
CS 654 Fall 2002

Pipeline Simulator Exercise #1
SimpleScalar Exercise #2

Due Wednesday, September 11, 2002, 4:30 p.m.

This exercise is meant to help you better understand how pipelines function and to further
familiarize you with the SimpleScalar 3.0 toolset. It is the first of two assignments, in
which you will build a simulator for a complete, single-issue, in-order processor. In this
first phase, you will construct the pipeline stages and hazard detection and interlocking
mechanisms.

Assumptions

For the purposes of this exercise, we are assuming the following:

• Perfect instruction cache (no I-cache misses)
• Perfect data cache (no D-cache misses)
• No branch prediction
• No result forwarding
• Split-phase register access for WB stage (writes occur in first half of clock cycle,

reads in second half)

This means that for the moment, we will not add cache or branch predictor functionality
to the simulator (that is left for phase two). Therefore, for now, no stalling will be
required in the fetch stage (IF) for instruction cache misses or in the memory stage
(MEM) for data cache misses. When branches occur, stalling will be required until the
branch condition and target are resolved, which in our pipeline will be the execute stage
(EX).

Pipeline Model

The pipeline we will be modeling is otherwise the 5-stage pipeline described in
Hennessy and Patterson, Appendix A (e.g., Fig. A.2), with the main difference being
branch resolution in EX rather than ID.

The following is a brief description of the pipeline stage functionality:

• IF – instruction fetch from memory based on PC+4 or PC provided by branch

resolution.
• ID – instruction decoding, hazard detection, and register fetch. Note that in phase

one, we are not modeling result forwarding.
• EX –ALU and other computation operations, memory effective address calculation

for memory instructions, branch resolution.
• MEM – perform loads/stores to perfect D-cache using address calculated in EX.

1
© 2001, 2002, Kevin Skadron

CS 654 Fall 2002

• WB – writeback of results to register file and instruction retirement.

NOTES

1. For the IF stage we are assuming a perfect instruction cache (icache) which will

always have the instruction we are looking for. This assumption is not true in a real
processor: if the I-cache doesn’t contain the required instructions we may have to go
out to memory to fetch the instruction, requiring us to suffer a cache miss penalty.
However assuming a perfect I-cache simplifies the assignment significantly. Later
we will add caches and account for miss penalties. (The same applies to the data
cache which would be accessed during the MEM stage.)

2. ID. Decode takes the instruction passed from fetch and decodes it, determining what

type of operation it is. Because of the design of SimpleScalar, we will actually
completely execute the instruction from the standpoint of functional simulation in the
decode stage. The EX stage merely exists for accurate modeling of timing. We must
still write appropriate information into the latches so that we can model behavior and
timing.

3. wb_finished_s: An extra pipeline latch is included in the code you will receive.

It is not part of the behavioral model, but is merely there to keep information about
what actions WB has just completed.

Simulator Skeleton Code

0. Download the code distribution assign2.tar.gz from:

~cs654/fall2001/assign2

1. The pipeline simulator you will build is based on sim-safe.c. We have provided you

with a slightly modified version of the sim-safe.c, now called sim-pipe.c, which
contains a few hints on how to proceed with the assignment.

2. The basic thing to note is that there are 5 functions corresponding to the 5 stages of

the pipeline, and that several structs have been provided to serve as the inter-stage
latches (or pipeline registers in Hennessey and Patterson). The main simulator loop
simulates as one cycle: WB, MEM, EX, ID, IF. (Traversing the stages in
backwards order simplifies the instruction flow through the pipeline.)

3. The following is the code for the stage latch:
/* naming convention follows H&P latch name convention */
struct stage_latch {
 int busy; /* latch stage is busy */
 md_inst_t IR; /* instruction bits */
 md_addr_t PC; /* PC */
 md_addr_t NPC; /* the new PC */
 md_addr_t addr; /* mem address to read or write */
 int out1; /* output 1 register number */
 int out2; /* output 2 register number */

2
© 2001, 2002, Kevin Skadron

CS 654 Fall 2002

 int in1; /* input 1 register number */
 int in2; /* input 2 register number */
 int in3; /* input 3 register number */
 int ls_size; /* size of read or write */
 enum md_opcode op;/* decoded op code */

 int will_exit; /* will this inst force the pgm to
exit */

} if_id_s, id_ex_s, ex_mem_s, mem_wb_s, wb_finished_s;

This is the information we feel might be necessary for the pipeline we are simulating
to have available. You may augment this struct if you feel you need additional
information in any of the stages.

out1-2, and in1-3 are provided for hazard detection purposes. machine.def
names the inputs and outputs for each instruction. The DEFINST macro included in
sim-pipe.c will allow you to gather the necessary input and output register
information needed for hazard detection.

For the moment ls_size is not needed, but will become necessary when we add
caches. This indicates the size of the load or store. For the moment, it can be
ignored.

will_exit is provided as a measure to prevent cycle miscounts due to the fact that
we will actually be executing instructions in the ID stage. will_exit is basically a
variable that will prevent the exit system call in the program (signalling the end of the
program) from being executed until the WB stage. This is a violation of the behavior
of our pipeline, but if we allow it to execute in either ID (for SimpleScalar) or EX (for
a real pipeline), the program will terminate without allowing the exit instruction to
reach the WB stage when it will truly have been “completed.” This has an effect on
the total cycle count in that if we don’t wait until WB to execute the exit, we will
have under-counted the total number of cycles to complete the program.

4. FYI, the ISA definition in machine.def is slightly different than shown in class. In the

newest version of SimpleScalar, portability considerations have caused the
instruction-implementation specification to be moved into a #define preceding the
other aspects of instruction specification (DEFINST).

Sample Test Code and Sample Output

1. Assembly Code Programs. Three small sample assembly code programs: raw.S,

branch.S, and branch2.S have been provided as sample tests for you to use
during your simulator development. To compile these, simply use
~skadron/SimpleScalar/sun/bin/ssbig-na-trix-gcc, with the –nostdlib flag. This
prevents the C standard library from being compiled into your code, thus limiting
your instruction count to the number of instructions in your assembly code file
(makes it easier to assess whether your cycle count is correct). An example:

3
© 2001, 2002, Kevin Skadron

CS 654 Fall 2002

~skadron/SimpleScalar/sun/bin/ssbig-na-trix-gcc –o raw
raw.S –nostdlib –O0

This takes raw.S, compiles it with no optimizations and names the binary raw.
Feel free to modify these test cases to test other types of hazards and other scenarios,
as we will be testing more situations than those given in the sample files. NOTE: if
you want to comment your assembly code with c-style comments, your assembly
code file needs to end with .S as opposed to .s

2. Sample output. Reference output is provided for branch.S, branch2.S,
raw.S, and also for test-fmath in tests/bin.big. They are named
branch.output, branch2.output, raw.output. For the sake of ease
of reading, since test-fmath is a relatively long program, the simulator statistics
and the assembly code trace are separated into test-fmath.stats and test-
fmath.output. Also, in order to save some space, test-fmath.output
only contains information printed from the decode stage.

The reference simulator was run with the –v flag set. This provides you with a code
“trace”, which will allow you to track whether your simulator is doing what our
solution simulator does. (You will need to add the code to print statements similar to
those shown in the output). General form of the output file is as follows (a slightly
modified version of what verbose prints in sim-safe.c):

Stage Cycle # Inst, # Address Assembly Code
fetch: 1 0 [xor: 0x7fff8008] @ 0x004000f0: addiu r4,r0,0
decod: 2 1 [xor: 0x7fff8008] @ 0x004000f0: addiu r4,r0,0

Stages which are missing from the output during certain cycles indicates that the
stage is not currently doing work during that cycle. I.e., it is stalling. After the trace,
the simulation statistics follow, including the number of instructions executed and
total number of cycles used during execution.

(NOTE: for the tests in tests/bin.big, you may not get exactly the same results as
those distributed, this is due to differences in execution runs, and in environment
variable settings)

Some Modifications Before Starting

1. Makefile. You will need to modify Makefile to compile your new simulator.

Basically, this involves adding the name of your simulator (sim-pipe.c) to the list for
the following variables: SRCS, PROGS, adding a line that tells the makefile how to
compile sim-pipe, and also a few lines to tell the makefile sim-pipe’s dependences.
Follow the pattern for sim-safe.

2. loader.c. This file loads programs. There is a slight bug where the loader
attempts to read the segment even if it is empty (i.e. size==0). Therefore, on lines
504 and 554 of loader.c, please alter the line which reads:

4
© 2001, 2002, Kevin Skadron

CS 654 Fall 2002

if (fread(p, shdr.s_size, 1, fobj) < 1)

to the following

if(shdr.s_size>0 && (fread(p, shdr.s_size, 1, fobj) < 1))

This basically short circuits the read attempt if the segment header is size 0.

The Assignment

1. Included in sim-pipe.c are empty functions for each pipeline stage and a prototype for

the pipeline registers (a struct called stage_latch in the code). You are to write
in the functionality of each pipeline stage. I.e., for instruction_fetch(), you will write
code that checks if the if_id_s latch is ready for you to start writing
information to it. If it is, then write the appropriate code to do the instruction fetch.
The same process applies for the remaining pipeline stage functions. The
functionality for each pipeline stage is briefly described above.

2. Your simulator should do the following:

• execute program instructions
• detect data and control hazards
• stall as appropriate (stall on control and data hazards)

Homework Submission

(NOTE: We will be compiling your simulators in our SimpleScalar installation and
running our test cases on them, so make sure that your README file gives clear
directions on how to compile your simulator and details any additional files we will
need.)

In an email to cs654@cs.virginia.edu,include the following information:

1) Group member names and email ids (no email aliases please).
2) README: This should detail how to compile your simulator and the names of files

you have modified.
3) Pointer to the location of the files you have modified to write your simulator. Place

all the files that you modified for this assignment, along with the README file in a
directory like this: /home/<your userid>/cs654/assign01

Approach Suggestions

1. Build in phases and test often. Debugging a lot of changes is hard, debugging a small

change is somewhat easier.

5
© 2001, 2002, Kevin Skadron

CS 654 Fall 2002

6
© 2001, 2002, Kevin Skadron

2. Work on getting instructions flowing through the pipeline smoothly before worrying
about getting hazards detected. When you get that working as you’d like, work on
detecting data hazards, then control hazards.

Now you’re set to go. Good luck!

	Assumptions
	Pipeline Model
	NOTES
	Simulator Skeleton Code
	Sample Test Code and Sample Output
	Some Modifications Before Starting
	Homework Submission
	Approach Suggestions
	Now you’re set to go. Good luck!

