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Preface 

 The original objective of this thesis was to convert 

several different real-world applications into benchmark 

programs suitable be used by the LAVA lab in conjunction with 

SimpleScalar.  These applications consisted of the Kaffee Java 

Virtual Machine, the Postgres database software, an MPEG 

player, and SimpleScalar itself [5].  I was also supposed to 

modify the established MiBench benchmarking suite so that it 

could be used on SimpleScalar.   

For baseline data, I planned to use the new benchmarks to 

characterize the behaviors of different combinations of branch 

predictor and cache configurations.  Since some of these 

programs are too large to fully simulate in a reasonable 

amount of time, I intended to use programs based on Basic 

Block Vector (BBV) techniques developed by Sherwood et al. [2] 

and Memory Reference Reuse Latency (MRRL) techniques developed 

by Haskins and Skadron [1].  These techniques would have 

enabled me to simulate in detail only portions of benchmarks, 

and still end up with a result representative of the entire 

benchmark’s performance. 

Unfortunately, I waited too long to get started, and I 

was only able to make the SimpleScalar benchmarks and a part 

of the MiBench suite to be simulated under SimpleScalar.  

There was also not enough time left to experiment with using 
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Calder’s BBV tool.  Because of this, with my technical 

advisor’s, Professor Skadron’s, advice, I switched the focus 

of the thesis from finding and characterizing new benchmarks 

to characterizing the benchmarks I got working under 

SimpleScalar and analyzing how different cache and branch 

predictor configurations affected the performance of different 

benchmarks. 
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Abstract 
 
 Computer architects test new microprocessor techniques by 

executing benchmarks on microprocessor simulators.  However, 

the benchmarks in use are not enough to cover the vast variety 

of application types that could tax computers in widely 

different ways.  For this thesis, I simulated applications of 

different types using the SimpleScalar simulator toolkit.  I 

characterized the performance of these applications utilizing 

multiple cache and branch predictor configurations and 

analyzed the results. 

This research showed that many programs greatly improve 

performance with a two-way associative data cache over a one-

way associative data cache, but with instruction caches the 

improvement is not so profound.  I also learned that GAg 

branch predictors are worthless when compared to other 

predictors, and bimodal predictors are the next worst things.  

GAs, gshare, PAs, and PAg predictors often give pretty much 

the same results, and their size only seems to matter when it 

gets really small. 
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Glossary 

 

 

Branch predictor A hardware component of a computer.  When 
the location of the next instruction to be 
executed depends on the result of an 
instruction that has not been executed 
yet, the branch predictor makes an 
educated guess.  Since computers can 
simultaneously execute multiple 
instructions (depending, among other 
things, on the types of the instructions) 
an instruction often goes into execution 
before the previous instruction has been 
executed.  If the branch predictor’s guess 
is wrong, the microprocessor must “roll 
back” and discard all instructions it 
started executing as a result of the 
guess. 

Cache A hardware component of a computer.  A 
cache stores instructions and data that 
are deemed likely to be accessed in the 
near future.  Caches are much faster than 
the main memory in which instructions and 
data usually reside, so accessing the 
contents of a cache takes less time than 
accessing the contents of memory.  Caches 
are also far more expensive than main 
memory, and therefor much smaller.  Only 
extremely tiny programs can completely fit 
into a cache. 

Cache miss The event when the computer tries to 
access a piece of data or an instruction 
from the cache and does not find it there.  
In this case the computer must look in the 
memory. 

Command line A text interface for an operating system 
where program names and commands must be 
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typed in order to be executed.  No 
clicking. 

Command line parameter An input to a program that is typed 
at the command line and immediately after 
the program’s name (or after another 
parameter) before pressing “Enter” to 
start the program. 

Compiling The act of translating a program written 
in a high level programming language like 
C++ into a series of machine language 
instructions that can be executed by a 
computer. 

Compiler A program that compiles other programs. 

Computer architect A person who designs computer hardware 
components. 

Execution For a program, the act of running the 
program.  For an instruction, the act of 
taking the steps necessary to carry out 
the “orders” implicit in the instruction. 

Instruction The basic building block of a program.  
Each instruction of a program is 
interpreted and executed by a 
microprocessor. 

Makefile A file that details how a program should 
be compiled.  This file is used by the 
“make” program to automatically compile 
programs. 

Microprocessor An integrated circuit acting as the 
central processing unit (CPU) of a 
computer.  Analogous to the “brain” of the 
computer. 

Shell A program that interprets certain commands 
typed at the command line and executes 
them. 

Shell Script Similar to a program but written using 
commands understood by the chosen shell 
and the working operating system.  No 
compilation necessary. 
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Simulator For the purposes of this paper, a program 
that simulates the operation of a 
computer.  Any program that can run on a 
computer should be able to run on a 
simulator with the same results, depending 
on the level of detail of the simulation.  
Since simulators are implemented in 
software, they are orders of magnitude 
slower than the hardware they are 
simulating. 

Suite A collection of software applications 
grouped together because of some 
similarity in purpose.  Microsoft Office 
is an example of this.



I.   Introduction 

This chapter introduces the motivations and objectives of 
this thesis report.  This chapter also includes a 
literature review and an overview of the contents of 
subsequent chapters. 
 

I.1 The Need for Benchmarks in Computer 
Architecture Research 

 
Computer architects are constantly researching new 

techniques in microprocessor design.  Instead of spending time 

and money on implementing the new designs in hardware, 

computer architects first test these techniques on simulators.  

The Laboratory for Computer Architecture at Virginia (LAVA), 

for example, tests their designs using a modified version of 

the SimpleScalar simulator toolkit, which was developed by 

SimpleScalar LLC [4].  In computer terms, a benchmark is a 

special program that is used to characterize a computer 

system’s, or, in this case, a microprocessor’s, performance in 

executing the program.  The theory is that a benchmark program 

is representative of real-world applications, so a measure of 

how well a system performs in the execution of the benchmark 

is indicative of what the system’s performance with actual 

applications will be like.   

Different applications tax computers in different ways, 

so there is no way that a single benchmark could predict the 

0performance of a computer system on all applications.  For 
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example, one benchmark might provide reasonable statistics on 

how well a computer system would run a word processor, but 

this data could be meaningless when attempting to predict the 

performance of the system when playing a graphically intensive 

computer game.  There are currently not enough benchmarks to 

correspond with all the different application types that a 

computer system might be expected to run. 

I.2 Desirable Characteristics of Benchmarks Used 
With Microprocessor Simulators 

 
 All benchmarks must be able to predict with reasonable 

accuracy how well a computer system would be able to run a 

certain application.  Benchmarks used with microprocessor 

simulators like SimpleScalar have an additional requirement: 

they must not take too long to execute.  A microprocessor 

simulator takes far longer to execute a benchmark than the 

physical processor that is being simulated would.  If an 

otherwise great benchmark takes a year to simulate, then it is 

useless.  Because of this, all benchmarks to be used with 

simulators must be able to be executed in a reasonable amount 

of time.  

I.3  Project Objectives and Methods 

For this thesis I analyzed how different cache and branch 

predictor configurations affected the performance of different 

benchmarks.  I did all simulations using the SimpleScalar 
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simulator toolkit.  The benchmarks I used were from the 

MiBench benchmarking suite.  In addition, I also simulated two 

of the SimpleScalar simulators, sim-fast and sim-outorder, 

running other benchmarks. 

To automate the simulation process and to compile results 

from the simulations I wrote a variety of shell-scripts.  The 

data was later put into in an Excel spreadsheet so I could 

analyze it. 

I.4  Literature Review 

 Executing benchmarks on simulators to predict the 

behavior of theoretical designs is nothing new in computer 

architecture.  Using only one or more representative samples 

of a benchmark to try to characterize the full benchmark 

behavior is a more recent trend.  Sherwood et al. [2] explains 

that this is because the complexity of processors grows much 

faster than processing power.  Because of this, detailed 

simulations of microprocessors become slower with each 

successive advance in computer hardware technology.   

Much research has been done by the computer architecture 

community on methods of picking the right samples of a 

benchmark to simulate in full detail.  In their 1999 paper, 

Skadron et al. simulated the SPEC95 Benchmark Suite using a 

single 50 million instruction window for each benchmark, with 

the entire pre-sample period devoted to warm-up.  Skadron et 
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al. chose this window using interval branch-misprediction 

rates.  This paper also relates how many other researchers put 

the sample window at the very beginning of the benchmark.  

This would produce erroneous results, as the initial phase of 

most programs is often very different from the rest of the 

execution.  Three years after this paper, Sherwood et al. [2] 

introduced the method of using Basic Block Vectors and 

clustering to select multiple sample windows in a benchmark.  

This technique was tested on the SPEC2000 benchmark suite, and 

provided better results than those of a single sample.  Also 

in 2002, Haskins and Skadron [1] introduced the technique of 

using MMRL to calculate the warm-up sections of the benchmark 

based on chosen samples.  This paper also details a number of 

previously proposed ways to calculate sample and warm-up 

periods. 

In 2001, Guthaus et al. [7] released the MiBench 

benchmarking suite and a technical report describing the 

suite.  This report contains information on the specific 

benchmarks of the suite, as well as some characterization 

results which I compared to those obtained by me. 

I.5 Overview of the Contents of the Rest of the 
Report 

 
 The rest of this report is arranged as follows:  
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Chapter 2 details how I went about preparing and 

characterizing the benchmarks.  Chapter 3 presents and 

discusses the results of the characterizations. Chapter 4 

presents my concluding thoughts about the thesis.
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II.  Procedures 

This chapter describes the methods I used in working on 
this thesis.  It also details the various obstacles I 
encountered during the process. 
 

II.1 Overview of the Methods and Tools Used in 
the Thesis 

 
 All compiling and simulations were performed on LAVA 

lab’s computers.  Whenever I needed to use these machines, I 

accessed them remotely from my desktop computer using Van Dyke 

Technologies’ SecureCRT application, which is distributed in 

the University of Virginia by ITC.  The LAVA computers are on 

the UVA CS computer network, so when logged in to any of these 

computers I could access files on my CS account. 

 For simulation, I used the SimpleScalar microprocessor 

simulator toolkit developed by SimpleScalar LLC [5].  For the 

actual characterization, I used the sim-outorder simulator 

from the toolkit.  I compiled the SimpleScalar toolkit on LAVA 

lab’s Linux machines and configured it to simulate programs 

using the Alpha instruction set.   

I compiled the benchmarks on Krakatoa, the LAVA lab’s 

Alpha machine, which enabled them to be simulated by the 

Alpha-configured SimpleScalar simulators.  To compile I used 

the default Makefiles which came with the benchmarks.  Some of 

the benchmarks from the MiBench benchmarking suite had 

problems compiling, and many of those that correctly compiled 
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had problems executing correctly on SimpleScalar.  Because I 

was not able to resolve all of these problems, I only 

characterized a part of the MiBench suite. 

I converted the cache and branch predictor configurations 

I wanted to use into command line parameters for sim-outorder.  

I then used these to create a different .config file for each 

configuration and wrote several shell scripts to automate the 

simulation of benchmarks.  After I was satisfied that a 

benchmark could be simulated by sim-outorder without problems, 

I used these scripts to simulate the benchmark with sim-

outorder and the .config files I had prepared earlier.   

After each simulation run, sim-outorder outputted the 

results to a different file.  When all the runs were finished, 

I wrote shell and Perl scripts to parse the files for the 

statistics that I needed and output them into a form that 

enabled me to easily copy and paste them into an Excel 

spreadsheet.  I then did my best to graph and analyze the 

data. 

For the larger benchmarks, I planned to use Calder’s 

SimPoint software tool to find the samples of the benchmarks 

that could be simulated instead of simulating the entire 

benchmark.  Afterwards I planned to use Haskins’ MRRL (Memory 

Reference Reuse Latency) tool to calculate the warm-up periods 

for each sample provided by SimPoint.  The sample and warm-up 
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periods would have been used to simulate large benchmarks in a 

reasonable amount of time.  However, due to my lack of 

knowledge about Makefiles, I was unable to compile SimPoint 

for SimpleScalar in time to use it for this thesis.  Because 

of this, I was unable to simulate large benchmarks, so all of 

the benchmarks characterized for this thesis have less than 

two billion instructions. 

II.2  Compiling the Benchmarks On Krakatoa 
 
II.2.1 MiBench Compiling Problems 

 Since I configured the SimpleScalar toolkit to run 

programs using the Alpha instruction set, I needed the 

benchmarks to be in Alpha binary format.  To do this, I 

compiled the benchmarks on the LAVA lab’s Krakatoa machine, 

which is an Alpha computer. 

 The first benchmarks I attempted to compile were the ones 

from the MiBench suite.  Each MiBench benchmark came with 

instructions on how to compile it.  These instructions were 

usually of the form: 

Compile Instructions 
-------------------- 
1)  Type "make".  This will create the executables used by the scripts. 
 
Clean Instructions 
------------------ 
1)  Type "make clean".  This will delete post-compile files (i.e. old executables, output, 
object files, etc...). 
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Some of the compile instructions required the running of 

a provided “configure” shell script that tried to discern 

various pieces of information about the system, in this case 

Krakatoa, on which the benchmark was to be compiled so this 

information could be used in the compilation process. 

 Since MiBench is an established benchmarking suite, I 

expected to compile these benchmarks without major problems.  

Unfortunately I was being overly optimistic.  In the sphinx 

benchmark, there was a problem with the configure script that 

I could not figure out how to solve.  The benchmarks lame, 

mad, tiff, and pgp, gave various errors which I did not know 

how to deal with when I tried to compile them using make.  On 

the advice of my technical advisor I tried using the GNU 

version of make, found in the /usr/cs/bin directory, instead 

of the default version.  This enabled lame to compile, but the 

problems with the other three benchmarks remained.   

The ispell benchmark, which gave no errors while 

compiling, gave an “illegal format hash table” error when 

executed as a normal application on Krakatoa.  It also gave 

the same error when simulated with the SimpleScalar 

simulators.  Similarly, rijndael, produced a “memory fault” 

during execution on Karakatoa and a “segmentation fault” 

during simulation.  I was not able to figure out why this 

happened. 
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II.2.2 Using Static Linking to Resolve Segmentation Faults 

After successfully compiling, the lame, jpeg, rsynth, and 

sha benchmarks gave “segmentation fault” errors during 

simulation but not during normal execution on Krakatoa.  

Again, I could not figure out what was wrong.  Later, however, 

when I compiled the SimpleScalar toolkit as benchmarks on 

Krakatoa, it had the same problem.  I noticed that while 

giving the “segmentation fault” error when simulated by most 

SimpleScalar simulators, these benchmarks gave a “bogus 

opcode” error when simulated using the sim-safe simulator from 

the toolkit.  I searched the SimpleScalar mailing list archive 

[10] online and found a message by Charles Lefurgy [11] that 

said the “bogus opcode” problem could be resolved by compiling 

the benchmarks using “static linking.”  In the README file 

that came with SimpleScalar I found that this could be done by 

adding the “-static” flag when compiling with the GNU gcc 

compiler, or the “-non_shared” flag when compiling using the 

DEC cc compiler.   

The Makefiles of all of the programs giving this bug 

except for lame used gcc as the default compiler, and after I 

modified the Makefiles to include the “-static” flag, the bug 

was fixed.  Lame’s Makefile used the cc compiler as default 

for Alpha machines, but the “-non_shared” flag did not get rid 
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of the segmentation fault.  Modifying the Makefile to use gcc 

with the “-static” flag instead of cc solved the problem. 

II.2.3 Required Optimizations 

After some of the simulation runs were finished, I found 

out that all of the benchmarks were supposed to be compiled 

using level 2 or higher optimizations.  Looking through the 

Makefiles of the benchmarks, I found out that the lame, 

rsynth, jpeg and SimpleScalar benchmarks were compiled with 

either a too low level of optimization or no optimizations at 

all.  Remedying the problem was a simple matter of adding the 

“-O2” flag to the Makefiles.   

In the case of the SimpleScalar benchmark, adding the -O2 

flag resulted in an unforeseen problem: Krakatoa kept running 

out of virtual memory when trying to compile the benchmark 

with optimizations.  Following advice from Professor Skadron, 

I modified the Makefile to use the cc compiler instead of gcc.  

This meant that I needed to use the “-non_shared” flag for 

static linking, and I was worried because this had not worked 

for the lame benchmark before.  Thankfully my fears were not 

realized, and SimpleScalar simulators compiled were able to 

execute SimpleScalar simulators compiled with cc on Krakatoa 

with no problems.  Now it was time to check if SimpleScalar 

simulators properly simulated the compiled benchmarks. 

 



 12

II.3 Making Sure Benchmarks Are Simulating 
Correctly 

 
All SimpleScalar simulators have the option to store 

simulator output to one file and benchmark output to another 

file.  The simulator output is the information provided by the 

simulator itself, including statistics about the benchmark, 

while the benchmark output is whatever output the benchmark 

would have displayed when run as a normal program.  Therefore 

one way to check if a benchmark was simulated properly is to 

compare the output of simulated benchmark with the output the 

benchmark made when executed as a normal application on 

Krakatoa.  For this role I used the sim-fast simulator from 

the SimpleScalar toolkit.   

Sim-fast, as its name suggests, is the fastest simulator 

in the toolkit, but it takes some shortcuts during simulation 

and does not output many useful statistics.  Being so fast, 

however, makes sim-fast is a good simulator to produce the 

simulated benchmark outputs I used to check if a benchmark 

would execute correctly on the far slower sim-outorder, the 

simulator that I used to gather characterization data.  After 

making this check for all benchmarks that were successfully 

compiled and executed on Krakatoa, there were 8 benchmarks 

from the MiBench suite with differences between their normal 
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and simulated results: basicmath, patricia, bitcount, typeset, 

blowfish, sha, FFT, and gsm. 

To try to figure out what the problem was, I used the 

Unix “diff” command to look at the differences between the 

outputs.  The problem with bitcount’s output was that it 

contained the timing data for several different types of 

operations.  Since these operations take a lot longer to 

execute while simulating, this was not a problem with the 

simulation, so bitcount passed the comparison test.  

Similarly, the typeset output included the date and time that 

the benchmark was run, so of course it was different.  The 

problems with the other 7 benchmarks were not resolved.  The 

strangest of these was a problem shared by basicmath and 

patricia.  In the simulated outputs of these benchmarks, some 

numbers were off by exactly one.  For example, a segment of 

the simulated basicmath output that should have read: 

“Solutions: 1.635838 
Solutions: 13.811084 
Solutions: -3.947812 
Solutions: -8.613092” 
 
was instead: 
 
“Solutions: 2.635838 
Solutions: 14.811084 
Solutions: -4.947812 
Solutions: -9.613092”. 
 
 One problem that the output comparison method failed to 

catch was with the ghostscript benchmark.  Sim-fast ran 
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ghostscript without any problems, and the simulated output 

matched the normal output perfectly.  However, when I tried to 

gather characterization information with sim-outorder, the 

simulator outputted the error “fatal: non-speculative fault 

(2) detected @ 0x120077ae0.”  I was not able to find any 

information about this error on the SimpleScalar mailing list 

archive [10].  This was the only time that a benchmark I 

worked with was simulated perfectly by sim-fast but had 

problems with sim-outorder. 

II.4 Brief Description of MiBench Benchmarks 
Characterized in this Project 

 
 I was able to get a total of 11 benchmarks from the 

MiBench suite to work with sim-outorder.  All of these were 

executed with the “large” input sets provided with MiBench.  

The descriptions that follow quote from the MiBench paper [7].   

Bitcount “tests the bit manipulation abilities of a 

processor by counting the number of bits in an array of 

integers” using 5 different methods.”   

Qsort “test sorts a large array of strings into ascending 

order using the well known quick sort algorithm.”  

Susan “is an image recognition package” which can 

recognize corners and edges in an MRI scan as well as smooth 

an image.  Susan consists of three parts which I treated as 
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separate benchmarks: susan_corners, susan_edges, and 

susan_smoothing. 

Dijkstra “constructs a large graph in an adjacency matrix 

representation and then calculates the shortest path between 

every pair of nodes using repeated applications of Dijkstra’s 

algorithm.”   

Jpeg makes use of a “representative algorithm for image 

compression and decompression.”  Jpeg consists of two parts 

which I treated as separate benchmarks: jpeg_encode and 

jpeg_decode.   

Lame encodes wave files into MP3 format.  Typeset is a 

“general typesetting tool, that has a front-end processor for 

HTML.”   

Stringsearch “searches for given words in phrases using 

case insensitive comparison algorithm.”   

Rsynth is a “text to speech synthesis program that 

integrates several pieces of public domain code into a single 

program.” 

Adpcm “takes 16-bit linear PCM samples and converts them 

to 4-bit samples” and vice versa.  This benchmark consists of 

two parts which I treated as separate benchmarks: 

adpcm_adpcm2pcm and adpcm_pcm2adpcm. 
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CRC32 “performs a 32-bit Cyclic Redundancy Check (CRC) on 

a file. CRC checks are often used to detect errors in data 

transmission.” 

II.5  Choosing How to Simulate the Simulator 
 

Simulating the SimpleScalar simulators as benchmarks 

posed a bit of a problem.  To make the discussion less 

confusing, I will make the following definitions: 

Inner simulator: The simulator being simulated. 

Outer simulator: The simulator simulating the inner 
simulator 

 
Inner benchmark: The program being simulated by the inner 

simulator. 
 
Outer benchmark: The simulation of the inner benchmark by 

the inner simulator. 
 

For example, suppose I wanted to characterize the 

performance of simulator B by using simulator A to simulate 

simulator B simulating program C.  In this case, A would be 

the “outer simulator,” B would be the “inner simulator,” C 

would be the “inner benchmark,” and B simulating C would be 

the “outer benchmark.” 

As stated before, it takes far longer to simulate a 

program than it does to simply run it on compatible hardware.  

Imagine, then, how much more time an outer simulator requires 

to simulate an outer benchmark!  To illustrate this point, I 

did an experiment with sim-fast as the outer simulator, a tiny 
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program called test-prinf which comes with SimpleScalar as the 

inner benchmark, and sim-fast and sim-outorder compiled on 

Krakatoa as inner simulators.  Figure 1 shows the result in a 

table. 

Program Run Instruction Count Execution Time (sec) 
test-printf 98430 Negligible 
Sim-fast simulating 
test-printf 

252,364,984 0.5 

Sim-outorder 
simulating test-
printf 

3,302,886,821 2.5 

Sim-fast simulating 
sim-fast simulating 
test-printf 

? 41 

Sim-fast simulating 
sim-outorder 
simulating test-
printf 

? 571 

Figure 1 : Difference in execution times and instruction counts between benchmarks and benchmark 
simulations 

The data in Figure 1 shows that even an inner benchmark 

that executes almost instantaneously by itself and requires 

only a couple seconds to be simulated, requires minutes for a 

fast outer simulator to simulate a slow inner simulator 

simulating this benchmark.  On the same computer, it would 

probably take upwards of two hours to simulate if the outer 

simulator was changed from sim-fast to sim-outorder. 

For this reason, when simulating SimpleScalar simulators 

I needed to pick small inner benchmarks.  For sim-outorder I 

picked the smallest of the working benchmarks from the MiBench 

suite - stringsearch with the small input set.  
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 On the suggestion of my technical advisor, I chose 

anagram for sim-fast.  Anagram is a test benchmark which comes 

with SimpleScalar.  It takes a dictionary file and a set of 

strings as inputs and creates anagrams of those strings based 

on the words in the dictionary.  A sample dictionary file and 

file of input strings comes with SimpleScalar, but using this 

made the execution several times longer than I wanted.  To 

remedy this, I wrote a Perl script to erase every second word 

from the dictionary.  When this proved not to be enough, I ran 

the script a second time, this time on the result of the 

previous run.  This effectively cut the original dictionary by 

three-quarters.  To further cut down simulation time, I used 

the length parameter of anagram to specify that all words in 

an anagram should be at least 5 characters long.  The 

resultant outer benchmark of sim-fast simulating anagram 

turned out to be 1.1 billion instructions long, which was 

about the length I wanted. 

II.6  Simulating and Collecting Data 
 
II.6.1 Preparing the Configurations 

 To simulate a benchmark on a SimpleScalar simulator, the 

simulator must be provided with the configuration to use and 

the benchmark’s path as command line parameters.  If 

configuration parameters aren’t supplied, the simulator uses 

default values.  To keep from having to type the same or 
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similar set of configuration parameters every time a 

simulation is run, SimpleScalar simulators make use of the “-

config” and “-dumpconfig” flags.  If the “-dumpconfig 

filepath” parameters are used, the simulator stores all the 

configuration options in the file specified by filepath.  

Later, the “-config filepath” parameters can be used to run a 

simulation with all the configurations stored in the file 

located at filepath.   

 The configurations I used for characterizations were all 

a slight variation on the standard Alpha 21264 configuration 

used by the LAVA lab.  Siva Valusamy, a grad student at the 

LAVA lab, provided me with a file storing this configuration.  

This file included some parameters which were not used by sim-

outorder, so I had to delete them.  Next, with the help of 

Karthik Sankaranarayanan, I translated the configurations I 

needed to characterize into command line parameters.  For 

example, the parameter for an “8KB one-way associative level 1 

instruction cache with LRU replacement policy” is “-cache:il1 

il1:128:64:1:l.”  Afterwards I used the “-config” and “-

dumpconfig” flags together to load the 21264 configuration and 

store it with modified parameters in a different file for each 

configuration.  There were 38 total configurations, and I 

stored them in files 00.config through 37.config, after 
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documenting in an Excel spreadsheet which number corresponds 

to which configuration. 

 At one point, in the middle of the characterization 

process, I realized that I forgot about an important parameter 

from the branch predictor configurations.  To fix this I wrote 

a shell script, changeconfig.sh that used the “-config / -

dumpconfig” combination to add the missing parameter to the 

config files for the branch predictor configurations.  I then 

had to re-simulate all simulations which had used the 

defective config files.  A similar problem with a similar 

solution came up when I realized that all the config files set 

the maximum number of instructions to execute to one billion.  

Fortunately, I had not simulated any instructions large enough 

to be affected by this yet, so nothing had to be re-simulated. 

II.6.2 Using EIO Traces 

 Before simulating a benchmark, I used sim-eio from the 

SimpleScalar toolkit to create an EIO trace file for the 

benchmark.  An EIO trace is useful because it captures the 

benchmark’s execution at the time the trace is made, this 

includes all command line parameters or outside files besides 

the executable that the benchmark may need.  The EIO file can 

then be simulated just like the benchmark, but without any 

additional parameters.  For example, in order to simulate the 

rsynth benchmark, the parameters “\rsynth_directory_path\say -
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a -q -o large_output.au < largeinput.txt” must be supplied to 

sim-outorder.  With an EIO file created using these 

parameters, the parameters supplied to sim-outorder become 

“\eio_directory\path\rsynth.eio.”  Once EIO files are made, 

there is no need to remember the unique parameters any 

benchmark might require.  Since the EIO files do not depend on 

outside files, they can also be grouped together in one 

directory for easy access. 

 One problem I encountered was that, for some unknown 

reason, sim-outorder had trouble executing EIO traces of 

SimpleScalar simulators.  Whenever I tried, I got a 

segmentation fault.  For this reason, the two SimpleScalar 

benchmarks, sim-outorder and sim-fast had to be characterized 

without being captured as EIO traces.  EIO files were still 

used for the two inner benchmarks, stringsearch and anagram. 

II.6.3 Automating Simulation With Shell Scripts 

 In all, I ended up with 17 benchmarks.  With 38 

configurations to use, that makes a total of 646 simulations 

to run.  Because I did not want to have to start every single 

simulation manually, I decided to write a script to do this 

task for me.  This was made simpler by the fact that all 

configuration files were grouped in the ~/config directory of 

my CS network account, and the EIO trace files in the 

~/MiBenchEIO directory.  I could now start a script on a LAVA 
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computer, make it run in the background and log off.  Later I 

could log back on and check on the progress of the script.  

Since each of the LAVA computers has two processors, two 

scripts could run on each machine at any one time without 

interfering with one another. 

 The first script I wrote, simulate.sh, took an EIO 

filename as a parameter, and looped through every file in the 

~/config directory, using it in conjunction with the EIO 

filename to simulate the EIO file with each configuration.  

The simulator and benchmark outputs were stored in the 

~/results directory with filenames derived from the names of 

the EIO and config files.  After each simulation, the script 

would append to the file “finished.dat” a notice indicating 

that the run has finished.  For example, if I typed 

“simulate.sh CRC32.eio,” the script would first tell sim-

outorder to simulate ~/CRC32.eio using the ~/config/00.config 

(the first file in the config directory,) output the 

simulation results to ~/results/CRC32.eio.00.config.sdat and 

output the benchmark results to 

~/results/CRC32.eio.00.config.pdat.  After this simulation is 

finished, the line “CRC32.eio.oo.config finished” would be 

appended to the end of the file finished.dat. 

 After using it for a bit, I found that simulate.sh had 

some shortcomings.  First, while finished.dat showed me which 
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simulation runs had finished, I could never remember which 

computer the script was running on.  For example, if I saw 

that the last simulation run of CRC32 was finished, that would 

have meant that the computer the script was running on only 

had one script running now, so another one could be added.  

But I would have to keep logging in to different computers 

until I found the right one.  Perhaps more importantly, 

simulate.sh would simulate using every single one of the 38 

configuration files in the ~/config directory every time I 

invoked the script.  Since some benchmarks are much larger, 

and therefore take far longer to simulate, than others, this 

meant that when all the small benchmarks are characterized, 

some computers might still be stuck doing a series of 38 very 

long simulations while other computers have nothing to do. 

 To remedy these shortcomings, I wrote another shell 

script, simulate2.sh, and a tiny C++ program, count.  Count 

took two integers and outputted the integers between them with 

two digits per number.  For example, “count 6 12” would output 

the line “06 07 08 09 10 11 12.”  Simulate2.sh took, in 

addition to the EIO file name, two integers and a computer 

name as command line parameters.  Simulate2.sh implemented 

count to simulate using only those configuration files which 

are indicated by the range of the two integers.  After a 

simulation would finish, simulate2.sh would output the 
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computer’s number in addition to the simulation information to 

the file “finished2.dat.”  For example, “simulate2.sh 

CRC32.eio 6 12 010” would start with using the file 06.config, 

afterwards outputting “CRC32.eio.06 finished on lava010” 

before going on to configuration file 07.config.  The script 

would stop after simulating CRC32.eio using 12.config and 

outputting “CRC32.eio.12 finished on lava010” to the file 

“finished2.dat.”  The new script made it possible to split the 

simulation of the same benchmark across multiple computers. 

 Since the two SimpleScalar benchmarks did not use EIO 

trace files, I had to write separate scripts for them.  When I 

found out about the optimization problem (see section II.2.3) 

I recompiled the benchmark version of SimpleScalar in a 

different directory, so these scripts needed to be changed.  I 

also had to remake the EIO files for lame, jpeg_decode, 

jpeg_encode, and rsynth and re-simulate them.  Following 

Professor Skadron’s advice, I also recompiled the SimpleScalar 

suite which I used for simulating using the -O2 extension so 

that simulations would take less time to run.  I placed this 

version of SimpleScalar into another directory, so I changed 

simulate2.sh to use the sim-outorder simulator from this 

directory.  I named the new script simulate3.sh. 

II.6.4 Collecting Simulation Results 
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 After all simulations had finished, I was left with 38 

simulation result files for each benchmark.  The statistics I 

was looking for were the average number of instructions per 

cycle (IPC), level 1 data cache miss rate, level 1 instruction 

cache miss rate, branch address-prediction rate, and branch 

direction-prediction rate.  It would have taken too much time 

to manually look for all of these in the result files, so I 

needed to find a better way. 

 First, I used the Unix “rename” command to rename the 

result files so that the filenames would contain only the name 

of the benchmark and the configuration number.  For example, 

“CRC32.eio.config.00.sdat” became  “CRC32.00.”  Next, I 

created a different directory for each statistic, and used the 

copysdata.sh script I wrote to copy relevant files into the 

directories.  For example, configurations 22 through 37 deal 

with branch predictors, so I used copysdata.sh to copy the 

result files for these configurations were copied into the 

bpred directory. 

 Next from each of these directories, I used the Unix 

“grep” command to search the files for lines which included 

the name of the statistic that directory focuses on, and store 

these lines into files in the ~/stats directory.  For example, 

the first line in the file “sim_IPC.dat” is “CRC32.00:sim_IPC            

3.0284 # instructions per cycle.”  I then used the Unix “sed” 
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command to change the spaces and colons in these files to 

commas, so that the number for each statistic would be exactly 

two commas from the beginning of the line.  I then wrote the 

organize.ps perl script to output each file into a format that 

could be easily copied and pasted into an Excel spreadsheet.  

After the copying and pasting, all of the data was in Excel 

tables. 
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III. Results and Analysis 

This chapter presents the characterization results and my 
analysis of them. 
 

I.1  Level 1 Caches 

I.1.1 Level 1 Instruction Cache Results 

 Figure 2 presents the effects of different level 1 

instruction cache configurations on the IPC.  The cache 

configurations are arranged in rising order from left to 

right, with two-way associative caches to the immediate right 

of one-way associative caches of their respective sizes. 

 

 This figure shows that for some benchmarks, like 

susan_smoothing and CRC32, changing the level 1 instruction 

Figure 2: IPC vs. L1 Instruction Cache Configuration
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cache configuration did not affect the IPC values in any 

appreciable way.  For the rest of the benchmarks, increasing 

the degree of associativity increased the IPC, as did 

increasing the cache size.  Increasing the associativity never 

overpowered the effect of increasing the cache size, though 

the problem here might lie in the fact that the size increase 

was by a factor of four every time.  Simfast_anagram, qsort, 

and stringsearch in particular look like the effects on their 

associativity might have a greater affect on the IPC than an 

early factor of two increase in cache size.  In any case, most 

of the benchmarks affected by instruction cache configuration 

changes reach a plateau by the “128KB one-way associative” 

configuration, and the rest level off at “128KB two-way 

associative.” 

 Figure 3 presents a similar graph, this time of the 

affects of instruction cache configuration changes on the 

cache miss rates.  As could be expected, any increase in the 

IPC in Figure 2 is mirrored by a decrease in the miss rate in 

Figure 3.  After all, a decrease in the miss rate means that 

the needed instructions are found in the cache more often, so 

they can start executing faster.  As soon as a benchmark’s 

instruction cache miss rate approaches zero in Figure 2, the 

IPC reaches its plateau in Figure 3.  Benchmarks in Figure 2 
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which were unaffected by the configuration changes have a near 

0 miss rate with all configurations. 

 

III.1.2 Level 1 Data Cache Results 

 Figures 4 and 5 are the data cache counterparts of 

Figures 2 and 3 respectively.  Looking at them, it is easy to 

see that for most benchmarks, data cache associativity plays a 

far greater role than data cache size.  This is especially 

true for the benchmarks rsynth, susan_smoothing, and 

simfast_anagram.  In fact, for susan_smoothing and 

simfast_anagram, the 8KB two-way associative level 1 data 

cache is far better than the 128KB one-way associative level 1 

Figure 3: Miss Rate vs. L1 Instruction Cache 
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data cache.  Bitcount and the two adpcm benchmark remain 

relatively unaffected. 

 

Figure 4: IPC vs. L1 Data Cache Configuration
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Figure 5: Miss Rate vs. L1 Data Cache Configuration
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III.1.3 Level 1 Cache Result Analysis 

 It is obvious from the results that, for many of the 

benchmarks, I tested the associativity of the level 1 data 

cache has a profound effect on the benchmarks’ performance, 

while the effect of the associativity of the level 1 

instruction cash is far smaller.  What is not as obvious is 

why this is the case.  The maximum data cache miss rates are 

also three times greater than the maximum instruction cache 

miss rates.   

I think the reason for the greater miss rates in the data 

cache is that while instructions are usually accessed 

sequentially, depending on the benchmark, data could be 

accessed all over the place.  This means that in an 

instruction cache, once a new block has been loaded into the 

cache, chances are there will not be another block that hashes 

to the same value for a long time, so associativity does not 

play as large a role.  With data caches, on the other hand, it 

is easy to imagine variables being stored in any available 

place in memory.  I have no idea, however, why benchmarks like 

susan_smoothing are so greatly affected by data cache 

associativity, while others are not. 

The reason that most benchmarks plateau at higher cache 

sizes for both data and instruction caches is probably that 

the cache becomes large enough to completely fit almost all of 



 32

the benchmark’s instructions or data inside it.  There are few 

cache misses because there are few instructions or data 

segments not located in the caches. 

III.2 Branch Predictors 

Figure 6 presents the IPC values for different branch 

predictor configurations averaged across all benchmarks, and 

Figure 7 does the same with direction- and address-prediction 

rates.  While these figures do not represent any specific 

benchmark, they show that GAg configurations, are, overall, 

far worse than the other branch predictor configurations I 

tested, regardless of size.  It almost seems like giving a GAg 

predictor more than 4000 entries is a waste of money.  Bimodal 

configuration are second worst behind the GAg’s.  Overall, 

there does not seem to be a more than 2% difference between 

the best of Gas, gshare, PAg’s, and PAs’.  Size only seems to 

matter when it gets too low, but this might be a symptom of 

the relatively small size of the benchmarks. 

Some interesting details appear when the behaviors of 

specific benchmarks are observed.  CRC32 was not affected by 

branch predictor choice at all.  In susan_smoothing, the 4K 

Gag actually came in second place in IPC, with the 1M and 32K 

taking the fourth and fifth place respectively.  The only 

other benchmark in which GAg did not come dead last was 

adpcm_pcm2adpcm, in which the bimodal configurations took last 
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place instead.  In some benchmarks, GAg configurations 

performed extremely badly.  In dijkstra, GAg configurations 

scored an IPC of 1.32 when compared to the next lowest, a 2.47 

by the worst bimodal configuration.  Other abysmal 

performances by GAg occurred in jpeg_encode, qsort, and sim-

outorder_stringsearch. 

I do not know why GAg did so well in susan_smoothing, but 

it is seems to be a truly awful branch predictor.  I think 

this means that making everything global is not a good idea.  

Bimodal configurations, the best of which never once appeared 

higher than an eighth pace, also seems a bad choice.  PAg, 

PAs, GAs, and gshare branch predictors seem rather evenly 

matched.  Representitives of each of these appeared in the top 

place of at least twice, though PAg and gshare had the best 

IPC the most often.   

Of the general configurations I tested, only bimodal and 

gshare were characterized in the MiBench paper [7].  In Figure 

3 of that paper, it clearly shows that gshare is better than 

bimodal in nearly all cases, which agrees with my results. 
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Figure 6: Average IPC as Affected by Branch Predictor 
Configurations
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Figure 7: Effect of Branch Predictor Configurations on 
Average Prediction Rates 
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IV.  Conclusion 

 For this thesis, I characterized the performance of 

different types of applications with multiple cache and branch 

predictor configurations and analyzed the results.   

 I learned that many programs greatly improve performance 

with a two-way associative data cache over a one-way 

associative data cache, but with instruction caches the 

improvement is not so profound.  I also learned that GAg 

branch predictors are worthless when compared to other 

predictors, and bimodal predictors are the next worst things.  

GAs, gshare, PAs, and PAg predictors often give pretty much 

the same results, and their size only seems to matter when it 

gets really small. 

 For future studies of the effects of different cache and 

branch predictor configurations, I would recommend using much 

larger benchmarks in combination with the SimPoint and MRRL 

tools.  An obvious recommendation would be to find and 

characterize new benchmarks, as was the original purpose of 

this thesis, and to find out why so many of the MiBench 

benchmarks either refused to compile or gave faulty results 

when simulated. 
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APPENDIX: Branch 
Predictor Results 

 

   

IPC Values   

 Config 00 Config 22 Config 23 Config 24 Config 25 
Program  Default 21264 GAg, 1M PHT, 20g GAs, 32K PHT, 8g/7a GAg, 32K PHT, 15g gshare, 32K PHT, 15g 
CRC32 3.0284 3.0279 3.0284 3.0279 3.0284
adpcm_adpcm2pcm 1.8996 1.7334 2.1827 1.7301 2.1643
adpcm_pcm2adpcm 1.8535 1.6838 2.0343 1.679 2.0137
bitcount 3.0243 2.9446 3.1202 2.9434 3.1321
dijkstra 2.4958 1.3145 2.5033 1.3164 2.503
jpeg_decode 2.8671 2.6625 2.8696 2.6577 2.8742
jpeg_encode 2.6955 2.1261 2.7056 2.1238 2.7036
lame 2.5969 2.3139 2.6043 2.3135 2.5961
qsort 2.7192 2.0478 2.7908 2.0458 2.7876
rsynth 2.6246 2.2176 2.6416 2.1886 2.6539
simfast_anagram 2.673 2.3012 2.7292 2.2986 2.7531
simoo_stringsearch 2.0684 1.5905 2.1997 1.5768 2.1721
stringsearch 2.3354 2.0725 2.4675 2.0495 2.4687
susan_corners 2.7945 2.7543 2.7895 2.7543 2.7837
susan_edges 2.812 2.6951 2.8409 2.6926 2.8586
susan_smoothing 3.3508 3.3054 3.2616 3.3053 3.3506
typeset 1.9066 1.5896 1.979 1.5744 2.0248

   
   

 Config 26 Config 27 Config 28 Config 29 
Program  gshare, 32K PHT, 8g/15a GAs, 4K PHT, 5g/7a GAg, 4K PHT, 12g PAg, 1M BHT, 1M PHT, 20g 
CRC32 3.0284 3.0284 3.0279 3.0283
adpcm_adpcm2pcm 2.1827 2.0747 1.7262 2.1472
adpcm_pcm2adpcm 2.0343 1.9171 1.6741 1.9366
bitcount 3.1202 3.1161 2.9422 3.1562
dijkstra 2.5034 2.4959 1.3168 2.5018
jpeg_decode 2.8704 2.865 2.6577 2.8783
jpeg_encode 2.7078 2.6888 2.119 2.7224
lame 2.6049 2.5906 2.3019 2.6103
qsort 2.793 2.7408 2.0216 2.7396
rsynth 2.642 2.6063 2.1369 2.6456
simfast_anagram 2.7351 2.7115 2.285 2.7205
simoo_stringsearch 2.2052 2.0351 1.5416 2.2703
stringsearch 2.4682 2.3385 2.0151 2.6024
susan_corners 2.7926 2.7686 2.7452 2.7868
susan_edges 2.8408 2.8264 2.6892 2.8389
susan_smoothing 3.2616 3.2616 3.3318 3.3299
typeset 1.9907 1.8535 1.5697 2.0507

   

IPC Values   

 Config 30 Config 31  Config 32 
Program  PAs, 1M BHT, 16K PHT, 8p/6a PAs, 4K BHT, 16K PHT, 8p/6a PAs, 1K BHT, 16K PHT, 8p/6a 
CRC32 3.0284 3.0284  3.0284
adpcm_adpcm2pcm 2.1723 2.1723  2.1723
adpcm_pcm2adpcm 1.9602 1.9602  1.9602
bitcount 3.121 3.121  3.121
dijkstra 2.5044 2.5043  2.5044
jpeg_decode 2.8892 2.8891  2.8871
jpeg_encode 2.7023 2.7018  2.7012
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lame 2.603 2.6023  2.5984
qsort 2.722 2.722  2.722
rsynth 2.6465 2.6464  2.6451
simfast_anagram 2.7184 2.7184  2.7152
simoo_stringsearch 2.2032 2.1879  2.151
stringsearch 2.5045 2.5045  2.4876
susan_corners 2.7853 2.7852  2.785
susan_edges 2.8382 2.8382  2.8381
susan_smoothing 3.2515 3.2515  3.2515
typeset 2.0218 2.009  1.9916

   
   

 Config 33 Config 34  
Program  PAs, 1K BHT, 2K PHT, 4p/7a PAg, 1K BHT, 1K PHT, 10p 
CRC32 3.0284 3.0283  
adpcm_adpcm2pcm 2.1604 2.1354  
adpcm_pcm2adpcm 1.9512 1.928  
bitcount 3.1111 3.129  
dijkstra 2.5042 2.5021  
jpeg_decode 2.8771 2.8752  
jpeg_encode 2.6978 2.6898  
lame 2.5911 2.5883  
qsort 2.7215 2.7294  
rsynth 2.6427 2.6368  
simfast_anagram 2.7028 2.7099  
simoo_stringsearch 2.0746 2.0797  
stringsearch 2.3948 2.3976  
susan_corners 2.7846 2.7709  
susan_edges 2.8285 2.8235  
susan_smoothing 3.2515 3.2515  
typeset 1.9447 1.949  

   

IPC Values   

 Config 35 Config 36 Config 37  
Program  bimod 1M bimod 4K bimod 512B  

CRC32 3.0284 3.0284 3.0283  
adpcm_adpcm2pcm 1.7724 1.7724 1.7724  
adpcm_pcm2adpcm 1.6148 1.6148 1.6148  
bitcount 3.0437 3.0437 3.0437  
dijkstra 2.4909 2.4906 2.4791  
jpeg_decode 2.862 2.8615 2.8554  
jpeg_encode 2.6955 2.6956 2.6944  
lame 2.592 2.5909 2.5772  
qsort 2.6756 2.6694 2.6208  
rsynth 2.6049 2.6049 2.5972  
simfast_anagram 2.6178 2.6177 2.6078  
simoo_stringsearch 2.031 1.9979 1.8917  
stringsearch 2.2043 2.2043 2.1718  
susan_corners 2.7787 2.7786 2.774  
susan_edges 2.8145 2.8145 2.8154  
susan_smoothing 3.2514 3.2514 3.2513  
typeset 1.8965 1.8859 1.8174  
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Address hit 
rates 

  

 Config 00 Config 22 Config 23 Config 24 Config 25 
Program  Default 21264 GAg, 1M PHT, 20g GAs, 32K PHT, 8g/7a GAg, 32K PHT, 15g gshare, 32K PHT, 15g 
CRC32 0.9999 0.9997 0.9999 0.9997 0.9999
adpcm_adpcm2pcm 0.7646 0.7162 0.8427 0.7148 0.8386
adpcm_pcm2adpcm 0.8004 0.7354 0.8562 0.7333 0.8538
bitcount 0.9509 0.9205 0.9677 0.9187 0.9693
dijkstra 0.9913 0.6297 0.9926 0.6297 0.9925
jpeg_decode 0.9573 0.8284 0.9576 0.8258 0.9615
jpeg_encode 0.9553 0.8264 0.9571 0.8253 0.9557
lame 0.9445 0.8037 0.9453 0.8001 0.9453
qsort 0.9679 0.7984 0.978 0.7982 0.9776
rsynth 0.9816 0.915 0.9851 0.9035 0.9962
simfast_anagram 0.9417 0.8112 0.9485 0.8063 0.9487
simoo_stringsearch 0.9326 0.7857 0.9485 0.781 0.9425
stringsearch 0.9304 0.8554 0.9477 0.8508 0.9458
susan_corners 0.9267 0.9022 0.9243 0.9013 0.922
susan_edges 0.9136 0.8704 0.9239 0.8701 0.9268
susan_smoothing 0.9945 0.9265 0.941 0.9265 0.9944
typeset 0.9097 0.7541 0.9281 0.7461 0.9395

   
   

 Config 26 Config 27 Config 28 Config 29 
Program  gshare, 32K PHT, 8g/15a GAs, 4K PHT, 5g/7a GAg, 4K PHT, 12g PAg, 1M BHT, 1M PHT, 20g 
CRC32 0.9999 0.9999 0.9997 0.9999
adpcm_adpcm2pcm 0.8427 0.8145 0.7134 0.8344
adpcm_pcm2adpcm 0.8561 0.807 0.731 0.8291
bitcount 0.9677 0.9673 0.9182 0.9734
dijkstra 0.9926 0.9914 0.6301 0.9926
jpeg_decode 0.9576 0.9545 0.819 0.9669
jpeg_encode 0.9572 0.9517 0.8239 0.9589
lame 0.9454 0.9385 0.7959 0.9499
qsort 0.9784 0.9701 0.7954 0.9714
rsynth 0.9853 0.9787 0.8916 0.9949
simfast_anagram 0.9498 0.943 0.7988 0.9487
simoo_stringsearch 0.9505 0.9187 0.7664 0.963
stringsearch 0.9486 0.9265 0.8433 0.9725
susan_corners 0.9247 0.9179 0.8981 0.9245
susan_edges 0.9238 0.9197 0.869 0.9186
susan_smoothing 0.941 0.941 0.9331 0.9889
typeset 0.9318 0.8842 0.7386 0.9496

   

Address hit 
rates 

  

 Config 30 Config 31  Config 32 
Program  PAs, 1M BHT, 16K PHT, 8p/6a PAs, 4K BHT, 16K PHT, 8p/6a PAs, 1K BHT, 16K PHT, 8p/6a 
CRC32 0.9999 0.9999  0.9999
adpcm_adpcm2pcm 0.8396 0.8396  0.8396
adpcm_pcm2adpcm 0.8332 0.8332  0.8332
bitcount 0.9679 0.9679  0.9679
dijkstra 0.9929 0.9928  0.9928
jpeg_decode 0.9736 0.9736  0.9725
jpeg_encode 0.9566 0.9564  0.956
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lame 0.9458 0.9454  0.9435
qsort 0.9711 0.9711  0.9711
rsynth 0.9949 0.9949  0.9946
simfast_anagram 0.9479 0.9479  0.9471
simoo_stringsearch 0.9541 0.9519  0.9416
stringsearch 0.9572 0.9572  0.9543
susan_corners 0.9223 0.9223  0.9223
susan_edges 0.9183 0.9182  0.9182
susan_smoothing 0.9375 0.9375  0.9375
typeset 0.9424 0.9389  0.9333

   
   

 Config 33 Config 34  
Program  PAs, 1K BHT, 2K PHT, 4p/7a PAg, 1K BHT, 1K PHT, 10p 
CRC32 0.9999 0.9999  
adpcm_adpcm2pcm 0.8366 0.8315  
adpcm_pcm2adpcm 0.8297 0.8255  
bitcount 0.9675 0.9691  
dijkstra 0.9928 0.9925  
jpeg_decode 0.9628 0.9634  
jpeg_encode 0.9542 0.9533  
lame 0.9397 0.9376  
qsort 0.9707 0.9708  
rsynth 0.9943 0.9931  
simfast_anagram 0.9452 0.9466  
simoo_stringsearch 0.9302 0.9293  
stringsearch 0.9388 0.9367  
susan_corners 0.9221 0.9194  
susan_edges 0.9161 0.9143  
susan_smoothing 0.9375 0.9375  
typeset 0.9198 0.9208  

   

Address hit 
rates 

  

 Config 35 Config 36 Config 37  
Program  bimod 1M bimod 4K bimod 512B  

CRC32 0.9999 0.9999 0.9999  
adpcm_adpcm2pcm 0.7139 0.7139 0.7139  
adpcm_pcm2adpcm 0.6516 0.6516 0.6516  
bitcount 0.9591 0.9591 0.9591  
dijkstra 0.9911 0.9911 0.9886  
jpeg_decode 0.9536 0.9534 0.9458  
jpeg_encode 0.9539 0.9539 0.9532  
lame 0.9368 0.9363 0.9311  
qsort 0.9624 0.9608 0.9505  
rsynth 0.9777 0.9777 0.9764  
simfast_anagram 0.9275 0.9274 0.9218  
simoo_stringsearch 0.9269 0.9223 0.8962  
stringsearch 0.908 0.908 0.901  
susan_corners 0.921 0.921 0.9195  
susan_edges 0.912 0.912 0.9122  
susan_smoothing 0.9375 0.9375 0.9375  
typeset 0.9076 0.9017 0.8715  
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Directional hit rates  

 Config 00 Config 22 Config 23 Config 24 Config 25 
Program  Default 21264 GAg, 1M PHT, 20g GAs, 32K PHT, 8g/7a GAg, 32K PHT, 15g gshare, 32K PHT, 15g 
CRC32 0.9999 0.9997 0.9999 0.9997 0.9999
adpcm_adpcm2pcm 0.7646 0.7162 0.8427 0.7148 0.8386
adpcm_pcm2adpcm 0.8004 0.7354 0.8562 0.7333 0.8539
bitcount 0.9509 0.9269 0.9677 0.9245 0.9693
dijkstra 0.9914 0.6332 0.9927 0.6333 0.9927
jpeg_decode 0.959 0.8326 0.9595 0.8302 0.9636
jpeg_encode 0.9555 0.8269 0.9575 0.826 0.9562
lame 0.9494 0.8091 0.9503 0.8054 0.9505
qsort 0.9717 0.8158 0.9818 0.8134 0.9814
rsynth 0.9835 0.9378 0.9859 0.9265 0.9969
simfast_anagram 0.9836 0.8534 0.9903 0.848 0.9905
simoo_stringsearch 0.9421 0.8018 0.9569 0.7973 0.9511
stringsearch 0.9317 0.8589 0.9515 0.8547 0.9502
susan_corners 0.9271 0.9028 0.9248 0.9018 0.9225
susan_edges 0.9138 0.8706 0.9241 0.8703 0.927
susan_smoothing 0.9945 0.9265 0.9411 0.9265 0.9944
typeset 0.9347 0.7837 0.9517 0.7765 0.963

   
   

 Config 26 Config 27 Config 28 Config 29 
Program  gshare, 32K PHT, 8g/15a GAs, 4K PHT, 5g/7a GAg, 4K PHT, 12g PAg, 1M BHT, 1M PHT, 20g 
CRC32 0.9999 0.9999 0.9997 0.9999
adpcm_adpcm2pcm 0.8427 0.8145 0.7134 0.8344
adpcm_pcm2adpcm 0.8561 0.807 0.731 0.8291
bitcount 0.9677 0.9676 0.9243 0.9734
dijkstra 0.9927 0.9915 0.6336 0.9926
jpeg_decode 0.9595 0.9568 0.8234 0.9685
jpeg_encode 0.9575 0.9523 0.8245 0.9592
lame 0.9504 0.9436 0.8013 0.954
qsort 0.982 0.9728 0.8107 0.9745
rsynth 0.9861 0.9803 0.9154 0.9958
simfast_anagram 0.9915 0.9848 0.841 0.9903
simoo_stringsearch 0.9585 0.9291 0.7833 0.9683
stringsearch 0.9526 0.9293 0.8476 0.9738
susan_corners 0.9252 0.9183 0.8986 0.9249
susan_edges 0.924 0.9199 0.8692 0.9188
susan_smoothing 0.941 0.941 0.9331 0.9889
typeset 0.9554 0.9109 0.7689 0.9729

Directional 
hit rates 

  

 Config 30 Config 31  Config 32 
Program  PAs, 1M BHT, 16K PHT, 8p/6a PAs, 4K BHT, 16K PHT, 8p/6a PAs, 1K BHT, 16K PHT, 8p/6a 
CRC32 0.9999 0.9999  0.9999
adpcm_adpcm2pcm 0.8396 0.8396  0.8396
adpcm_pcm2adpcm 0.8332 0.8332  0.8332
bitcount 0.9679 0.9679  0.9679
dijkstra 0.9929 0.9929  0.9928
jpeg_decode 0.9751 0.9751  0.974
jpeg_encode 0.9568 0.9567  0.9563
lame 0.9506 0.9502  0.9484
qsort 0.9733 0.9733  0.9733
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rsynth 0.996 0.996  0.9958
simfast_anagram 0.9895 0.9895  0.9888
simoo_stringsearch 0.9601 0.9579  0.9485
stringsearch 0.9609 0.9609  0.9573
susan_corners 0.9227 0.9227  0.9227
susan_edges 0.9184 0.9184  0.9184
susan_smoothing 0.9375 0.9375  0.9375
typeset 0.9662 0.9627  0.9572

   
   

 Config 33 Config 34  
Program  PAs, 1K BHT, 2K PHT, 4p/7a PAg, 1K BHT, 1K PHT, 10p 
CRC32 0.9999 0.9999  
adpcm_adpcm2pcm 0.8366 0.8315  
adpcm_pcm2adpcm 0.8297 0.8255  
bitcount 0.9675 0.9691  
dijkstra 0.9928 0.9925  
jpeg_decode 0.9642 0.9649  
jpeg_encode 0.9545 0.9536  
lame 0.9445 0.9424  
qsort 0.9728 0.9739  
rsynth 0.9956 0.9945  
simfast_anagram 0.9869 0.9883  
simoo_stringsearch 0.9377 0.9381  
stringsearch 0.9421 0.9394  
susan_corners 0.9225 0.9199  
susan_edges 0.9162 0.9144  
susan_smoothing 0.9375 0.9375  
typeset 0.9445 0.945  

   

Directional 
hit rates 

  

 Config 35 Config 36 Config 37  
Program  bimod 1M bimod 4K bimod 512B  

CRC32 0.9999 0.9999 0.9999  
adpcm_adpcm2pcm 0.7139 0.7139 0.7139  
adpcm_pcm2adpcm 0.6516 0.6516 0.6516  
bitcount 0.9591 0.9591 0.9591  
dijkstra 0.9912 0.9912 0.9892  
jpeg_decode 0.9554 0.9552 0.9476  
jpeg_encode 0.9541 0.9541 0.9534  
lame 0.9412 0.9407 0.9371  
qsort 0.9645 0.9629 0.9537  
rsynth 0.9795 0.9795 0.9784  
simfast_anagram 0.9722 0.9722 0.9666  
simoo_stringsearch 0.9382 0.9336 0.9072  
stringsearch 0.9111 0.9111 0.9042  
susan_corners 0.9214 0.9214 0.9199  
susan_edges 0.9122 0.9122 0.9124  
susan_smoothing 0.9375 0.9375 0.9375  
typeset 0.9341 0.9282 0.8987  

 


