like to be able to control
the number of active ways in the cache to manage static power.
We can use the available runtime statistics to design a power
metric that accounts for both dynamic and static power cons-
umption. Dynamic power could be measured as the number of
cache misses times the estimated power consumed by each
cache miss. Static power could be measured as the instruction
count times the number of active ways times the static power
consumed by a way per instruction (which is a function of

 may cause execution time to increase, which may cause the
total energy to increase. We must consider these secondary
effects of reducing cache size when attempting to minimize
energy. Further, static power is exponentially dependent on the
temperature. Thus, an accurate estimate of static power versus
the secondary effects of reducing cache size cannot be made
unless the system temperature is monitored.

2.5 Full-Way Power Down vs. Partial-Way Power Down

There are two techniques to reduce static power consumption.
One is powering down a way or a number of ways. However,
this poses a problem when we want to power down a portion of
the D-cache holding dirty data (configuration consistency).
The dirty columns in the cache cannot be immediately shut
down because information will be lost. We may either write
back all the dirty cache lines immediately or write-back some
lines while transferring some others to an active portion of the
cache. Regardless of which method is used, we need a
mechanism to determine when the portion in question has been
“cleansed”. This may be expensive and will create power
overhead for turning off a cache portion. This is not a problem
with the I-cache because the I-cache is never dirty. Another
type of configuration consistency concerns both D and I-
caches, and arises when a process has useful cache entries in
columns not included in the column vector. There are two
methods to handle this situation, hard partitioning and lazy
partitioning [2], [4]. Hard partitioning only accesses the ways
specified by the way-vector, by pre-charging the valid columns
for a cache access. But the secondary effects of increased
cache misses may negate the energy saved from less pre-
charging. Lazy partitioning accesses all ways.

The second approach is to partially power down some ways
by lowering the Vdd. The technique avoids losing the data, but
does not provide as much static power saving as the first low
power method.

3 Simulation Methodology

We will use the Wattch Toolkit [5] for simulating our re-
configurable cache model. We intend to emulate a
multithreaded environment by modifying the toolkit. Running
two or more benchmarks in our multithreaded environment, we
will compare conventional caching techniques against our
proposed model. The Wattch framework will allow us to
observe the performance and power characteristics of the
proposed cache model.

4 Concluding Remarks

The proposed reconfigurable cache model will allow cache
customization on a program-to-program level. The model
profiles program execution, identifies optimal cache
configurations and reconfigures the cache accordingly. The
reconfiguration framework permits configuration to be based
on global system goals, trading off performance and power for
a desired optimal combination.

References

[1] D. Chiou, L. Rudolph, S. Devadas, et al., “Dynamic Cache
Partitioning via Columnization” , CSG Memo 430, MIT

[2] D. H. Albonesi, “Selective Cache Ways: On-Demand Cache
Resource Allocation” , Journal of ILP, May 2000.

[3] Michael Powell et al., “Gated-Vdd: A Circuit Technique to reduce
leakage in Deep-Submicron Cache Memories” , In Proc. of the
ISLPED, July 2000.

[5] P. Ranganathan, S. Adve, N. Jouppi, “Reconfigurable Caches
and their Application to Media Processing” , ISCA 2000.

[6] D. Brooks, et al., “Wattch: A Framework for Architectural-Level
Power Analysis and Optimizations” , ISCA 2000

Switch In
Recall Way-

Vector

Execute
Instructions

Dynamic Way
Mapping

Store Way-
Vector

Call Evaluation
Routine

Current W
ay-Vector = ReadState (PC)

CompilerHint = True

RestoreState = True

R
es

to
re

S
ta

te
 =

F
al

se
W

ay
-V

ec
to

r
=

D
W

M
(C

ur
re

nt
W

ay
-V

ec
to

r)

WayVectorChanged = True

R
es

to
re

S
ta

te
 =

T
ru

e
S

W
E

va
lu

at
e

=
F

al
se

W
ay

V
ec

to
rC

ha
n

ge
d

=
 F

al
se

S
W

E
va

lu
at

e
=

T
ru

e

(WayVectorChanged, CurrentWayVector) =
SWEvaluate(CurrentWayVector, Stats)

SWEValuate = False
RestoreState = False

Fig.1: Reconfiguration operations of the proposed cache architecture

operating temperature). We could then write the software
configuration routine to minimize the power metric either by
adding more active ways (to reduce dynamic power from cache
misses) or by reducing the number of active ways, thus
reducing static power. The flexibility of the software
configuration routine allows configuration metrics and controls
to be as simple or as complex as the system designer desires.

Fig.1 shows the reconfiguration operation from the time a
process switches in. Our approach permits us to build a trace of
possible cache configurations for a process and then use the
trace when the process is next switched in.

2.3 Configuration Recall

If a program uses dynamic reconfiguration via the software
routine, it is useful to store the way-vectors for various phases
of the program. We include a mechanism called the way-history
table (WHT) in our cache model to record the optimal
configurations for the different phases and then recall them at a
future time. The WHT stores the PC and the way-vector of a
process at certain phases of the program. It is useful to only
store way-vectors that are optimal, and therefore we erase way-
vectors that are not performing well. We reduce the size of the
WHT by storing only differential way-vectors i.e., the PC and
way-vector that start a new program phase. Since the storage
overhead is low we may store the WHT to memory when the
process loses context, allowing it to be recalled when the
process regains context. We extend this concept by storing the
WHT to memory with the program. At this point we reduce
overhead further by storing only way-requests instead of way-
vectors. This can be viewed as an attempt to customize a cache
to an individual program.

2.4 Low Power Modes

Turning off portions of the cache helps curb current leakage in
unused columns, thus reducing static power dissipation, and it
lowers dynamic power dissipation by reducing the number of
ways requiring pre-charging. The effectiveness of turning off
columns, for appreciable power savings, has been
demonstrated in [3]. Our concept provides the means to
tradeoff performance and power depending on the chosen
system goals. The significance of static power dissipation
increases as transistor gate lengths are reduced, i.e., as
technology scales. However, if the goal is an overall energy
savings for the system, it is important that the amount of static
energy saved be more than the increase in dynamic energy
caused by the smaller cache. In many cases, a smaller cache
will cause an increased number of cache misses, resulting in
increased dynamic energy dissipation. Since energy can be
measured as the power times execution time, a smaller cache

