Research Challenges for the Architecture Community in Temperature-Aware Design

Ronny Ronen Senior Principal Engineer Director of Architecture Research Intel Labs - Haifa

Intel Corporation

The views presented here are mine. They do not necessarily reflect Intel corp. position.

TACS-1: First Workshop on Temperature-Aware Computer Systems (w/ ISCA '2004)

General trends

Process Technology:

- Smaller (2x), faster (1.4x) transistors, consuming less energy per switch (2x) – but:
- More transistors per mm², More switches per cycle
 More power density (~1.5X)

Micro-architecture:

- **8** Traditional More transistor switches per inst.
- New world More efficiency -> More activity per area
- Higher power, higher power density
- Higher temperature

CMP/SMT – performance/power trends with bys

Configurations

- 1/2/4 cores
- 1/2 Way SMT
- Fixed area: 100 mm2
- Using Dynamic
 Voltage Scaling from
 0 to Vmax

- Efficiency is up (performance per fixed power)
- Overall power increased
- Power density increased
 Temperature

Source – "Everything you always wanted to know about SCALABILITY and were afraid to ask". Ronny Ronen, Intel EMEA Academic Forum, Barcelona, 4/2004

Page 3 Ronny Ronen, TACS-1 Panel 6/2004

Observations

- Processors are becoming thermally limited ... and it will just get worse.
- Thermal solutions improve But cost and form factor limit their benefit
- Designing for the worst case is not enough
 - Too risky
 - Too inefficient
- Temperature awareness is becoming crucial
 This has already started e.g., Thermal throttling

Challenges

Improve measurements

 To know better where we are

Reduce Temperature

 To actively eliminate/relax heating

Improve control

 To get the maximum in a given environment

Challenges – improve Measurements

Simulation

Better, more accurate, thermal estimate

- More detailed and accurate power modeling
- Integrated active/leakage with thermal modeling
- Accurate thermal solutions

On chip

Temperature measurement on die.

- More accurate, more points on chip
- Targeting hot spots

Challenges – Reduce Temperature

Power Awareness

- *"Less is More"* Do the same "work" with less power
 - Less instruction per task
 - Less micro-operation per instruction
 - Less transistor switches per micro-operation
 - Less energy per transistor switch
- Better power/performance trade off
 - Optimal/adaptive structure sizes, ...

Reduce power density

Identify hot spots – distribute them as possible

Better cooling solutions

Challenges – Improve Control

Adaptive Thermal management

- Eliminate risk of thermal run-away
 - Already being done in today's processor
- Maximize performance in thermally limited environment
 - Technology in infancy
 - Lack of determinism is a concern for OEMs*
- This is an optimization problem!
 - How to control power → thermal for best performance
 - Current Challenges: SMT/MP.

* See http://www.vanshardware.com/articles/2004/05/040517_efficeonFreeze/040517_efficeonFreeze.htm

Improved Control - example

Optimal strategy for a single-RC model¹

¹From Cohen et. al, "On Estimating Optimal Performance of CPU Dynamic Thermal Management." Computer Architecture Letters, Volume 2, Oct. 2003

Page 9 Ronny Ronen, TACS-1 Panel 6/2004

Deepfreezing a Transmeta efficeon*

Quote: 'Conclusion: Just Say "No" to Thermal Throttling!'

* See http://www.vanshardware.com/articles/2004/05/040517_efficeonFreeze/040517_efficeonFreeze.htm

CMP/SMT – performance/power trends

Configurations \bigcirc

- 1/2/4 cores
- 1/2 Way SMT
- Fixed area: 100 mm^2
- Unlimited power

With CMP

- MT Perf goes up
- ST Perf goes down
- Power efficiency is up
- Power goes up
 Thermal goes up!
- With SMT
 - MT Perf goes up
 - ST perf stay same
 - Power efficiency is up
 - Power goes up
 Thermal goes up!

Source - Everything you always wanted to know about SCALABILITY and were afraid to ask. Ronny Ronen, Intel EMEA Academic Forum, Barcelona, 4/2004

Page 12 Ronny Ronen, TACS-1 Panel 6/2004