

Thermal-Effective Clustered Microarchitectures

Pedro Chaparro
IBRC – Intel Labs - UPC

pedro.chaparro.monferrer
@intel.com

José González
IBRC – Intel Labs - UPC
pepe.gonzalez@intel.com

Antonio González
IBRC – Intel Labs - UPC

antoniox.gonzalez@intel.com

Abstract

 As frequencies and feature size scale faster than
operating voltages, power density is increasing in every
processor generation. Along with that, leakage (highly
dependent on temperature) has become an important
source of power. Due to the non uniformity of on-chip
power density, localized hot spots may create transient
high temperature in a restricted area of the chip. These
temperatures are source of errors and reduce chip
reliability. This paper evaluates clustered architectures
as an effective way to distribute power across the chip in
order to reduce chip temperature. The proposed quad-
cluster architecture reduces 33% peak temperature and
12% average. Along with this, “cluster-hopping”
decreases temperature in the chip because of disabling
some of the clustered backends during a period of time:
peak temperatures are reduced 37% and average
temperature of the processor 14% with an extra penalty
of 3%.

1. Introduction

 Power dissipation is one of the major hurdles in the
design of next-generation microarchitectures. Power
density is increasing in each generation due to the fact
that feature size and frequency are scaling faster than
operating voltage. Power density directly translates into
heat, and this heat must be removed from the processor
die in order to keep the silicon temperature below a
certain limit. In fact, the cost of removing heat is
increasing at the same rate as power density. This
increase is affecting the processor design in many
different ways. For instance, the cooling system of a
processor is targeted to support a peak temperature, even
though the processor spends most of the time running at
much lower temperatures. The cost of the cooling system
has been quantified in the order of 1-3$ or more per Watt
when the average power exceeds 40 Watts [4][10], which
represents an important cost.

 In order to reduce dynamic power dissipation, chip
designers have relied on scaling down the supply voltage.
To counteract the negative effect of a lower supply
voltage on gate delay, the threshold voltage is also scaled
down along with the supply voltage. However, lowering
threshold voltage has a significant impact on leakage
current due to the highly strong relationship between
them. In fact, it is expected that within a few process
generations the contribution of leakage power to the total
power will be comparable to the contribution of dynamic
power [4][8].
 On the other hand, wire delays scale much slower than
gate delays [1][3][16] and will become a serious obstacle
to the scalability of superscalar processors. Clustered
microarchitectures are an effective paradigm to deal with
the problem of wire delays and complexity by means of
partitioning some of the processor resources [7][9], as for
instance the processor backend, and attempting to
maximize local (and fast) communications and reduce
global (and slow) communications.
 This paper studies the benefit of clustered
microarchitecture from the thermal point of view when
they are compared with monolithic architectures. Besides,
we introduce an architectural modification, cluster
hopping, with the aim of reducing processor’s
temperature. Cluster hopping refers to the architectural
feature that disables (i.e., Vdd is gated-off) some of the
clusters during a time interval, in order not to dissipate
power and to reduce temperature. The clusters that are
Vdd-gated rotate every interval to achieve a better activity
and, though, heat distribution.
 The rest of the paper is as follows: Section 2 describes
the processor architecture and the power and thermal
models. Section 3 provides baseline temperature results
for a monolithic architecture. Section 4 introduces our
proposals for study of the thermal effectiveness of
clustered microarchitectures and cluster hopping. Section
5 presents the performance (execution time and
temperature) results. Section 6 highlights the related work
and Section 7 concludes the paper.

2. Processor Architecture

2.1. Clustered Architecture

 This Section briefly describes the baseline clustered
microarchitecture.

(a)

(b)

Figure 1. (a) Block diagram of the clustered
microarchitecture (b) Backend detail

 Figure 1 depicts the block diagram of the clustered
microarchitecture. A high-level picture can be seen in
Figure 1a, in which the two main parts of the processor
are distinguished: the frontend and the clustered backends.
The frontend reads IA32 instructions from the UL2,
translates them into uops and stores them in the Trace
Cache, from where they are read, decoded, renamed and
steered to any of the backends, according to a steering
policy. Figure 1b shows the details of one of the backends
(a.k.a. clusters). Each of them has its own register file,
integer and floating point issue queues and a memory
order buffer along with a data TLB and a first-level data
cache.

 uOps are first handled by the dispatch logic, where the
steering unit decides the destination cluster based on
some policy. Once the destination cluster is decided, the
logical output register is mapped into a free register
belonging to that cluster and the instruction is steered.
 After steering, instructions remain in an issue queue
until their inputs become available, and then, they are
executed and results are written back to the register file.
 Special copy instructions are generated by the dispatch
logic when an instruction requires a register value
generated in a cluster other than the one in which it will
be executed ([7], [17]). This copy uop is dispatched to the
cluster generating the value and it is in charge of sending
the data through a point-to-point link to the cluster where
the consumer resides.
 Data caches are distributed and a load can be steered
to any cluster. If there is a cache miss, the UL2 is
accessed using the memory bus and the line is written in
the cache of the cluster where the requesting load resides.
Store instructions are steered to a cluster according to the
steering policy to compute the effective address, but they
allocate a slot in all memory order buffers in order to
disambiguate stores from subsequent loads [2]. When the
store address is computed, it is sent through the
disambiguation bus and copied to all clusters, so
disambiguation can be performed locally.
 Integer and floating point instructions leave the issue
queue after being issued. Store instructions remain in the
memory order buffer until commit and loads are stored in
the memory order buffer until they are disambiguated.
After executed, instructions send a completed signal to
the reorder buffer and they can be committed once they
reach the head of the buffer.
 The monolithic implementation considered in this
paper is the equivalent to the clustered one but without
the need of communication and coherency among clusters
(basically the copy instructions and the copy scheduler
are avoided). The aggressiveness of the backends depends,
basically, on the number of them that are implemented in
each particular configuration.

2.2. Power Model

 This Section introduces both the dynamic and the
leakage power model that we have utilized to carry out
the experiments.
 The dynamic power model is very similar to those
existing in the literature [5]. Basically, an activity counter
is associated to each functional block (e.g. register files,
data cache, etc) and it is incremented in each block
operation. In order to compute the energy, the activity
counter is multiplied by its corresponding energy-per-
operation value (obtained from the physical design or an
analytical model). An aggressive clock gating technique
is assumed: unused structures just dissipate 10% of their

peak dynamic power, since a perfect gating is not usually
possible [5] (except in the case of UL2 where it is
considered a perfect clock gating).
 For each functional block of the processor leakage
power has been modeled as the average dynamic power
multiplied by a factor dependent on the temperature.
More precisely, it is assumed that leakage power is going
to be roughly 30% of dynamic power at ambient –inside
box- temperature (45º [15], [20]). Then, in order to
establish a strong dependence between temperature and
leakage, this percentage is varied according to the current
temperature of the functional block. Figure 2 shows a
curve similar to that reported by Zhang et al in [21]
(generated using BSIM3). Our analysis is adjusted to fit
the expected trend for 65nm and reports a leakage equal
to 100% of the average dynamic power (i.e., leakage is
50% of total power) at 100ºC. In this analysis, the curve is
divided into linear segments of 5 degrees ranging from 45
to 100 degrees (interpolating each interval by a straight
line). When the temperature of a block changes, leakage
is recomputed getting the proper factor from the
corresponding segment.

0%

20%

40%

60%

80%

100%

45 50 55 60 65 70 75 80 85 90 95 10
0

Temperature (ºC)
Figure 2. Relation between temperature and

leakage power

 This approximation of leakage over dynamic power
(and not over area) is reasonably good for memory-like
structures, which constitute most of the processor’s
leakage, although it may be a bit inaccurate for functional
units. Note that the objective of the leakage estimation
presented in this paper is to model the relationship
between leakage power and temperature. This model may
not be as accurate as other ways of measuring leakage
(e.g. HSPICE simulations) but it accomplishes our main
requirements.

2.3. Temperature Model

 The temperature model is similar to the one by
Skadron et al. [19][20]. It is based on the duality of the
thermal and the electrical phenomena (Table 1). The
temperature is estimated using a RC model that represents
the system, also known as dynamic compact model
(dynamic because it includes thermal capacitors modeling

the transient response of the system). At the
microarchitectural level, it models heat conduction and
the removal of heat in the heat sink.

Table 1. Duality between the electrical and the
thermal phenomena

Electrical Thermal
Voltage (V) Temperature (K)
Current (A) Power (W)

Resistance (V / A = Ω) Resistance (K / W)
Capacity (J / V = F) Capacity (J / K)

Time constant τ = R · C (s)

(a) (b)

(c)

Figure 3. (a) Thermal model (b) Model of heat
generation and spreading (c) Layer division of

the whole system

 In order to build an equivalent RC circuit the system
is divided into layers. In our case these layers are: the die,
the heat spreader and the heat sink, as shown in Figure 3a.
Each one of these layers is divided then into blocks: the
functional block division (register file, data caches,
instruction queues, etc.) is used for splitting the die, and
the rest of the layers are divided accordingly, that is,
mapping the division of the die on them (note that this
approach is different from the one followed in [19]).
Some other mapping schemes were studied and this one
was found to be the most accurate among them. Each of

Connections
between nodes

Processor Die

Ambient

Heat Sink

Heat generation
(only in die layer) Heat

Spreader

T2T1
R1-2

C1-2 P2

these blocks is represented by a node in the RC circuit.
The upper layers division models the thermal
heterogeneity of the heat spreader and heat sink.
 If two blocks are in contact then an RC connection
(shown in Figure 3b) is placed between the nodes
representing them. A RC connection consists of a resistor
in parallel with a capacitor. The resistor models the
opposition to the heat flow and the capacitor models the
time component, i.e. how long it takes to reach the
steady-state situation. Some connections link the nodes
representing the heat sink with a special node for the
ambient (the only node whose temperature does not
change because of heat flow). Heat generation is modeled
using the same duality: a current source for each
functional block is placed in the circuit, as shown in
Figure 3b).
 The thermal properties of the materials and the
relative positions and area of contact among blocks are
used to estimate the R and C values that model the heat
flow. The physical definition of a resistor value is used
applying the thermal resistivity of the material (ρ), the
distance between the central point of a block and the
center of the contact area with the neighbor block and the
area of contact itself (different studies on how to estimate
resistors and capacitors were carried out in order to find
the most accurate approach). For convection, which
models the removal of heat through air, the same
approach is used but applying the heat transfer coefficient
of the ambient (ν). The counterpart equation for
capacitors is derived by using the same area and distance
values and the heat capacitance (γ). At the simulated time
scale, capacitors to ambient are useless because the time
constant is huge compared to the simulation step,
therefore these capacitors are neglected.

Table 2. Equations for the equivalent resistor
and capacitor connecting two nodes

 Partial resistor Partial capacitor
Conduction Ri = ρi · l i / A i-j Ci = γi · l i · A i-j
Convection Ri = 1 / (νi · A i-j) Ci = 0

Total value Ri-j = Ri + Rj 1 / C i-j = 1 / Ci +
+ 1 / Cj

 The RC circuit behavior is controlled by the equations
of each one of its components. For each thermal node,
Kirchoff’s law is applied to derive for every RC pair
connection a differential equation that involves heat flow,
the thermal resistor and the thermal capacitor. At
simulation time the discrete version of the equation is
used:

∆Ti(t) - ∆Tj(t) =

= Pi j (t) · ∆t / Ci-j – (Ti(t) – Tj(t)) · ∆t / (Ri-j · Ci-j)

 Each one of the unknowns (increment of temperature
in each node -∆Ti(t)- and power flow through each
connection -Pi j (t)-) is linked to an equation so the
number of unknowns is equal to the number of equations.
Given the state of the circuit and the power dissipated in
the time interval, the resulting linear system of equations
is solved, which generates the increment of temperature
for each one of the nodes.

3. Evaluation of the Microarchitecture

3.1. Experimental Framework

 Experiments have been conducted using an execution-
driven simulator that runs IA32 binaries. The processor
can fetch, dispatch and commit up to 8 uops per cycle.
Table 3 summarizes the main parameters of the baseline
monolithic architecture.
 We have selected sixteen SPEC2000 applications for
the evaluation process. Each execution trace (from the
test input set) is divided in 10 equal-size slices (i.e., slices
of different applications have different size) and the
fourth of them is selected to be run in the simulator (the
whole slice or up to 200 millions of instructions). This
limit was reached by ammp, art, bzip2, crafty, eon, gzip,
mesa, mgrid, parser, swim, vortex and wupwise but applu,
gcc, twolf and vpr were run for 115, 187, 64 and 150
millions of instructions respectively.

Table 3. Processor configuration
Frontend

Trace
cache/Fetch

32Kuops, 4-way, 4 cycle fetch-to-
dispatch latency

Decode,
rename and

steer

8 cycles (regardless of the destination
cluster)

UL2 2 MB/8-way, 12 cycle hit, 500+ miss

Communi-
cations

2 memory buses, 2 disambiguation
buses, 4-cycle latency + 1-cycle arbiter,
2 bidirectional p2p link (1 cycle per hop;

2 from side to side of the chip)
Each backend

Queues

80-entry IQueue 4 inst/cycle, 80-entry
FPQueue 3 inst/cycle, 384-entry
MemQueue 4inst/cycle, 10 cycle
dispatch latency; 20 entries per

prescheduler queue (integer, FP,
memory and copies)

Register file
544 int. registers (10 read and 8 write

ports) and 544 FP registers (10 read and
8 write ports)

Data cache 64 KB/2-way, 3 cycle hit, 2 read and 2
write ports, write through

 As far as the thermal model is concerned, at the
beginning of the simulation we assume that the processor
has already been running for a long time dissipating its
nominal average dynamic power and the leakage power at
80ºC. In this way, simulations are started with the
processor already warmed. Then, during normal
execution, every 10 million of cycles temperature is
updated using the per-block dissipated power.
 Figure 4b shows the layout of the processor and
Figure 4a and Figure 4c detail, respectively, the frontend
and the backend area for the monolithic superscalar
processor; the 2MB UL2 completes the processor. We
assume a processor designed at 65nm, running at 10GHz
with a Vdd of 1.1V with a total area of 56.34mm2, which,
again, make it feasible to be included in a bigger CMP
configuration (i.e. multiple processors cores on the same
chip). For the sake of simplicity a configuration with a
single core is analyzed. Areas were computed using and
enhanced version of Cacti ([23]) for cache-like structures,
and scaling down rest of structures from current designs.
The thermal solution attached to the die of the processor
consists of a copper heat spreader, in contact with the die,
whose size is 3.1x3.1x0.23cm (similar to the one used in
Pentium® 4 processors [13]). On top of it there is a
copper heat sink of 7x8.3x4.11cm ([13]).

Figure 4. (a) Frontend layout detail, (b)

monolithic processor layout and (c) backend
detail

3.2. Results for the Monolithic Processor

 This Section shows the initial results for the baseline
architecture. The temperatures obtained for the simulated

benchmarks are depicted, averaged, in Figure 5 (the
Figure shows temperatures with respect to 45 ºC). Four
different metrics are shown for four different scopes
(“sets”) of the processor (UL2, frontend area, backend
area and global processor):

• LocalMax: The average temperature of a set of
blocks (i. e. backend area) is computed as the
weighted average (by area) temperature of each one of
the functional units that are included in that set. This
means that, for instance, having a very high
temperature in a block in the backend does not mean
that the average temperature of the backend itself is
high if the rest of the blocks are cold. Its a general
metric for reducing average temperature.
• AbsMax: This metric represents the maximum peak
temperature in any of the blocks included in a set.
• Average: The average temperature of the set (over
time). This metric is important because of the impact
of temperature in leakage. Reducing the average
temperature of the chip helps reducing leakage.
• AverageMax: The average over time of the
maximum temperatures of any block inside a set
accounts for the evolution of the highest temperature
in time. With this metric we can detect, in opposition
to a reduction in the absolute peak, a reduction along
time of the peak temperature. These last three are the
main metrics.

Looking at the Figure, we observe that the backend (i.e.
instruction queues, schedulers, register files, etc) is the
area that determines peak temperatures. Therefore,
clustering that area, which reduces power density, seems
an interesting approach to control temperature.

0

10

20

30

40

50

60

70

 Backends UL2 Frontends Processor

Te
m

pe
ra

tu
re

 (º
C

)

LocalMax AbsMax Average AverageMax

Figure 5. Baseline temperature values (over

ambient in-box temperature, 45 ºC)

(a) (b)

(c)

UL2

Frontend

Backend

4. Thermal-Effective Clustered
Organizations

 This section presents two different proposals to deal
with the high temperatures that arise during runtime
processor execution in monolithic configurations.

• Clustered processors: By means of partitioning
processor’s resources a better distribution of power
and activity may be accomplished reducing
temperature.
• Cluster hopping: When clustering resources, by
alternatively gating some of the clusters of the
processor during certain periods of time power and
power density can be reduced helping cooling the
chip.

4.1. Clustered Processors

Table 4. Configuration of each backend

 In addition to the well-known benefits of clustered
architectures [7][9], the inherent distribution of resources
and activity achieved by such organizations may help to
better distribute heat.
 Figure 6 shows configuration and layout details for
the two different clustered architectures studied in this
paper. The areas are 60.19 mm2 for the bi-clustered and
58.42 mm2 for the quad-cluster architecture (again small
enough to be part of a CMP configuration). In the same
figure, the details for the backend are given. The frontend
layout and configuration as well as the thermal solution
remain unchanged from the monolithic processor.

(a) (b)

(c) (d)

Figure 6. Layout of the bi-cluster processor (a)
and its backend (c) and quad-cluster processor

(b) with its backend (d)

4.2. Cluster Hopping

 Asanović et al. [11] study the impact on power
density of activity migration among replicated units. In
opposition, this paper focuses on the reduction of
temperature. We analyzed hopping among clusters. In a
clustered configuration, when hopping, a subset of the
clustered backends is Vdd -gated during certain periods of
time to help reducing the power dissipation of the chip. In
addition, the power density is also reduced because of the
rotation of the unit gated. We evaluated the impact on
temperature (and not on power) of cluster hopping in
clustered architectures.
 Figure 7 shows the different alternatives. The block
distribution is the same as in the normal quad-cluster
architecture. Gray painted clusters represent those clusters
that are disabled. At the end of the interval (10 millions of
cycles), the configuration switches to the next step in the
cycle. Changing active clusters requires a stream of copy
instructions to be dispatched in order to copy all registers
just mapped in the clusters being disabled (i.e. that are not
present in any other cluster). Once the cluster is empty, it
can be Vdd –gated safely. When a cluster is woke up local
data cache and data TLB are empty (data caches are
write-through, so next memory level has always an up-to-
date copy). Since the periods of time between hops are
large enough, the performance impact of copy streams is
negligible.
 Two different configurations are tested: in HOP3
(Figure 7a) only one out of the four clusters is gated. In

 Bi-cluster Quad-cluster

Q
ue

ue
s

40-entry IQueue, 2
inst/cycle, 40-entry

FPQueue 2 inst/cycle,
40-entry CopyQueue

2inst/cycle , 192-entry
MemQueue 2inst/cycle,

10 cycle dispatch
latency; 20 entries per

prescheduler queue

40-entry IQueue 1
inst/cycle, 40-entry

FPQueue 1 inst/cycle,
40-entry CopyQueue
1inst/cycle , 96-entry

MemQueue
1inst/cycle, 10 cycle
dispatch latency; 20

entries per
prescheduler queue

R
eg

is
te

r
fil

e

272 int. registers (8
read and 4 write ports)
and 272 FP registers (7
read and 4 write ports)

160 int. registers (6
read and 3 write ports)
and 160 FP registers
(5 read and 3 write

ports)

D
at

a
ca

ch
e

32 KB/2-way, 2 cycle
hit, 2 read and 2 write

ports, write update

16 KB/2-way, 1 cycle
hit, 1 read port, 1
write port, write

update

Backend

HOP2 (Figure 7b) two clusters are gated. Moreover, in
the HOP2 configuration the frontend is located in the
middle of the layout. In this layout copy instructions that
go from clusters placed in both sides of the frontend
require an extra cycle. Note that this will just happen for
those copies generated at reconfiguration time, since with
HOP2 just clusters placed in the same side are always
active.
 This layout could have been also probed along with
the HOP3 scheme, but we believe that it makes no sense
since having three active clusters will cause a lot of traffic
from one side of the frontend to the other side, increasing
the latency of communications and thus its impact on the
final performance.

(a.1) (a.2)

(a.3) (a.4)

(b.1) (b.2)

Figure 7. Cluster-hopping alternatives analyzed:
(a) HOP3 (b) HOP2

5. Evaluation

 This section presents the results obtained when
comparing the baseline with the different proposals.
 We evaluate the benefits associated to both clustered
architectures and cluster hopping. Any mechanism such
fetch toggling, throttling or voltage/frequency scaling are
orthogonal to our schemes and can be applied on top of
them so none of them have been evaluated. Also, the
usage of different physical parameters (threshold
voltages, frequency) has not been compared because can
be applied on both monolithic and clustered architectures
(the less complexness of clustered architectures may
permit, even, higher frequency).

5.1. Clustered Organizations

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

Lo
ca

lM
ax

A
bs

M
ax

A
ve

ra
ge

Av
er

ag
eM

ax

S
lo

w
do

w
n

Lo
ca

lM
ax

A
bs

M
ax

A
ve

ra
ge

Av
er

ag
eM

ax

S
lo

w
do

w
n

2 Clusters 4 Clusters

R
ed

uc
tio

n

 Backends UL2 Frontend Processor

Figure 8. Performance (slowdown and
temperature reductions) of the clustered

architectures

 Figure 8 shows the runtime results (averaged for all
sixteen benchmarks) obtained for the evaluated clustered
architectures. It can be seen that architectures with 2
backend clusters are not as effective as a quad-cluster
architecture. This is due to the fact that, when the
resources are partitioned in just two clusters they are still
complex and large enough not to show benefits in
temperature. In addition, the explored layout keeps
critical structures (such the schedulers) together so for
heat spreading looked like a monolithic scheduler.
Actually, temperature is increased due to a worse power
density: activity is not reduced at the same rate as area
(halving the capacity of some units does not necessarily
mean halving their area).
 Only the L2 cache has visibly reduced its temperature.
On the other hand the performance penalty (measured in
instructions per cycle) paid by a bi-cluster processor is
small (2%) compared to the quad-cluster (14%). The
quad-cluster is clearly reducing processor temperature
except for the case of the average backend highest (2%).
In fact, the highest temperature reported inside the
backends is reduced by 31% and the average through the
whole simulation is also reduced by 37%. On the other
hand both UL2 and frontend areas have also their
temperature decreased. In general there is a reduction of
33% in processor’s peak temperature and 12% average
temperature.

5.2. Cluster Hopping

 Figure 9 gives details of the results for both cluster-
hopping alternatives proposed in this paper. Analyzing
HOP3, we can see a big impact on the temperature of the
backends: peak temperature is reduced 31% and the
average over time is reduced (37%). UL2 and frontend

temperature is reduced between 1-2% with respect to the
quad-cluster configuration. Summarizing, HOP3 reduces
processor peak temperature by 37% (as the average of all
applications studied in this work) and the average
temperature by 14%, with a slowdown of 17% over the
baseline (only 3% more than the standard quad-cluster
architecture). When 2 clusters are gated together (HOP2
configuration) the average performance penalty increases
quite a lot (29%). Temperature is also decreased, which
suggests that this approach can be applied to effectively
reduce temperature right before the processor reaches a
thermal crisis, since the penalty paid is lower than that of
throttling. Nevertheless, this is an opened issue and it is
part of our future work.

-5%
0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

Lo
ca

lM
ax

A
bs

M
ax

Av
er

ag
e

A
ve

ra
ge

M
ax

S
lo

w
do

w
n

Lo
ca

lM
ax

A
bs

M
ax

Av
er

ag
e

A
ve

ra
ge

M
ax

S
lo

w
do

w
n

Hop3 Hop 2

R
ec

uc
tio

n

 Backends UL2 Frontend Processor

Figure 9. Performance stats for the cluster-
hopping alternatives

6. Related Work

 Controlling temperature through microarchitectural
techniques is a fairly new area. Huang et al [12] propose a
framework to maximize energy savings and to guarantee
that temperature remains under a certain threshold. The
framework combines a number of energy-management
techniques, such as voltage-frequency scaling, sub-
banked data cache, among others. Brooks and Martonosi
[6] propose a set of control techniques evaluated on top of
different triggering mechanisms with the aim of reducing
thermal emergencies. They use the average power in an
interval as a proxy of temperature. Skadron et al. [19][20]
propose a thermal simulator based on the duality between
heat transfer and the electrical phenomena. Several
techniques are evaluated to control peak temperature and
reduce thermal emergencies: PI controllers, frequency
scaling, fetch toggling and replication of the register file.
Cai et al [14] propose a secondary ultra-low power
pipeline that is used when a given temperature threshold
is exceeded. Asanović et al. [11] study the impact of
activity migration among replicated units on power
density.

 The main contribution of this paper with respect to
previous proposals is that, to the best of our knowledge,
this is the first work that analyzes the thermal behavior
clustered architectures, presenting this microarchitecture
paradigm as an effective way of reducing both average
and peak temperature.

7. Conclusions

 The distribution of processor’s resources through
clustered architectures helps to spread the activity and
energy dissipation through chip’s area. In order to achieve
temperature reductions, partitioning processor’s backend
into 2 clusters is not enough for reducing temperature, but
it is even increased. Four clusters are enough to see better
results: ignoring some other benefits of clustered
architectures, the distribution analyzed in this paper is
able to reduce processor peak temperature 33 % (average
of all applications analyzed), and 12% average
temperature with a performance penalty of 14%.
Improving the quad-cluster architecture with a hopping
scheme, peak temperature is reduced 37% and average
temperature of the processor 14% with an extra penalty of
3%.

8. References

[1] V. Agarwal, M.S. Hrishikesh, S.W. Keckler and D. Burger.
“Clock Rate versus IPC: the End of the Road for
Conventional Microarchitectures“. In Proceedings of the
27th International Symposium on Computer Architecture,
2000.

[2] R. Balasubramonian, S. Dwarkadas and D.H. Albonesi.
“Dynamically Managing the Communication Parallelism
Trade-off in Future Clustered Processors. “. Proceedings of
the International Symposium on Computer Architecture,
2003.

[3] M. Bohr. “Interconnect Scaling - the Real Limiter to High-
Performance ULSI”. In Proceedings of the International
Electron Devices Meeting, pp. 241-244, Dec. 1995.

[4] S. Borkar. “Design Challenges of Technology Scaling”.
IEEE Micro, 19(4), pp. 23-29, 1999.

[5] D. Brooks, V. Tiwari V. and M. Martonosi. “Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations”, in Proceedings of the 27th International
Symposium on Computer Architecture, pp. 83-94, 2000

[6] D. Brooks and M. Martonosi. “Dynamic Thermal
Management for High-Performance Microprocessors”.
Proceedings of the International Symposium on High-
Performance Computing, 2001.

[7] R. Canal, J.M. Parcerisa and A. González. “A Cost-
Effective Clustered Architecture” Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques, 1999.

[8] V. De and S. Borkar. “Technology and Design Challenges
for Low Power and High Performance”. Proceedings of the
International Symposium on Low Power Electronics
Design pp. 163-168, 2000.

[9] K. Farkas, P. Chow, N. Jouppi and Z. Vranesic. “The
Multicluster Architecture: Reducing Cycle Time through
Partitioning”. Proceedings of the International Symposium
on Microarchitecture, 2000.

[10] S. Gunther, F. Binns, D. M. Carmean and J.C. Hall.
“Managing the Impact of Increasing Microprocessor Power
Consumption”. Intel Technology Journal, Q1, 2001.

[11] S. Heo, K. Barr, K. Asanović “Reducing power density
through activity migration” Proceedings of the 2003
International Symposium on Low Power Electronics and
Design, 2003.

[12] M. Huang, J. Renau, S-M. Yoo and J. Torrellas. “A
Framework for Dynamic Energy Efficiency and
Temperature Management”. Proceedings of the
International Symposium on Microarchitecture, , pp. 202-
213, 2000

[13] Intel Corporation “Intel® Pentium ® 4 Processor in the
423-pin Package Thermal Solution Functional
Specification”
http://www.intel.com/design/pentium4/guides/249204.htm.

[14] C. H. Lim, W. R. Daasch, G. Cai, “A Thermal-Aware
Superscalar Microprocessor” Quality Electronic Design,
2002. Proceedings. International Symposium on , 18-21
March 2002

[15] R. Majan “Thermal management of CPUs: A perspective
on trends, needs and opportunities”, Oct. 2002. Keynote
presentation, THERMINIC-8.

[16] D. Matzke. “Will Physical Scalability Sabotage
Performance Gains?” Computer Magazine, Vol. 30, No. 9,
pp 37-39.

[17] J.-M. Parcerisa, J. Sahuquillo, A. González, J. Duato
"Efficient Interconnects for Clustered Microarchitectures"
Proc. of the Int. Conf. on Parallel Architectures and
Compilation Techniques (PACT 2002).

[18] P. Shivakumar, N. P. Jouppi “CACTI 3.0: An Integrated
Cache Timing, Power and Area Model” WRL Research
Report 2001/2.

[19] K.Skadron, T. Abdelzaher and M. Stan. “Control-Theoretic
Techniques and Thermal-RC Modelling for Accurate and
Localized Dynamic Thermal Management”. Proceedings of
the International Symposium on High Performance
Computing, 2002.

[20] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K.
Sankaranarayanan, and D. Tarjan. “Temperature-Aware
Microarchitecture”. In Proceedings of the 30th Annual
International Symposium on Computer Architecture, Apr.
2003.

[21] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron and
M. Stan. “Hotleakage: A Temperature-Aware Model of
Subthreshold and Gate Leakage for Architects”. Technical
Report CS-2003-05, University of Virginia Department of
Computer Science, Mar. 2003. 34.

