
Finding and Characterizing New Benchmarks for
Computer Architecture Research

A Thesis

In TCC 402

Presented To

The Faculty of the School of the
School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

Of the Requirements for the Degree

Bachelor of Science in Computer Science

by

Yuriy Zilbergleyt

April 21, 2003

On my honor as a University student, on this assignment I have neither given nor received

unauthorized aid as defined by the Honor Guidelines for Papers in TCC Courses.

Signed______________________________________

Approved __________________________________ Date __________
Technical Advisor  Kevin Skadron

Approved __________________________________ Date __________

TCC Advisor  Ingrid H. S. Townsen

Acknowledgements

This thesis would not have been possible without the help

of several wonderful individuals. My technical advisor and

director of the LAVA Lab, Professor Kevin Skadron of the

University of Virginia’s Computer Science department, provided

me with most of the background research I needed for this

thesis and constantly advised me on the many technical

problems I encountered during the project. My TCC Advisor,

Professor Ingrid Townsend of the University of Virginia’s TCC

department, helped me write the actual thesis report by

setting partial deadlines and critiquing the documents.

Karthik Sankaranarayanan, a graduate student in the University

of Virginia’s Computer Science department helped me get

started with the SimpleScalar toolkit and explained to me how

to convert cache and branch predictor configurations into

command-line parameters for the simulators. Siva Velusamy,

also a graduate student in the University of Virginia’s

Computer Science department, provided me with the default

21264 configuration file which I used as the basis for all my

configurations.

Preface

 The original objective of this thesis was to convert

several different real-world applications into benchmark

programs suitable be used by the LAVA lab in conjunction with

SimpleScalar. These applications consisted of the Kaffee Java

Virtual Machine, the Postgres database software, an MPEG

player, and SimpleScalar itself [5]. I was also supposed to

modify the established MiBench benchmarking suite so that it

could be used on SimpleScalar.

For baseline data, I planned to use the new benchmarks to

characterize the behaviors of different combinations of branch

predictor and cache configurations. Since some of these

programs are too large to fully simulate in a reasonable

amount of time, I intended to use programs based on Basic

Block Vector (BBV) techniques developed by Sherwood et al. [2]

and Memory Reference Reuse Latency (MRRL) techniques developed

by Haskins and Skadron [1]. These techniques would have

enabled me to simulate in detail only portions of benchmarks,

and still end up with a result representative of the entire

benchmark’s performance.

Unfortunately, I waited too long to get started, and I

was only able to make the SimpleScalar benchmarks and a part

of the MiBench suite to be simulated under SimpleScalar.

There was also not enough time left to experiment with using

 4

Calder’s BBV tool. Because of this, with my technical

advisor’s, Professor Skadron’s, advice, I switched the focus

of the thesis from finding and characterizing new benchmarks

to characterizing the benchmarks I got working under

SimpleScalar and analyzing how different cache and branch

predictor configurations affected the performance of different

benchmarks.

 i

Table of Contents

Section Page Number

Abstract .. i

Glossary ... ii

I. Introduction 1

II. Procedures 6

III. Results and Analysis 27

IV. Conclusion 36

V. Bibliography 37

Appendices

 i

Abstract

 Computer architects test new microprocessor techniques by

executing benchmarks on microprocessor simulators. However,

the benchmarks in use are not enough to cover the vast variety

of application types that could tax computers in widely

different ways. For this thesis, I simulated applications of

different types using the SimpleScalar simulator toolkit. I

characterized the performance of these applications utilizing

multiple cache and branch predictor configurations and

analyzed the results.

This research showed that many programs greatly improve

performance with a two-way associative data cache over a one-

way associative data cache, but with instruction caches the

improvement is not so profound. I also learned that GAg

branch predictors are worthless when compared to other

predictors, and bimodal predictors are the next worst things.

GAs, gshare, PAs, and PAg predictors often give pretty much

the same results, and their size only seems to matter when it

gets really small.

 ii

Glossary

Branch predictor A hardware component of a computer. When
the location of the next instruction to be
executed depends on the result of an
instruction that has not been executed
yet, the branch predictor makes an
educated guess. Since computers can
simultaneously execute multiple
instructions (depending, among other
things, on the types of the instructions)
an instruction often goes into execution
before the previous instruction has been
executed. If the branch predictor’s guess
is wrong, the microprocessor must “roll
back” and discard all instructions it
started executing as a result of the
guess.

Cache A hardware component of a computer. A
cache stores instructions and data that
are deemed likely to be accessed in the
near future. Caches are much faster than
the main memory in which instructions and
data usually reside, so accessing the
contents of a cache takes less time than
accessing the contents of memory. Caches
are also far more expensive than main
memory, and therefor much smaller. Only
extremely tiny programs can completely fit
into a cache.

Cache miss The event when the computer tries to
access a piece of data or an instruction
from the cache and does not find it there.
In this case the computer must look in the
memory.

Command line A text interface for an operating system
where program names and commands must be

 iii

typed in order to be executed. No
clicking.

Command line parameter An input to a program that is typed
at the command line and immediately after
the program’s name (or after another
parameter) before pressing “Enter” to
start the program.

Compiling The act of translating a program written
in a high level programming language like
C++ into a series of machine language
instructions that can be executed by a
computer.

Compiler A program that compiles other programs.

Computer architect A person who designs computer hardware
components.

Execution For a program, the act of running the
program. For an instruction, the act of
taking the steps necessary to carry out
the “orders” implicit in the instruction.

Instruction The basic building block of a program.
Each instruction of a program is
interpreted and executed by a
microprocessor.

Makefile A file that details how a program should
be compiled. This file is used by the
“make” program to automatically compile
programs.

Microprocessor An integrated circuit acting as the
central processing unit (CPU) of a
computer. Analogous to the “brain” of the
computer.

Shell A program that interprets certain commands
typed at the command line and executes
them.

Shell Script Similar to a program but written using
commands understood by the chosen shell
and the working operating system. No
compilation necessary.

 iv

Simulator For the purposes of this paper, a program
that simulates the operation of a
computer. Any program that can run on a
computer should be able to run on a
simulator with the same results, depending
on the level of detail of the simulation.
Since simulators are implemented in
software, they are orders of magnitude
slower than the hardware they are
simulating.

Suite A collection of software applications
grouped together because of some
similarity in purpose. Microsoft Office
is an example of this.

I. Introduction

This chapter introduces the motivations and objectives of
this thesis report. This chapter also includes a
literature review and an overview of the contents of
subsequent chapters.

I.1 The Need for Benchmarks in Computer
Architecture Research

Computer architects are constantly researching new

techniques in microprocessor design. Instead of spending time

and money on implementing the new designs in hardware,

computer architects first test these techniques on simulators.

The Laboratory for Computer Architecture at Virginia (LAVA),

for example, tests their designs using a modified version of

the SimpleScalar simulator toolkit, which was developed by

SimpleScalar LLC [4]. In computer terms, a benchmark is a

special program that is used to characterize a computer

system’s, or, in this case, a microprocessor’s, performance in

executing the program. The theory is that a benchmark program

is representative of real-world applications, so a measure of

how well a system performs in the execution of the benchmark

is indicative of what the system’s performance with actual

applications will be like.

Different applications tax computers in different ways,

so there is no way that a single benchmark could predict the

0performance of a computer system on all applications. For

 2

example, one benchmark might provide reasonable statistics on

how well a computer system would run a word processor, but

this data could be meaningless when attempting to predict the

performance of the system when playing a graphically intensive

computer game. There are currently not enough benchmarks to

correspond with all the different application types that a

computer system might be expected to run.

I.2 Desirable Characteristics of Benchmarks Used
With Microprocessor Simulators

 All benchmarks must be able to predict with reasonable

accuracy how well a computer system would be able to run a

certain application. Benchmarks used with microprocessor

simulators like SimpleScalar have an additional requirement:

they must not take too long to execute. A microprocessor

simulator takes far longer to execute a benchmark than the

physical processor that is being simulated would. If an

otherwise great benchmark takes a year to simulate, then it is

useless. Because of this, all benchmarks to be used with

simulators must be able to be executed in a reasonable amount

of time.

I.3 Project Objectives and Methods

For this thesis I analyzed how different cache and branch

predictor configurations affected the performance of different

benchmarks. I did all simulations using the SimpleScalar

 3

simulator toolkit. The benchmarks I used were from the

MiBench benchmarking suite. In addition, I also simulated two

of the SimpleScalar simulators, sim-fast and sim-outorder,

running other benchmarks.

To automate the simulation process and to compile results

from the simulations I wrote a variety of shell-scripts. The

data was later put into in an Excel spreadsheet so I could

analyze it.

I.4 Literature Review

 Executing benchmarks on simulators to predict the

behavior of theoretical designs is nothing new in computer

architecture. Using only one or more representative samples

of a benchmark to try to characterize the full benchmark

behavior is a more recent trend. Sherwood et al. [2] explains

that this is because the complexity of processors grows much

faster than processing power. Because of this, detailed

simulations of microprocessors become slower with each

successive advance in computer hardware technology.

Much research has been done by the computer architecture

community on methods of picking the right samples of a

benchmark to simulate in full detail. In their 1999 paper,

Skadron et al. simulated the SPEC95 Benchmark Suite using a

single 50 million instruction window for each benchmark, with

the entire pre-sample period devoted to warm-up. Skadron et

 4

al. chose this window using interval branch-misprediction

rates. This paper also relates how many other researchers put

the sample window at the very beginning of the benchmark.

This would produce erroneous results, as the initial phase of

most programs is often very different from the rest of the

execution. Three years after this paper, Sherwood et al. [2]

introduced the method of using Basic Block Vectors and

clustering to select multiple sample windows in a benchmark.

This technique was tested on the SPEC2000 benchmark suite, and

provided better results than those of a single sample. Also

in 2002, Haskins and Skadron [1] introduced the technique of

using MMRL to calculate the warm-up sections of the benchmark

based on chosen samples. This paper also details a number of

previously proposed ways to calculate sample and warm-up

periods.

In 2001, Guthaus et al. [7] released the MiBench

benchmarking suite and a technical report describing the

suite. This report contains information on the specific

benchmarks of the suite, as well as some characterization

results which I compared to those obtained by me.

I.5 Overview of the Contents of the Rest of the
Report

 The rest of this report is arranged as follows:

 5

Chapter 2 details how I went about preparing and

characterizing the benchmarks. Chapter 3 presents and

discusses the results of the characterizations. Chapter 4

presents my concluding thoughts about the thesis.

 6

II. Procedures

This chapter describes the methods I used in working on
this thesis. It also details the various obstacles I
encountered during the process.

II.1 Overview of the Methods and Tools Used in
the Thesis

 All compiling and simulations were performed on LAVA

lab’s computers. Whenever I needed to use these machines, I

accessed them remotely from my desktop computer using Van Dyke

Technologies’ SecureCRT application, which is distributed in

the University of Virginia by ITC. The LAVA computers are on

the UVA CS computer network, so when logged in to any of these

computers I could access files on my CS account.

 For simulation, I used the SimpleScalar microprocessor

simulator toolkit developed by SimpleScalar LLC [5]. For the

actual characterization, I used the sim-outorder simulator

from the toolkit. I compiled the SimpleScalar toolkit on LAVA

lab’s Linux machines and configured it to simulate programs

using the Alpha instruction set.

I compiled the benchmarks on Krakatoa, the LAVA lab’s

Alpha machine, which enabled them to be simulated by the

Alpha-configured SimpleScalar simulators. To compile I used

the default Makefiles which came with the benchmarks. Some of

the benchmarks from the MiBench benchmarking suite had

problems compiling, and many of those that correctly compiled

 7

had problems executing correctly on SimpleScalar. Because I

was not able to resolve all of these problems, I only

characterized a part of the MiBench suite.

I converted the cache and branch predictor configurations

I wanted to use into command line parameters for sim-outorder.

I then used these to create a different .config file for each

configuration and wrote several shell scripts to automate the

simulation of benchmarks. After I was satisfied that a

benchmark could be simulated by sim-outorder without problems,

I used these scripts to simulate the benchmark with sim-

outorder and the .config files I had prepared earlier.

After each simulation run, sim-outorder outputted the

results to a different file. When all the runs were finished,

I wrote shell and Perl scripts to parse the files for the

statistics that I needed and output them into a form that

enabled me to easily copy and paste them into an Excel

spreadsheet. I then did my best to graph and analyze the

data.

For the larger benchmarks, I planned to use Calder’s

SimPoint software tool to find the samples of the benchmarks

that could be simulated instead of simulating the entire

benchmark. Afterwards I planned to use Haskins’ MRRL (Memory

Reference Reuse Latency) tool to calculate the warm-up periods

for each sample provided by SimPoint. The sample and warm-up

 8

periods would have been used to simulate large benchmarks in a

reasonable amount of time. However, due to my lack of

knowledge about Makefiles, I was unable to compile SimPoint

for SimpleScalar in time to use it for this thesis. Because

of this, I was unable to simulate large benchmarks, so all of

the benchmarks characterized for this thesis have less than

two billion instructions.

II.2 Compiling the Benchmarks On Krakatoa

II.2.1 MiBench Compiling Problems

 Since I configured the SimpleScalar toolkit to run

programs using the Alpha instruction set, I needed the

benchmarks to be in Alpha binary format. To do this, I

compiled the benchmarks on the LAVA lab’s Krakatoa machine,

which is an Alpha computer.

 The first benchmarks I attempted to compile were the ones

from the MiBench suite. Each MiBench benchmark came with

instructions on how to compile it. These instructions were

usually of the form:

Compile Instructions

1) Type "make". This will create the executables used by the scripts.

Clean Instructions

1) Type "make clean". This will delete post-compile files (i.e. old executables, output,
object files, etc...).

 9

Some of the compile instructions required the running of

a provided “configure” shell script that tried to discern

various pieces of information about the system, in this case

Krakatoa, on which the benchmark was to be compiled so this

information could be used in the compilation process.

 Since MiBench is an established benchmarking suite, I

expected to compile these benchmarks without major problems.

Unfortunately I was being overly optimistic. In the sphinx

benchmark, there was a problem with the configure script that

I could not figure out how to solve. The benchmarks lame,

mad, tiff, and pgp, gave various errors which I did not know

how to deal with when I tried to compile them using make. On

the advice of my technical advisor I tried using the GNU

version of make, found in the /usr/cs/bin directory, instead

of the default version. This enabled lame to compile, but the

problems with the other three benchmarks remained.

The ispell benchmark, which gave no errors while

compiling, gave an “illegal format hash table” error when

executed as a normal application on Krakatoa. It also gave

the same error when simulated with the SimpleScalar

simulators. Similarly, rijndael, produced a “memory fault”

during execution on Karakatoa and a “segmentation fault”

during simulation. I was not able to figure out why this

happened.

 10

II.2.2 Using Static Linking to Resolve Segmentation Faults

After successfully compiling, the lame, jpeg, rsynth, and

sha benchmarks gave “segmentation fault” errors during

simulation but not during normal execution on Krakatoa.

Again, I could not figure out what was wrong. Later, however,

when I compiled the SimpleScalar toolkit as benchmarks on

Krakatoa, it had the same problem. I noticed that while

giving the “segmentation fault” error when simulated by most

SimpleScalar simulators, these benchmarks gave a “bogus

opcode” error when simulated using the sim-safe simulator from

the toolkit. I searched the SimpleScalar mailing list archive

[10] online and found a message by Charles Lefurgy [11] that

said the “bogus opcode” problem could be resolved by compiling

the benchmarks using “static linking.” In the README file

that came with SimpleScalar I found that this could be done by

adding the “-static” flag when compiling with the GNU gcc

compiler, or the “-non_shared” flag when compiling using the

DEC cc compiler.

The Makefiles of all of the programs giving this bug

except for lame used gcc as the default compiler, and after I

modified the Makefiles to include the “-static” flag, the bug

was fixed. Lame’s Makefile used the cc compiler as default

for Alpha machines, but the “-non_shared” flag did not get rid

 11

of the segmentation fault. Modifying the Makefile to use gcc

with the “-static” flag instead of cc solved the problem.

II.2.3 Required Optimizations

After some of the simulation runs were finished, I found

out that all of the benchmarks were supposed to be compiled

using level 2 or higher optimizations. Looking through the

Makefiles of the benchmarks, I found out that the lame,

rsynth, jpeg and SimpleScalar benchmarks were compiled with

either a too low level of optimization or no optimizations at

all. Remedying the problem was a simple matter of adding the

“-O2” flag to the Makefiles.

In the case of the SimpleScalar benchmark, adding the -O2

flag resulted in an unforeseen problem: Krakatoa kept running

out of virtual memory when trying to compile the benchmark

with optimizations. Following advice from Professor Skadron,

I modified the Makefile to use the cc compiler instead of gcc.

This meant that I needed to use the “-non_shared” flag for

static linking, and I was worried because this had not worked

for the lame benchmark before. Thankfully my fears were not

realized, and SimpleScalar simulators compiled were able to

execute SimpleScalar simulators compiled with cc on Krakatoa

with no problems. Now it was time to check if SimpleScalar

simulators properly simulated the compiled benchmarks.

 12

II.3 Making Sure Benchmarks Are Simulating
Correctly

All SimpleScalar simulators have the option to store

simulator output to one file and benchmark output to another

file. The simulator output is the information provided by the

simulator itself, including statistics about the benchmark,

while the benchmark output is whatever output the benchmark

would have displayed when run as a normal program. Therefore

one way to check if a benchmark was simulated properly is to

compare the output of simulated benchmark with the output the

benchmark made when executed as a normal application on

Krakatoa. For this role I used the sim-fast simulator from

the SimpleScalar toolkit.

Sim-fast, as its name suggests, is the fastest simulator

in the toolkit, but it takes some shortcuts during simulation

and does not output many useful statistics. Being so fast,

however, makes sim-fast is a good simulator to produce the

simulated benchmark outputs I used to check if a benchmark

would execute correctly on the far slower sim-outorder, the

simulator that I used to gather characterization data. After

making this check for all benchmarks that were successfully

compiled and executed on Krakatoa, there were 8 benchmarks

from the MiBench suite with differences between their normal

 13

and simulated results: basicmath, patricia, bitcount, typeset,

blowfish, sha, FFT, and gsm.

To try to figure out what the problem was, I used the

Unix “diff” command to look at the differences between the

outputs. The problem with bitcount’s output was that it

contained the timing data for several different types of

operations. Since these operations take a lot longer to

execute while simulating, this was not a problem with the

simulation, so bitcount passed the comparison test.

Similarly, the typeset output included the date and time that

the benchmark was run, so of course it was different. The

problems with the other 7 benchmarks were not resolved. The

strangest of these was a problem shared by basicmath and

patricia. In the simulated outputs of these benchmarks, some

numbers were off by exactly one. For example, a segment of

the simulated basicmath output that should have read:

“Solutions: 1.635838
Solutions: 13.811084
Solutions: -3.947812
Solutions: -8.613092”

was instead:

“Solutions: 2.635838
Solutions: 14.811084
Solutions: -4.947812
Solutions: -9.613092”.

 One problem that the output comparison method failed to

catch was with the ghostscript benchmark. Sim-fast ran

 14

ghostscript without any problems, and the simulated output

matched the normal output perfectly. However, when I tried to

gather characterization information with sim-outorder, the

simulator outputted the error “fatal: non-speculative fault

(2) detected @ 0x120077ae0.” I was not able to find any

information about this error on the SimpleScalar mailing list

archive [10]. This was the only time that a benchmark I

worked with was simulated perfectly by sim-fast but had

problems with sim-outorder.

II.4 Brief Description of MiBench Benchmarks
Characterized in this Project

 I was able to get a total of 11 benchmarks from the

MiBench suite to work with sim-outorder. All of these were

executed with the “large” input sets provided with MiBench.

The descriptions that follow quote from the MiBench paper [7].

Bitcount “tests the bit manipulation abilities of a

processor by counting the number of bits in an array of

integers” using 5 different methods.”

Qsort “test sorts a large array of strings into ascending

order using the well known quick sort algorithm.”

Susan “is an image recognition package” which can

recognize corners and edges in an MRI scan as well as smooth

an image. Susan consists of three parts which I treated as

 15

separate benchmarks: susan_corners, susan_edges, and

susan_smoothing.

Dijkstra “constructs a large graph in an adjacency matrix

representation and then calculates the shortest path between

every pair of nodes using repeated applications of Dijkstra’s

algorithm.”

Jpeg makes use of a “representative algorithm for image

compression and decompression.” Jpeg consists of two parts

which I treated as separate benchmarks: jpeg_encode and

jpeg_decode.

Lame encodes wave files into MP3 format. Typeset is a

“general typesetting tool, that has a front-end processor for

HTML.”

Stringsearch “searches for given words in phrases using

case insensitive comparison algorithm.”

Rsynth is a “text to speech synthesis program that

integrates several pieces of public domain code into a single

program.”

Adpcm “takes 16-bit linear PCM samples and converts them

to 4-bit samples” and vice versa. This benchmark consists of

two parts which I treated as separate benchmarks:

adpcm_adpcm2pcm and adpcm_pcm2adpcm.

 16

CRC32 “performs a 32-bit Cyclic Redundancy Check (CRC) on

a file. CRC checks are often used to detect errors in data

transmission.”

II.5 Choosing How to Simulate the Simulator

Simulating the SimpleScalar simulators as benchmarks

posed a bit of a problem. To make the discussion less

confusing, I will make the following definitions:

Inner simulator: The simulator being simulated.

Outer simulator: The simulator simulating the inner
simulator

Inner benchmark: The program being simulated by the inner

simulator.

Outer benchmark: The simulation of the inner benchmark by

the inner simulator.

For example, suppose I wanted to characterize the

performance of simulator B by using simulator A to simulate

simulator B simulating program C. In this case, A would be

the “outer simulator,” B would be the “inner simulator,” C

would be the “inner benchmark,” and B simulating C would be

the “outer benchmark.”

As stated before, it takes far longer to simulate a

program than it does to simply run it on compatible hardware.

Imagine, then, how much more time an outer simulator requires

to simulate an outer benchmark! To illustrate this point, I

did an experiment with sim-fast as the outer simulator, a tiny

 17

program called test-prinf which comes with SimpleScalar as the

inner benchmark, and sim-fast and sim-outorder compiled on

Krakatoa as inner simulators. Figure 1 shows the result in a

table.

Program Run Instruction Count Execution Time (sec)
test-printf 98430 Negligible
Sim-fast simulating
test-printf

252,364,984 0.5

Sim-outorder
simulating test-
printf

3,302,886,821 2.5

Sim-fast simulating
sim-fast simulating
test-printf

? 41

Sim-fast simulating
sim-outorder
simulating test-
printf

? 571

Figure 1 : Difference in execution times and instruction counts between benchmarks and benchmark
simulations

The data in Figure 1 shows that even an inner benchmark

that executes almost instantaneously by itself and requires

only a couple seconds to be simulated, requires minutes for a

fast outer simulator to simulate a slow inner simulator

simulating this benchmark. On the same computer, it would

probably take upwards of two hours to simulate if the outer

simulator was changed from sim-fast to sim-outorder.

For this reason, when simulating SimpleScalar simulators

I needed to pick small inner benchmarks. For sim-outorder I

picked the smallest of the working benchmarks from the MiBench

suite - stringsearch with the small input set.

 18

 On the suggestion of my technical advisor, I chose

anagram for sim-fast. Anagram is a test benchmark which comes

with SimpleScalar. It takes a dictionary file and a set of

strings as inputs and creates anagrams of those strings based

on the words in the dictionary. A sample dictionary file and

file of input strings comes with SimpleScalar, but using this

made the execution several times longer than I wanted. To

remedy this, I wrote a Perl script to erase every second word

from the dictionary. When this proved not to be enough, I ran

the script a second time, this time on the result of the

previous run. This effectively cut the original dictionary by

three-quarters. To further cut down simulation time, I used

the length parameter of anagram to specify that all words in

an anagram should be at least 5 characters long. The

resultant outer benchmark of sim-fast simulating anagram

turned out to be 1.1 billion instructions long, which was

about the length I wanted.

II.6 Simulating and Collecting Data

II.6.1 Preparing the Configurations

 To simulate a benchmark on a SimpleScalar simulator, the

simulator must be provided with the configuration to use and

the benchmark’s path as command line parameters. If

configuration parameters aren’t supplied, the simulator uses

default values. To keep from having to type the same or

 19

similar set of configuration parameters every time a

simulation is run, SimpleScalar simulators make use of the “-

config” and “-dumpconfig” flags. If the “-dumpconfig

filepath” parameters are used, the simulator stores all the

configuration options in the file specified by filepath.

Later, the “-config filepath” parameters can be used to run a

simulation with all the configurations stored in the file

located at filepath.

 The configurations I used for characterizations were all

a slight variation on the standard Alpha 21264 configuration

used by the LAVA lab. Siva Valusamy, a grad student at the

LAVA lab, provided me with a file storing this configuration.

This file included some parameters which were not used by sim-

outorder, so I had to delete them. Next, with the help of

Karthik Sankaranarayanan, I translated the configurations I

needed to characterize into command line parameters. For

example, the parameter for an “8KB one-way associative level 1

instruction cache with LRU replacement policy” is “-cache:il1

il1:128:64:1:l.” Afterwards I used the “-config” and “-

dumpconfig” flags together to load the 21264 configuration and

store it with modified parameters in a different file for each

configuration. There were 38 total configurations, and I

stored them in files 00.config through 37.config, after

 20

documenting in an Excel spreadsheet which number corresponds

to which configuration.

 At one point, in the middle of the characterization

process, I realized that I forgot about an important parameter

from the branch predictor configurations. To fix this I wrote

a shell script, changeconfig.sh that used the “-config / -

dumpconfig” combination to add the missing parameter to the

config files for the branch predictor configurations. I then

had to re-simulate all simulations which had used the

defective config files. A similar problem with a similar

solution came up when I realized that all the config files set

the maximum number of instructions to execute to one billion.

Fortunately, I had not simulated any instructions large enough

to be affected by this yet, so nothing had to be re-simulated.

II.6.2 Using EIO Traces

 Before simulating a benchmark, I used sim-eio from the

SimpleScalar toolkit to create an EIO trace file for the

benchmark. An EIO trace is useful because it captures the

benchmark’s execution at the time the trace is made, this

includes all command line parameters or outside files besides

the executable that the benchmark may need. The EIO file can

then be simulated just like the benchmark, but without any

additional parameters. For example, in order to simulate the

rsynth benchmark, the parameters “\rsynth_directory_path\say -

 21

a -q -o large_output.au < largeinput.txt” must be supplied to

sim-outorder. With an EIO file created using these

parameters, the parameters supplied to sim-outorder become

“\eio_directory\path\rsynth.eio.” Once EIO files are made,

there is no need to remember the unique parameters any

benchmark might require. Since the EIO files do not depend on

outside files, they can also be grouped together in one

directory for easy access.

 One problem I encountered was that, for some unknown

reason, sim-outorder had trouble executing EIO traces of

SimpleScalar simulators. Whenever I tried, I got a

segmentation fault. For this reason, the two SimpleScalar

benchmarks, sim-outorder and sim-fast had to be characterized

without being captured as EIO traces. EIO files were still

used for the two inner benchmarks, stringsearch and anagram.

II.6.3 Automating Simulation With Shell Scripts

 In all, I ended up with 17 benchmarks. With 38

configurations to use, that makes a total of 646 simulations

to run. Because I did not want to have to start every single

simulation manually, I decided to write a script to do this

task for me. This was made simpler by the fact that all

configuration files were grouped in the ~/config directory of

my CS network account, and the EIO trace files in the

~/MiBenchEIO directory. I could now start a script on a LAVA

 22

computer, make it run in the background and log off. Later I

could log back on and check on the progress of the script.

Since each of the LAVA computers has two processors, two

scripts could run on each machine at any one time without

interfering with one another.

 The first script I wrote, simulate.sh, took an EIO

filename as a parameter, and looped through every file in the

~/config directory, using it in conjunction with the EIO

filename to simulate the EIO file with each configuration.

The simulator and benchmark outputs were stored in the

~/results directory with filenames derived from the names of

the EIO and config files. After each simulation, the script

would append to the file “finished.dat” a notice indicating

that the run has finished. For example, if I typed

“simulate.sh CRC32.eio,” the script would first tell sim-

outorder to simulate ~/CRC32.eio using the ~/config/00.config

(the first file in the config directory,) output the

simulation results to ~/results/CRC32.eio.00.config.sdat and

output the benchmark results to

~/results/CRC32.eio.00.config.pdat. After this simulation is

finished, the line “CRC32.eio.oo.config finished” would be

appended to the end of the file finished.dat.

 After using it for a bit, I found that simulate.sh had

some shortcomings. First, while finished.dat showed me which

 23

simulation runs had finished, I could never remember which

computer the script was running on. For example, if I saw

that the last simulation run of CRC32 was finished, that would

have meant that the computer the script was running on only

had one script running now, so another one could be added.

But I would have to keep logging in to different computers

until I found the right one. Perhaps more importantly,

simulate.sh would simulate using every single one of the 38

configuration files in the ~/config directory every time I

invoked the script. Since some benchmarks are much larger,

and therefore take far longer to simulate, than others, this

meant that when all the small benchmarks are characterized,

some computers might still be stuck doing a series of 38 very

long simulations while other computers have nothing to do.

 To remedy these shortcomings, I wrote another shell

script, simulate2.sh, and a tiny C++ program, count. Count

took two integers and outputted the integers between them with

two digits per number. For example, “count 6 12” would output

the line “06 07 08 09 10 11 12.” Simulate2.sh took, in

addition to the EIO file name, two integers and a computer

name as command line parameters. Simulate2.sh implemented

count to simulate using only those configuration files which

are indicated by the range of the two integers. After a

simulation would finish, simulate2.sh would output the

 24

computer’s number in addition to the simulation information to

the file “finished2.dat.” For example, “simulate2.sh

CRC32.eio 6 12 010” would start with using the file 06.config,

afterwards outputting “CRC32.eio.06 finished on lava010”

before going on to configuration file 07.config. The script

would stop after simulating CRC32.eio using 12.config and

outputting “CRC32.eio.12 finished on lava010” to the file

“finished2.dat.” The new script made it possible to split the

simulation of the same benchmark across multiple computers.

 Since the two SimpleScalar benchmarks did not use EIO

trace files, I had to write separate scripts for them. When I

found out about the optimization problem (see section II.2.3)

I recompiled the benchmark version of SimpleScalar in a

different directory, so these scripts needed to be changed. I

also had to remake the EIO files for lame, jpeg_decode,

jpeg_encode, and rsynth and re-simulate them. Following

Professor Skadron’s advice, I also recompiled the SimpleScalar

suite which I used for simulating using the -O2 extension so

that simulations would take less time to run. I placed this

version of SimpleScalar into another directory, so I changed

simulate2.sh to use the sim-outorder simulator from this

directory. I named the new script simulate3.sh.

II.6.4 Collecting Simulation Results

 25

 After all simulations had finished, I was left with 38

simulation result files for each benchmark. The statistics I

was looking for were the average number of instructions per

cycle (IPC), level 1 data cache miss rate, level 1 instruction

cache miss rate, branch address-prediction rate, and branch

direction-prediction rate. It would have taken too much time

to manually look for all of these in the result files, so I

needed to find a better way.

 First, I used the Unix “rename” command to rename the

result files so that the filenames would contain only the name

of the benchmark and the configuration number. For example,

“CRC32.eio.config.00.sdat” became “CRC32.00.” Next, I

created a different directory for each statistic, and used the

copysdata.sh script I wrote to copy relevant files into the

directories. For example, configurations 22 through 37 deal

with branch predictors, so I used copysdata.sh to copy the

result files for these configurations were copied into the

bpred directory.

 Next from each of these directories, I used the Unix

“grep” command to search the files for lines which included

the name of the statistic that directory focuses on, and store

these lines into files in the ~/stats directory. For example,

the first line in the file “sim_IPC.dat” is “CRC32.00:sim_IPC

3.0284 # instructions per cycle.” I then used the Unix “sed”

 26

command to change the spaces and colons in these files to

commas, so that the number for each statistic would be exactly

two commas from the beginning of the line. I then wrote the

organize.ps perl script to output each file into a format that

could be easily copied and pasted into an Excel spreadsheet.

After the copying and pasting, all of the data was in Excel

tables.

 27

III. Results and Analysis

This chapter presents the characterization results and my
analysis of them.

I.1 Level 1 Caches

I.1.1 Level 1 Instruction Cache Results

 Figure 2 presents the effects of different level 1

instruction cache configurations on the IPC. The cache

configurations are arranged in rising order from left to

right, with two-way associative caches to the immediate right

of one-way associative caches of their respective sizes.

 This figure shows that for some benchmarks, like

susan_smoothing and CRC32, changing the level 1 instruction

Figure 2: IPC vs. L1 Instruction Cache Configuration

1

1.5

2

2.5

3

3.5

8K
B 1-

way

8K
B 2-

way

32
KB 1-

way

32
KB 2-

way

12
8K

B 1-
way

12
8K

B 2-
way

51
2K

B 1-
way

51
2K

B 2-
way

2M
B 1-

way

2M
B 2-

way

L1 Instruction Cache Configuration

In
st

ru
ct

io
ns

 P
er

 C
yc

le

CRC32
adpcm_adpcm2pcm
adpcm_pcm2adpcm
bitcount
dijkstra
jpeg_decode
jpeg_encode
lame
qsort
rsynth
simfast_anagram
simoo_stringsearch
stringsearch
susan_corners
susan_edges
susan_smoothing
typeset

 28

cache configuration did not affect the IPC values in any

appreciable way. For the rest of the benchmarks, increasing

the degree of associativity increased the IPC, as did

increasing the cache size. Increasing the associativity never

overpowered the effect of increasing the cache size, though

the problem here might lie in the fact that the size increase

was by a factor of four every time. Simfast_anagram, qsort,

and stringsearch in particular look like the effects on their

associativity might have a greater affect on the IPC than an

early factor of two increase in cache size. In any case, most

of the benchmarks affected by instruction cache configuration

changes reach a plateau by the “128KB one-way associative”

configuration, and the rest level off at “128KB two-way

associative.”

 Figure 3 presents a similar graph, this time of the

affects of instruction cache configuration changes on the

cache miss rates. As could be expected, any increase in the

IPC in Figure 2 is mirrored by a decrease in the miss rate in

Figure 3. After all, a decrease in the miss rate means that

the needed instructions are found in the cache more often, so

they can start executing faster. As soon as a benchmark’s

instruction cache miss rate approaches zero in Figure 2, the

IPC reaches its plateau in Figure 3. Benchmarks in Figure 2

 29

which were unaffected by the configuration changes have a near

0 miss rate with all configurations.

III.1.2 Level 1 Data Cache Results

 Figures 4 and 5 are the data cache counterparts of

Figures 2 and 3 respectively. Looking at them, it is easy to

see that for most benchmarks, data cache associativity plays a

far greater role than data cache size. This is especially

true for the benchmarks rsynth, susan_smoothing, and

simfast_anagram. In fact, for susan_smoothing and

simfast_anagram, the 8KB two-way associative level 1 data

cache is far better than the 128KB one-way associative level 1

Figure 3: Miss Rate vs. L1 Instruction Cache
Configuration

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

8K
B 1-

way

8K
B 2-

way

32
KB 1-

way

32
KB 2-

way

12
8K

B 1-
way

12
8K

B 2-
way

51
2K

B 1-
way

51
2K

B 2-
way

2M
B 1-

way

2M
B 2-

way

L1 Instruction Cache Configuration

In
st

ru
ct

io
n

C
ac

he
 M

is
s

R
at

e

CRC32
adpcm_adpcm2pcm
adpcm_pcm2adpcm
bitcount
dijkstra
jpeg_decode
jpeg_encode
lame
qsort
rsynth
simfast_anagram
simoo_stringsearch
stringsearch
susan_corners
susan_edges
susan_smoothing
typeset

 30

data cache. Bitcount and the two adpcm benchmark remain

relatively unaffected.

Figure 4: IPC vs. L1 Data Cache Configuration

1.5
1.7
1.9
2.1
2.3
2.5
2.7
2.9
3.1
3.3
3.5

8K
B 1-

way

8K
B 2-

way

32
KB 1-

way

32
KB 2-

way

12
8K

B 1-
way

12
8K

B 2-
way

51
2K

B 1-
way

51
2K

B 2-
way

2M
B 1-

way

2M
B 2-

way

L1 Data Cache Configuration

IP
C

CRC32
adpcm_adpcm2pcm
adpcm_pcm2adpcm
bitcount
dijkstra
jpeg_decode
jpeg_encode
lame
qsort
rsynth
simfast_anagram
simoo_stringsearch
stringsearch
susan_corners
susan_edges
susan_smoothing
typeset

Figure 5: Miss Rate vs. L1 Data Cache Configuration

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

8K
B 1-

way

8K
B 2-

way

32
KB 1-

way

32
KB 2-

way

12
8K

B 1-
way

12
8K

B 2-
way

51
2K

B 1-
way

51
2K

B 2-
way

2M
B 1-

way

2M
B 2-

way

L1 Data Cache Configuration

D
at

a
C

ac
he

 M
is

s
R

at
e

CRC32
adpcm_adpcm2pcm
adpcm_pcm2adpcm
bitcount
dijkstra
jpeg_decode
jpeg_encode
lame
qsort
rsynth
simfast_anagram
simoo_stringsearch
stringsearch
susan_corners
susan_edges
susan_smoothing
typeset

 31

III.1.3 Level 1 Cache Result Analysis

 It is obvious from the results that, for many of the

benchmarks, I tested the associativity of the level 1 data

cache has a profound effect on the benchmarks’ performance,

while the effect of the associativity of the level 1

instruction cash is far smaller. What is not as obvious is

why this is the case. The maximum data cache miss rates are

also three times greater than the maximum instruction cache

miss rates.

I think the reason for the greater miss rates in the data

cache is that while instructions are usually accessed

sequentially, depending on the benchmark, data could be

accessed all over the place. This means that in an

instruction cache, once a new block has been loaded into the

cache, chances are there will not be another block that hashes

to the same value for a long time, so associativity does not

play as large a role. With data caches, on the other hand, it

is easy to imagine variables being stored in any available

place in memory. I have no idea, however, why benchmarks like

susan_smoothing are so greatly affected by data cache

associativity, while others are not.

The reason that most benchmarks plateau at higher cache

sizes for both data and instruction caches is probably that

the cache becomes large enough to completely fit almost all of

 32

the benchmark’s instructions or data inside it. There are few

cache misses because there are few instructions or data

segments not located in the caches.

III.2 Branch Predictors

Figure 6 presents the IPC values for different branch

predictor configurations averaged across all benchmarks, and

Figure 7 does the same with direction- and address-prediction

rates. While these figures do not represent any specific

benchmark, they show that GAg configurations, are, overall,

far worse than the other branch predictor configurations I

tested, regardless of size. It almost seems like giving a GAg

predictor more than 4000 entries is a waste of money. Bimodal

configuration are second worst behind the GAg’s. Overall,

there does not seem to be a more than 2% difference between

the best of Gas, gshare, PAg’s, and PAs’. Size only seems to

matter when it gets too low, but this might be a symptom of

the relatively small size of the benchmarks.

Some interesting details appear when the behaviors of

specific benchmarks are observed. CRC32 was not affected by

branch predictor choice at all. In susan_smoothing, the 4K

Gag actually came in second place in IPC, with the 1M and 32K

taking the fourth and fifth place respectively. The only

other benchmark in which GAg did not come dead last was

adpcm_pcm2adpcm, in which the bimodal configurations took last

 33

place instead. In some benchmarks, GAg configurations

performed extremely badly. In dijkstra, GAg configurations

scored an IPC of 1.32 when compared to the next lowest, a 2.47

by the worst bimodal configuration. Other abysmal

performances by GAg occurred in jpeg_encode, qsort, and sim-

outorder_stringsearch.

I do not know why GAg did so well in susan_smoothing, but

it is seems to be a truly awful branch predictor. I think

this means that making everything global is not a good idea.

Bimodal configurations, the best of which never once appeared

higher than an eighth pace, also seems a bad choice. PAg,

PAs, GAs, and gshare branch predictors seem rather evenly

matched. Representitives of each of these appeared in the top

place of at least twice, though PAg and gshare had the best

IPC the most often.

Of the general configurations I tested, only bimodal and

gshare were characterized in the MiBench paper [7]. In Figure

3 of that paper, it clearly shows that gshare is better than

bimodal in nearly all cases, which agrees with my results.

 34

Figure 6: Average IPC as Affected by Branch Predictor
Configurations

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

GAg,
1M

 P
HT, 2

0g

GAg,
32

K P
HT, 1

5g

GAg,
4K

 PHT, 1
2g

GAs,
32

K PHT, 8
g/7

a

GAs,
4K

 P
HT, 5

g/7
a

gs
ha

re,
 32

K PHT, 1
5g

gs
ha

re,
 32

K P
HT, 8

g/1
5a

PAg,
1M

 B
HT, 1

M PHT, 2
0g

PAg,
1K

 B
HT, 1

K P
HT, 1

0p

PAs,
1M

 BHT, 1
6K

 P
HT, 8

p/6
a

PAs,
4K

 BHT, 1
6K

 PHT, 8
p/6

a

PAs,
1K

 BHT, 1
6K

 PHT, 8
p/6

a

PAs,
1K

 B
HT, 2

K P
HT, 4

p/7
a

bim
od

 1M

bim
od

 4K

bim
od

 51
2B

Branch Predictor Configuration

IP
C

 35

Figure 7: Effect of Branch Predictor Configurations on
Average Prediction Rates

0.75

0.8

0.85

0.9

0.95

1

GAg,
1M

 P
HT, 2

0g

GAg,
32

K P
HT, 1

5g

GAg,
4K

 P
HT, 1

2g

GAs,
32

K P
HT, 8

g/7
a

GAs,
4K

 P
HT, 5

g/7
a

gs
ha

re,
 32

K P
HT, 1

5g

gs
ha

re,
 32

K P
HT, 8

g/1
5a

PAg,
1M

 B
HT, 1

M P
HT, 2

0g

PAg,
1K

 BHT, 1
K P

HT, 1
0p

PAs,
1M

 B
HT, 1

6K
 P

HT, 8
p/6

a

PAs,
4K

 B
HT, 1

6K
 P

HT, 8
p/6

a

PAs,
1K

 B
HT, 1

6K
 P

HT, 8
p/6

a

PAs,
1K

 B
HT, 2

K P
HT, 4

p/7
a

bim
od

 1M

bim
od

 4K

bim
od

 51
2B

Branch Predictor Configurations

Pr
ed

ic
tio

n
R

at
e

Direction-Prediction
Address-Prediction

 36

IV. Conclusion

 For this thesis, I characterized the performance of

different types of applications with multiple cache and branch

predictor configurations and analyzed the results.

 I learned that many programs greatly improve performance

with a two-way associative data cache over a one-way

associative data cache, but with instruction caches the

improvement is not so profound. I also learned that GAg

branch predictors are worthless when compared to other

predictors, and bimodal predictors are the next worst things.

GAs, gshare, PAs, and PAg predictors often give pretty much

the same results, and their size only seems to matter when it

gets really small.

 For future studies of the effects of different cache and

branch predictor configurations, I would recommend using much

larger benchmarks in combination with the SimPoint and MRRL

tools. An obvious recommendation would be to find and

characterize new benchmarks, as was the original purpose of

this thesis, and to find out why so many of the MiBench

benchmarks either refused to compile or gave faulty results

when simulated.

 37

V. Bibliography

[1] Haskins, John Jr., and Kevin Skadron. “Memory Reference

Reuse Latency: Accelerated Sampled Microarchitecture
Simulation.” UVA Computer Science Technical Report CS-
2002-19, (2002.)

[2] Sherwood, Timothy, et al. “Automatically Characterizing

Large Scale Program Behavior.” Department of Computer
Science and Engineering University of California, San
Diego (2002.) ASPLOS X International Conference, San
Jose, November, 2002.

[3] Skadron, Kevin, et al. “Branch Prediction, Instruction-

Window Size, and Cache Size: Performance Tradeoffs and
Simulation Techniques.” IEEE Transactions on Computers
48.11 (1999): 1260-81.

[4] Skadron, Kevin. The LAVA Lab Homepage.

http://lava.cs.virginia.edu/. Department of Computer
Science, University of Virginia. (2002.)

[5] SimpleScalar LLC Homepage. http://www.simplescalar.com.

(2002.)

[6] Burger, Doug, and Todd Austin. “The SimpleScalar Tool
Set, Version 2.0.” University of Wisconsin-Madison
Computer Sciences Department Technical Report #1342,
(1997.)

[7] Guthaus, Matthew, et al. “MiBench: A free representative
embedded benchmark.” University of Michigan Electrical
Engineering and Computer Science. IEEE 4th Annual
Workshop on Workload Characterization (2001.)

[8] MiBench Homepage. http://www.eecs.umich.edu/mibench/
(2003.)

[9] PICList Perl Command split() web page.
http://www.piclist.com/techref/language/perl/split.htm
(2003.)

 38

[10] The SimpleScalar Mailing List Archive.
http://ord.eecs.umich.edu/ss_archives/ (2003.)

[11] Leforgy, Charles. Message on the SimpleScalar Mailing
List Archive.
http://ord.eecs.umich.edu/ss_archives/0191.html (1999.)

[12] Deborah S. and Eric J. Ray. Visual Quick Start Guide
Unix. Peachpit Press, (1998.)

APPENDIX: Branch
Predictor Results

IPC Values

 Config 00 Config 22 Config 23 Config 24 Config 25
Program Default 21264 GAg, 1M PHT, 20g GAs, 32K PHT, 8g/7a GAg, 32K PHT, 15g gshare, 32K PHT, 15g
CRC32 3.0284 3.0279 3.0284 3.0279 3.0284
adpcm_adpcm2pcm 1.8996 1.7334 2.1827 1.7301 2.1643
adpcm_pcm2adpcm 1.8535 1.6838 2.0343 1.679 2.0137
bitcount 3.0243 2.9446 3.1202 2.9434 3.1321
dijkstra 2.4958 1.3145 2.5033 1.3164 2.503
jpeg_decode 2.8671 2.6625 2.8696 2.6577 2.8742
jpeg_encode 2.6955 2.1261 2.7056 2.1238 2.7036
lame 2.5969 2.3139 2.6043 2.3135 2.5961
qsort 2.7192 2.0478 2.7908 2.0458 2.7876
rsynth 2.6246 2.2176 2.6416 2.1886 2.6539
simfast_anagram 2.673 2.3012 2.7292 2.2986 2.7531
simoo_stringsearch 2.0684 1.5905 2.1997 1.5768 2.1721
stringsearch 2.3354 2.0725 2.4675 2.0495 2.4687
susan_corners 2.7945 2.7543 2.7895 2.7543 2.7837
susan_edges 2.812 2.6951 2.8409 2.6926 2.8586
susan_smoothing 3.3508 3.3054 3.2616 3.3053 3.3506
typeset 1.9066 1.5896 1.979 1.5744 2.0248

 Config 26 Config 27 Config 28 Config 29
Program gshare, 32K PHT, 8g/15a GAs, 4K PHT, 5g/7a GAg, 4K PHT, 12g PAg, 1M BHT, 1M PHT, 20g
CRC32 3.0284 3.0284 3.0279 3.0283
adpcm_adpcm2pcm 2.1827 2.0747 1.7262 2.1472
adpcm_pcm2adpcm 2.0343 1.9171 1.6741 1.9366
bitcount 3.1202 3.1161 2.9422 3.1562
dijkstra 2.5034 2.4959 1.3168 2.5018
jpeg_decode 2.8704 2.865 2.6577 2.8783
jpeg_encode 2.7078 2.6888 2.119 2.7224
lame 2.6049 2.5906 2.3019 2.6103
qsort 2.793 2.7408 2.0216 2.7396
rsynth 2.642 2.6063 2.1369 2.6456
simfast_anagram 2.7351 2.7115 2.285 2.7205
simoo_stringsearch 2.2052 2.0351 1.5416 2.2703
stringsearch 2.4682 2.3385 2.0151 2.6024
susan_corners 2.7926 2.7686 2.7452 2.7868
susan_edges 2.8408 2.8264 2.6892 2.8389
susan_smoothing 3.2616 3.2616 3.3318 3.3299
typeset 1.9907 1.8535 1.5697 2.0507

IPC Values

 Config 30 Config 31 Config 32
Program PAs, 1M BHT, 16K PHT, 8p/6a PAs, 4K BHT, 16K PHT, 8p/6a PAs, 1K BHT, 16K PHT, 8p/6a
CRC32 3.0284 3.0284 3.0284
adpcm_adpcm2pcm 2.1723 2.1723 2.1723
adpcm_pcm2adpcm 1.9602 1.9602 1.9602
bitcount 3.121 3.121 3.121
dijkstra 2.5044 2.5043 2.5044
jpeg_decode 2.8892 2.8891 2.8871
jpeg_encode 2.7023 2.7018 2.7012

 2

lame 2.603 2.6023 2.5984
qsort 2.722 2.722 2.722
rsynth 2.6465 2.6464 2.6451
simfast_anagram 2.7184 2.7184 2.7152
simoo_stringsearch 2.2032 2.1879 2.151
stringsearch 2.5045 2.5045 2.4876
susan_corners 2.7853 2.7852 2.785
susan_edges 2.8382 2.8382 2.8381
susan_smoothing 3.2515 3.2515 3.2515
typeset 2.0218 2.009 1.9916

 Config 33 Config 34
Program PAs, 1K BHT, 2K PHT, 4p/7a PAg, 1K BHT, 1K PHT, 10p
CRC32 3.0284 3.0283
adpcm_adpcm2pcm 2.1604 2.1354
adpcm_pcm2adpcm 1.9512 1.928
bitcount 3.1111 3.129
dijkstra 2.5042 2.5021
jpeg_decode 2.8771 2.8752
jpeg_encode 2.6978 2.6898
lame 2.5911 2.5883
qsort 2.7215 2.7294
rsynth 2.6427 2.6368
simfast_anagram 2.7028 2.7099
simoo_stringsearch 2.0746 2.0797
stringsearch 2.3948 2.3976
susan_corners 2.7846 2.7709
susan_edges 2.8285 2.8235
susan_smoothing 3.2515 3.2515
typeset 1.9447 1.949

IPC Values

 Config 35 Config 36 Config 37
Program bimod 1M bimod 4K bimod 512B

CRC32 3.0284 3.0284 3.0283
adpcm_adpcm2pcm 1.7724 1.7724 1.7724
adpcm_pcm2adpcm 1.6148 1.6148 1.6148
bitcount 3.0437 3.0437 3.0437
dijkstra 2.4909 2.4906 2.4791
jpeg_decode 2.862 2.8615 2.8554
jpeg_encode 2.6955 2.6956 2.6944
lame 2.592 2.5909 2.5772
qsort 2.6756 2.6694 2.6208
rsynth 2.6049 2.6049 2.5972
simfast_anagram 2.6178 2.6177 2.6078
simoo_stringsearch 2.031 1.9979 1.8917
stringsearch 2.2043 2.2043 2.1718
susan_corners 2.7787 2.7786 2.774
susan_edges 2.8145 2.8145 2.8154
susan_smoothing 3.2514 3.2514 3.2513
typeset 1.8965 1.8859 1.8174

 3

Address hit
rates

 Config 00 Config 22 Config 23 Config 24 Config 25
Program Default 21264 GAg, 1M PHT, 20g GAs, 32K PHT, 8g/7a GAg, 32K PHT, 15g gshare, 32K PHT, 15g
CRC32 0.9999 0.9997 0.9999 0.9997 0.9999
adpcm_adpcm2pcm 0.7646 0.7162 0.8427 0.7148 0.8386
adpcm_pcm2adpcm 0.8004 0.7354 0.8562 0.7333 0.8538
bitcount 0.9509 0.9205 0.9677 0.9187 0.9693
dijkstra 0.9913 0.6297 0.9926 0.6297 0.9925
jpeg_decode 0.9573 0.8284 0.9576 0.8258 0.9615
jpeg_encode 0.9553 0.8264 0.9571 0.8253 0.9557
lame 0.9445 0.8037 0.9453 0.8001 0.9453
qsort 0.9679 0.7984 0.978 0.7982 0.9776
rsynth 0.9816 0.915 0.9851 0.9035 0.9962
simfast_anagram 0.9417 0.8112 0.9485 0.8063 0.9487
simoo_stringsearch 0.9326 0.7857 0.9485 0.781 0.9425
stringsearch 0.9304 0.8554 0.9477 0.8508 0.9458
susan_corners 0.9267 0.9022 0.9243 0.9013 0.922
susan_edges 0.9136 0.8704 0.9239 0.8701 0.9268
susan_smoothing 0.9945 0.9265 0.941 0.9265 0.9944
typeset 0.9097 0.7541 0.9281 0.7461 0.9395

 Config 26 Config 27 Config 28 Config 29
Program gshare, 32K PHT, 8g/15a GAs, 4K PHT, 5g/7a GAg, 4K PHT, 12g PAg, 1M BHT, 1M PHT, 20g
CRC32 0.9999 0.9999 0.9997 0.9999
adpcm_adpcm2pcm 0.8427 0.8145 0.7134 0.8344
adpcm_pcm2adpcm 0.8561 0.807 0.731 0.8291
bitcount 0.9677 0.9673 0.9182 0.9734
dijkstra 0.9926 0.9914 0.6301 0.9926
jpeg_decode 0.9576 0.9545 0.819 0.9669
jpeg_encode 0.9572 0.9517 0.8239 0.9589
lame 0.9454 0.9385 0.7959 0.9499
qsort 0.9784 0.9701 0.7954 0.9714
rsynth 0.9853 0.9787 0.8916 0.9949
simfast_anagram 0.9498 0.943 0.7988 0.9487
simoo_stringsearch 0.9505 0.9187 0.7664 0.963
stringsearch 0.9486 0.9265 0.8433 0.9725
susan_corners 0.9247 0.9179 0.8981 0.9245
susan_edges 0.9238 0.9197 0.869 0.9186
susan_smoothing 0.941 0.941 0.9331 0.9889
typeset 0.9318 0.8842 0.7386 0.9496

Address hit
rates

 Config 30 Config 31 Config 32
Program PAs, 1M BHT, 16K PHT, 8p/6a PAs, 4K BHT, 16K PHT, 8p/6a PAs, 1K BHT, 16K PHT, 8p/6a
CRC32 0.9999 0.9999 0.9999
adpcm_adpcm2pcm 0.8396 0.8396 0.8396
adpcm_pcm2adpcm 0.8332 0.8332 0.8332
bitcount 0.9679 0.9679 0.9679
dijkstra 0.9929 0.9928 0.9928
jpeg_decode 0.9736 0.9736 0.9725
jpeg_encode 0.9566 0.9564 0.956

 4

lame 0.9458 0.9454 0.9435
qsort 0.9711 0.9711 0.9711
rsynth 0.9949 0.9949 0.9946
simfast_anagram 0.9479 0.9479 0.9471
simoo_stringsearch 0.9541 0.9519 0.9416
stringsearch 0.9572 0.9572 0.9543
susan_corners 0.9223 0.9223 0.9223
susan_edges 0.9183 0.9182 0.9182
susan_smoothing 0.9375 0.9375 0.9375
typeset 0.9424 0.9389 0.9333

 Config 33 Config 34
Program PAs, 1K BHT, 2K PHT, 4p/7a PAg, 1K BHT, 1K PHT, 10p
CRC32 0.9999 0.9999
adpcm_adpcm2pcm 0.8366 0.8315
adpcm_pcm2adpcm 0.8297 0.8255
bitcount 0.9675 0.9691
dijkstra 0.9928 0.9925
jpeg_decode 0.9628 0.9634
jpeg_encode 0.9542 0.9533
lame 0.9397 0.9376
qsort 0.9707 0.9708
rsynth 0.9943 0.9931
simfast_anagram 0.9452 0.9466
simoo_stringsearch 0.9302 0.9293
stringsearch 0.9388 0.9367
susan_corners 0.9221 0.9194
susan_edges 0.9161 0.9143
susan_smoothing 0.9375 0.9375
typeset 0.9198 0.9208

Address hit
rates

 Config 35 Config 36 Config 37
Program bimod 1M bimod 4K bimod 512B

CRC32 0.9999 0.9999 0.9999
adpcm_adpcm2pcm 0.7139 0.7139 0.7139
adpcm_pcm2adpcm 0.6516 0.6516 0.6516
bitcount 0.9591 0.9591 0.9591
dijkstra 0.9911 0.9911 0.9886
jpeg_decode 0.9536 0.9534 0.9458
jpeg_encode 0.9539 0.9539 0.9532
lame 0.9368 0.9363 0.9311
qsort 0.9624 0.9608 0.9505
rsynth 0.9777 0.9777 0.9764
simfast_anagram 0.9275 0.9274 0.9218
simoo_stringsearch 0.9269 0.9223 0.8962
stringsearch 0.908 0.908 0.901
susan_corners 0.921 0.921 0.9195
susan_edges 0.912 0.912 0.9122
susan_smoothing 0.9375 0.9375 0.9375
typeset 0.9076 0.9017 0.8715

 5

Directional hit rates

 Config 00 Config 22 Config 23 Config 24 Config 25
Program Default 21264 GAg, 1M PHT, 20g GAs, 32K PHT, 8g/7a GAg, 32K PHT, 15g gshare, 32K PHT, 15g
CRC32 0.9999 0.9997 0.9999 0.9997 0.9999
adpcm_adpcm2pcm 0.7646 0.7162 0.8427 0.7148 0.8386
adpcm_pcm2adpcm 0.8004 0.7354 0.8562 0.7333 0.8539
bitcount 0.9509 0.9269 0.9677 0.9245 0.9693
dijkstra 0.9914 0.6332 0.9927 0.6333 0.9927
jpeg_decode 0.959 0.8326 0.9595 0.8302 0.9636
jpeg_encode 0.9555 0.8269 0.9575 0.826 0.9562
lame 0.9494 0.8091 0.9503 0.8054 0.9505
qsort 0.9717 0.8158 0.9818 0.8134 0.9814
rsynth 0.9835 0.9378 0.9859 0.9265 0.9969
simfast_anagram 0.9836 0.8534 0.9903 0.848 0.9905
simoo_stringsearch 0.9421 0.8018 0.9569 0.7973 0.9511
stringsearch 0.9317 0.8589 0.9515 0.8547 0.9502
susan_corners 0.9271 0.9028 0.9248 0.9018 0.9225
susan_edges 0.9138 0.8706 0.9241 0.8703 0.927
susan_smoothing 0.9945 0.9265 0.9411 0.9265 0.9944
typeset 0.9347 0.7837 0.9517 0.7765 0.963

 Config 26 Config 27 Config 28 Config 29
Program gshare, 32K PHT, 8g/15a GAs, 4K PHT, 5g/7a GAg, 4K PHT, 12g PAg, 1M BHT, 1M PHT, 20g
CRC32 0.9999 0.9999 0.9997 0.9999
adpcm_adpcm2pcm 0.8427 0.8145 0.7134 0.8344
adpcm_pcm2adpcm 0.8561 0.807 0.731 0.8291
bitcount 0.9677 0.9676 0.9243 0.9734
dijkstra 0.9927 0.9915 0.6336 0.9926
jpeg_decode 0.9595 0.9568 0.8234 0.9685
jpeg_encode 0.9575 0.9523 0.8245 0.9592
lame 0.9504 0.9436 0.8013 0.954
qsort 0.982 0.9728 0.8107 0.9745
rsynth 0.9861 0.9803 0.9154 0.9958
simfast_anagram 0.9915 0.9848 0.841 0.9903
simoo_stringsearch 0.9585 0.9291 0.7833 0.9683
stringsearch 0.9526 0.9293 0.8476 0.9738
susan_corners 0.9252 0.9183 0.8986 0.9249
susan_edges 0.924 0.9199 0.8692 0.9188
susan_smoothing 0.941 0.941 0.9331 0.9889
typeset 0.9554 0.9109 0.7689 0.9729

Directional
hit rates

 Config 30 Config 31 Config 32
Program PAs, 1M BHT, 16K PHT, 8p/6a PAs, 4K BHT, 16K PHT, 8p/6a PAs, 1K BHT, 16K PHT, 8p/6a
CRC32 0.9999 0.9999 0.9999
adpcm_adpcm2pcm 0.8396 0.8396 0.8396
adpcm_pcm2adpcm 0.8332 0.8332 0.8332
bitcount 0.9679 0.9679 0.9679
dijkstra 0.9929 0.9929 0.9928
jpeg_decode 0.9751 0.9751 0.974
jpeg_encode 0.9568 0.9567 0.9563
lame 0.9506 0.9502 0.9484
qsort 0.9733 0.9733 0.9733

 6

rsynth 0.996 0.996 0.9958
simfast_anagram 0.9895 0.9895 0.9888
simoo_stringsearch 0.9601 0.9579 0.9485
stringsearch 0.9609 0.9609 0.9573
susan_corners 0.9227 0.9227 0.9227
susan_edges 0.9184 0.9184 0.9184
susan_smoothing 0.9375 0.9375 0.9375
typeset 0.9662 0.9627 0.9572

 Config 33 Config 34
Program PAs, 1K BHT, 2K PHT, 4p/7a PAg, 1K BHT, 1K PHT, 10p
CRC32 0.9999 0.9999
adpcm_adpcm2pcm 0.8366 0.8315
adpcm_pcm2adpcm 0.8297 0.8255
bitcount 0.9675 0.9691
dijkstra 0.9928 0.9925
jpeg_decode 0.9642 0.9649
jpeg_encode 0.9545 0.9536
lame 0.9445 0.9424
qsort 0.9728 0.9739
rsynth 0.9956 0.9945
simfast_anagram 0.9869 0.9883
simoo_stringsearch 0.9377 0.9381
stringsearch 0.9421 0.9394
susan_corners 0.9225 0.9199
susan_edges 0.9162 0.9144
susan_smoothing 0.9375 0.9375
typeset 0.9445 0.945

Directional
hit rates

 Config 35 Config 36 Config 37
Program bimod 1M bimod 4K bimod 512B

CRC32 0.9999 0.9999 0.9999
adpcm_adpcm2pcm 0.7139 0.7139 0.7139
adpcm_pcm2adpcm 0.6516 0.6516 0.6516
bitcount 0.9591 0.9591 0.9591
dijkstra 0.9912 0.9912 0.9892
jpeg_decode 0.9554 0.9552 0.9476
jpeg_encode 0.9541 0.9541 0.9534
lame 0.9412 0.9407 0.9371
qsort 0.9645 0.9629 0.9537
rsynth 0.9795 0.9795 0.9784
simfast_anagram 0.9722 0.9722 0.9666
simoo_stringsearch 0.9382 0.9336 0.9072
stringsearch 0.9111 0.9111 0.9042
susan_corners 0.9214 0.9214 0.9199
susan_edges 0.9122 0.9122 0.9124
susan_smoothing 0.9375 0.9375 0.9375
typeset 0.9341 0.9282 0.8987

