
1

ITANIUM 1

I T A N I U M
An EPIC Architecture

Marco Barcella
Karthik Sankaranarayanan

Ganesh Pai

ITANIUM 2

Introduction

• EPIC: Explicitly Parallel Instruction Computing

• Combination of features of RISC and VLIW

• VLIW features and flaws
– Groups of independent instructions
– Simple hardware
– Exploit ILP with compiler
– Large increase in code size
– Blocking caches

2

ITANIUM 3

Introduction
• 733 - 800 MHz clock

0.18-micron CMOS process technology

• 2 extended, 2 single precision FMACs
Execution up to 8 SP flops/cycle - 6 GFLOP

• >20x Pentium Pro

• 3-level cache hierarchy
– Split L1 and Unified L2 on die
– Unified L3 on separate die but same

container

ITANIUM 4

Introduction
• 64-byte line size
• Page Sizes up to 256MB
• Full 64-Bit computing
• Full IA- 32 binary compatibility in hardware

– Shared Resources: ALU, registers, Data
Cache

– IA-32 Engine: Dynamic execution

• Instruction set architecture (Marco)
Instruction stream (Ganesh)
Data stream and IA-32 Compatibility (Karthik)

3

ITANIUM 5

Die Plot

ITANIUM 6

Instruction Set Architecture
The Software Interface

Marco Barcella

4

ITANIUM 7

Outline
• Introduction to the ISA

• Expressing parallelism

• Creating parallelism

• Techniques and instructions

• Compatibility

• Observations

ITANIUM 8

Why & How
• Goal

– Bring ILP features to a general purpose
microprocessor, flexibility

• Techniques
– Predication
– Speculation
– Large register files
– register rotation
– HW exception deferral
– Software pipelining

• RISC/CISC basic architecture of HP’s PA-RISC,
but …

5

ITANIUM 9

Register Resources
• NaT
• Predicate Registers
• Branch Registers

• AR: PFS(PFM, PEC)
– UM
– 8 Kernel Registers
– LC, EC, CCV
– AR 16-19
– Future definition

ITANIUM 10

Encoding

• Bundles: More than one per cycle

• Template: MII, MIB – other combinations
• Compiler based reordering
• No Register analysis
• Instruction compared to 32-bit

6

ITANIUM 11

Instructions
• 6 types, 4units
• L+ X : Long branches, long immediate integer

ITANIUM 12

Expressing Parallelism
• Not only bundles, but also

If ((a==0)|| (b<=5) ||
(c!=d) || (f & 0x2)

{ r3 = 8 };

cmp.ne p1 = r0, r0;
add t = -5, b;;

cmp.eq.or p1 = 0,a
cmp.ge.or p1 = 0,t
cmp.ne.or p1 = 0,d
tbit.or p1 = 1,f,1;;

(p1) mov r3 = 8

{ .mii
cmp.ne p1,p2 = r1,r2;
cmp.ne p3,p4 = 4, r5;
cmp.lt p5,p6 = r8,r9;

}
{ .bbb
(p1) br.cond label1
(p3) br.cond label2
(p5) br.call b4 = label3

}

// Fall through code here

- Multi-way branches- Compound Conditionals

7

ITANIUM 13

Creating Parallelism
• Predication

– Uses CMP instructions and predicate registers
– Converts control dependencies to data dependencies
– Motivation

• Speculation + Predication
– Basic blocks in a single group
– Barriers between basic blocks
– Compiler

if (r1==r2)
r9 = r10 – r11;

else
r5 = r6 + r7;

cmp.eq p1,p2 = r1, r2;;

(p1) sub r9 = r10, r11
(p2) add r5 = r6, r7

ITANIUM 14

Control Speculation
• Importance of loads
• ld.s and chk.s and handling exceptions
• Propagation of token and fix-up

8

ITANIUM 15

Data Speculation
• Ambiguous dependencies, ld.a

• How it works
– ALAT, two tags

• Two recoveries
– ld.c, ldf.c, ldfp.c
– chk.a (chk.s)

ITANIUM 16

Procedure Calls
• Criticism: Large registers
• GR: 32 static + 96 stack
• Frames(SPARC), local, output
• br.call, brl.call & then br.ret

– CFM in PFM (PFS), RRB, alloc (sof, sol)

9

ITANIUM 17

Procedure Calls

• RSE speculatively fills and spills in the
background

• Result: Vs. PA-RISC 30%, 5% (Database)

ITANIUM 18

Context Switch Instructions

• Specific control on stack and backing store
– Flushrs to spill previous stack frames
– Cover to create a new frame above
– Ladrs to fill from backing store

10

ITANIUM 19

Branch Instruction

• Three categories
– IP-relative (21 bit) ; Long (60 bit) ; Indirect (in BRs)

ITANIUM 20

Branch Instructions

11

ITANIUM 21

Software Pipelining
• Motivation

• Vs HW

• Parallelism

• 3 phases

• Rotating FR, PR

• LC, EC

ITANIUM 22

Software Pipelining
• 2 categories

– Counted,

– While (top, exit)

• Counted
– Ends with EC=1 and LC=0, no qualifying predicate

• While
– No LC, ends when QP=0 and EC=1

12

ITANIUM 23

Branch Prediction Hints

• Hints, Branch Predict Instructions (brp)
• Hints:

– strategy

ITANIUM 24

Branch Prediction Hints
– Prefetch

– Deallocate

13

ITANIUM 25

Branch Prediction Hints

• Branch prediction instructions
– LOCATION
– TARGET
– IMPORTANCE
– STRATEGY

ITANIUM 26

Memory Instructions

• Simple (GR or FR, memory access order)

• Variants for speculative, spilling

• Semaphore instructions

14

ITANIUM 27

Memory Instructions

ITANIUM 28

Integer and Shifting

• Add, add…1, addp (32bit)

• Shift Left Mask Merge: dep, dep.z
– Position and field by immediate
– Simple shl (amount)

15

ITANIUM 29

Compare Instructions

• Two predicate registers

• Deferred token (tnat)

• 5 types
– Normal,
– Unconditional
– 3 “parallel” compares

ITANIUM 30

Floating Point Architecture

• FSR: precision modes, 4 status fields

• All with FMAC= A*B+C: simple,divide

• XMA

• 82 bits: 2+ 32(if single), 64(double),
80(double extended)

• Two singles in one register

16

ITANIUM 31

Compatibility

• X86: direct execution

• BR.IA, JMPE, overhead of register set saving

• SSE included (128), “new media”

• MMX parallel arithmetic: 128 not 8

• HP dynamic translator

• CMP4

ITANIUM 32

Code Density

• Causes
– Avg. 43 bit (32 of RISC)
– Added (alloc, chk)
– Fix-up

• Biggest impact
– Decreasing hit rate on caches

17

ITANIUM 33

Observations
• Synergetic

– ld.sa, data dependences in software pipelining

• Compiler
– Template
– Grouping
– Explicit prefetching
– ld.a

• X86 common SW base (aggressive)

• 20/30% improvement over RISC is claimed

ITANIUM 34

Instruction Stream
The Processor Front-end

Ganesh Pai

18

ITANIUM 35

Instruction Stream

• Overview of EPIC hardware

• I-Stream
– Pipeline
– I-Cache
– Prefetch & Fetch
– Branch prediction
– Issue (Instruction dispersal & delivery)

ITANIUM 36

Overview of EPIC Hardware

19

ITANIUM 37

10 Stage In-order Core Pipeline

ITANIUM 38

Pipeline Features

• 6-wide EPIC hardware under precise compiler
control

• 10-stage in-order pipeline

• Dynamic support for run-time optimization
– Ensure high throughput

• Register scoreboard to enforce dependencies

20

ITANIUM 39

I – Cache ; I – TLB

• 16 Kb
• 4-way set associative
• Fully pipelined
• 64-entry I-TLB
• Single cycle
• Fully associative
• On-chip page walker

• I-Cache filters prefetch requests
• Both enhanced with an additional port

– To check for a miss

ITANIUM 40

Fetch & Prefetch

• Speculative fetching

• Both hardware and software prefetching

• Software initiated instruction prefetch
– Triggered by BPR hints
– Fetch from L2 into instruction-streaming buffer (ISB)
– Eight 32-byte entries in the ISB
– Short 64-byte bursts / long sequential stream

• Eliminate I-fetch bubbles

21

ITANIUM 41

Fetch & Prefetch

• Decoupling buffer
– 8 bundles deep
– Hides stalls, cache misses, branch mispredictions

ITANIUM 42

Branch Prediction

• First emphasis on compiler
– Reducing branches by predication

• Branch Prediction for remaining cases
– Assisted by branch hint directives i.e
– branch target addresses
– Static hints on branch direction

– Indications for use of dynamic predictor

• Hierarchy of branch predictors

22

ITANIUM 43

Branch Prediction

• Branch hints + Predictor Hierarchy
– Four progressive Resteers
– Improved branch prediction

ITANIUM 44

Branch Prediction

• Resteer1 : Single Cycle Predictor
– 4 TAR s programmed by compiler with “important”

hints
– TAR is a 4 deep FIFO
– On a “hit” branch is predicted taken

• Resteer2: Adaptive multi-way return predictor
– 2 level prediction scheme (Yeh and Patt)

– 512 (128 x 4) entry branch prediction table (BPT)
– 2 bit saturating up-down counter to predict direction
– Enhanced by 64-entry multi-way BPT
– 64-entry branch target address cache (BTAC)
– 8-entry return stack buffer (RSB)

23

ITANIUM 45

Branch Prediction

• Resteer3 & 4
– Two branch address calculators (BAC1 and BAC2)
– Correction to earlier predictions (if any)
– A special “perfect-exit-loop-predictor”

• In case of misses in earlier structures
– Use of a static prediction information from bundles

ITANIUM 46

Instruction Dispersal

24

ITANIUM 47

Instruction Dispersal
• Stop bits eliminate dependency checking

• Templates simplify routing

• Map instructions to first available of 9 issue
ports
– Keep issuing until stop bit
– Resource over-subscription or asymmetry

• Re-map virtual register to physical register

• Instruction granular

ITANIUM 48

Instruction Delivery

• Register Stacking
• Achieved transparently to the compiler
• Register re-mapping via parallel adders

25

ITANIUM 49

Data Stream
The Execution Core

Karthik Sankaranarayanan

ITANIUM 50

Recap - Execution Units

• 17 units + ALAT
– 4 ALU
– 4 MMX
– 2 + 2 FMAC
– 2 Load/ Store
– 3 branch

• Issue Ports
– 2 I
– 2 M
– 2 F
– 3 B

26

ITANIUM 51

Register Files
• Integer

– 128 64-bit
– 8 read ports (2 x 2 I units, 2 x 2 M units)
– 6 write ports (1 x 2 I units, 2 x 2 Loads - A.I)

• Floating Point
– 128 82-bit (double extended)
– 8 read ports (2 x 2 F units, 2 x 2 M units)
– 4 write ports (2 x 2 F units, 2 x 2 M units)

• Predicate
– 64 1-bit , “broadside” R/W
– 15 read ports (2 x 6 - M, F, I units & 3B units)
– 11 write ports

• (2 x 2 M units, 2 x 2 I units, 2 x 1 F unit, 1 x 1 Reg.
Rot.)

ITANIUM 52

Recap - 10 Stage Pipeline

27

ITANIUM 53

Operand Delivery - WLD/REG Stages
• Register Read

– WLD (Word Line Decode) - begin access
– REG - Read Registers
– WLD - frequency increase?

• Register Scoreboard
– Hazard detection
– Stall only dependent instructions
– Include predicates

– Defer stalls

cmp.eq r1,r2 --> p1,p3

(p1) ld4[r3] --> r4

add r4, r1 --> r5 (no dependence if p1=0)

cmp.eq r1,r2 --> p1,p3

(p1) ld4[r3] --> r4

add r4, r1 --> r5 (no dependence if p1=0)

ITANIUM 54

Operand Delivery

• Deferred Stall
– Stall actually in EXE stage
– Clock frequency
– Operand read over - can’t re-read
– Snoop the register bypass network

– OLM - Operand Latch Manipulation

28

ITANIUM 55

Execution
• Deferred Stall
• Execute

– Writes turned off at retirement for false predicates
– Different latencies - Out Of Order “Execution”
– In-order retire - scoreboard

• Predicates
– ‘Producer’ reads in EXE
– ‘Consumer’ reads in REG

cmp.eq r1,r2 --> p1,p3
cmp.eq r7,r8 --> p5,p7

(p1) ld4[r3] --> r4 (reads p1 in EXE)
(p5) add r4, r1 --> r5 (reads p5 in REG)

cmp.eq r1,r2 --> p1,p3
cmp.eq r7,r8 --> p5,p7

(p1) ld4[r3] --> r4 (reads p1 in EXE)
(p5) add r4, r1 --> r5 (reads p5 in REG)

ITANIUM 56

Execution
• Predicates

– Forward as soon as possible
– Minimize forwarding logic
– Predicate generation - deterministic latency

– Separate Register file
• Speculative, Architectural (SPRF, APRF)
• Shadow state

– Bypass paths to eliminate ‘false stalls’

29

ITANIUM 57

DET/ WRB - Parallel Branches

• Multi-way branches - speculation + predication
• B units - up to 3 branches’ parallel execution
• Execution in DET stage
• Can use predicates in the same bundle

• Software pipeline support - LC, EC

ITANIUM 58

DET/ WRB - Parallel Branches
• Control Speculation

– ld.s, chk.s
– Exception Deferral - NaTs, NaTVals (poison bits!)
– Store NaTs? - store.spill, ld.fill (context switch)
– UNaT, RNaT

• Data Speculation
– ld.a, chk.a, ld.c
– ld.c can be issued with dependent instructions
– ALAT - 32 entries, Register ID, Address, Size

• In-order retirement (branch misprediction/
flush).

30

ITANIUM 59

FPU Details

• Pipelined FMACs (A*B + C) (5 cycles)
• 4 DP ops/ 8 SP (SIMD) ops per cycle
• Divide/ Square root - S/W pipeline
• FP CMP operations (2 cycles)
• direct L2 cache contact - 2 ldf pair / cycle
• setf, getf, XMA, status registers

ITANIUM 60

Memory Subsystem

• Address translation
– 32 entry L1 DTLB, 96 entry L2 DTLB, Page size 4K - 256 M
– Regions for sharing, , Keys for protection
– Hardware page walker

31

ITANIUM 61

Memory Subsystem
• L1 Data

– 16 K, 4-way, 32 byte lines
– write through, no write allocate
– dual ported, 2 cycle load latency

• L2, on chip, unified
– 96 K, 6 way, 64 byte lines, Write back, write allocate
– Dual ported, 6 cycles Int, 9 cycles FP load latencies
– MESI protocol for coherence

• L3, off chip, on package, unified
– 4 M, 4-way, 64 byte lines
– 21-24 cycle latency, 128 bit bus

ITANIUM 62

Memory Subsystem
• Caches

– Hints
– FP NT1 = Int NT2
– Bias - Easier MESI

32

ITANIUM 63

Rest of the Processor

• System Bus
– 64 bit, 2.1GB/s,
– Multidrop , Split transaction bus
– Up to 56 outstanding transactions
– Optimized MESI protocol
– Glue-less multiprocessor support (Up to 4)

• IA 32 control

• ECC/Parity coverage of processor and bus
– Read only structures - parity
– Data - ECC.

ITANIUM 64

Putting It All Together
The Block Diagram

33

ITANIUM 65

ITANIUM 66

Conclusions
To Sum Up

34

ITANIUM 67

Conclusions

• Complexity shift to compilers
• Methods to express compile time information
• Large register files, EPIC specific Hardware
• Optimized FPUs for multimedia applications
• Large L3 cache
• Reliability and performance - server side

“Neat design, Let us see if it succeeds”

