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Motivation

®* Removing heat is expensive

® Design point is set for worst case temperatures

- Expensive thermal solution guarantees peak
performance

* Usually temperatures are lower
- A localized hotspot may...

* trigger global emergency mechanisms: But it could be
avoided by focusing only on that hotspot
* not be detected: Sensors covering wider areas

® Clustered architectures give new opportunities for
temperature reduction

- Peak temperature 33%
- Average temperature 12%
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Introduction

® Clustering opens new opportunities for
temperature reduction

- Distribution of resources
* Activity distribution
- Hopping schemes
= [Layout flexibility
* Trade off unit location vs. wire delay
- Resource grouping into clusters

» \/oltage and clock domains
* Leakage control
* V4 gating
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Processor Architecture

MS/MOB
Cluster 0

Bicluster
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Simulation Infrastructure

® Computes dynamically
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selected functional Temperature
blocks (emulates Performance b : model
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Thermal Analysis of
Clustered Architectures

®* Temperature metrics
- AbsiMiax

* Maximum sensed temperature
= Average

» Average temperature of the chip area over time
- AverageMax

* Average temperature over time of the maximum
sensed temperature




Thermal Analysis of
Clustered Architectures
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Cluster Hopping

* Based on activity migration [Heo, ISLPED
03]
- \/y gatea subset of clusters
= Rotate clusters to spread activity along time

- Gated clusters cannot provide any register
value
* Before gating cluster must be emptied
- Cache/DTLB contents are lost
- Proactive and/or reactive behavior

* Proactive: Per interval basis
» Reactive: On thermal events




Cluster Hopping
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Conclusions

® The analyzed bi-cluster architecture is increasing
temperature: Clustering must be applied smartly

® The quad-cluster architecture analyzed is effective
reducing temperature:
= Reduces processor peak temperature 33%
- Reduces 12% average temperature
- |PC penalty of 14%
= |lgnored other benefits of clustering for this study

* Improving the quad-cluster architecture with a
hopping scheme (HOP-3).
- Peak temperature is reduced 37%
- Average temperature of the processor 14%
- Extra penalty of 3%




