Research Challenges in Temperature-Aware Design

Ricardo Bianchini

Department of Computer Science Rutgers University

Motivation

- \Box High power densities \rightarrow high temperatures
 - Decreasing form factors, tight packing
 - Power supplies, disks (especially arrays), blades
 - Other sources: air flow may cause "hot spots", emergencies (cooling failure, accidental overload)
- High temperature degrades reliability
- Cooling complexity and costs
 - Ideal: Cool for the "average" or "common" case; intelligent management, including emergencies

What we have

- □ Theory: Physics, Mechanical Engineering
- □ Few tools: temperature and CFD, HotSpot
- □ Few monitors: processors, disks, boards
- Mechanisms for power control
- □ Simple policies for thermal management
 - Blindly shut or slow server/device down
 - □ Generate a warning or speed fans up

What we don't have

- □ Background: CFD, relationship to reliability
- System-level simulation tools
 - Run application programs and operating systems
 - □ Simulate cooling failures, thermal overload, layouts
- Better monitoring
 - More thermal and air flow sensors, tachometers
 - Equivalent of processor counters for other devices?

What we don't have

- □ More sophisticated management policies!
 - Temperature and reliability modeling
 - Combined temp, power, and energy management
 - Reliability-conscious resource scheduling and management
 - □ Temp-aware resource scheduling (e.g., disks)
 - Quality of temp" or "Temp differentiation"
 - Temp-aware workload distribution (distr. systems)

Our Temperature Simulator

Our Temperature Simulator

