

Going beyond CPUs: The Potential for Temperature-aware Data Centers

Justin Moore, Ratnesh Sharma, Rocky Shih Jeff Chase, Chandrakant Patel **Partha Ranganathan**

© 2004 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

- asuwlink.uwyo.edu/ ~jimkirk/ " TWO WORDS? ONE WORD! STARTS WITH ... SOUNDS LIKE ... "
- Several past studies on temperature-aware CPU designs
- BUT potential unexplored at higher-levels of system

Motivation

invent

The Temperature Problem in Data Centers

Cooling infrastructure

- At high-end, ~1W of cooling for every 1W of power!

.050- 100 KW	.250 KW	10 - 15 KW	1000+ KW	Heat Generated
				Energy to Remove Heat
0.005 KW	.025 KW	1 KW	500 KW	

- TCO costs: \$4-8 million cooling costs for 10MW data center
- Environmental costs: 20 11M GJ + 2M tons CO2 for US machines

Reliability and availability

- Mechanical parts failure rates
- Thermal redlining if inlet exceeds 30C
- Lower operational efficiency at higher temperatures
 - 10-15C increase => server/disk failure rates up by 2X [Uptime, Cole]

Exacerbated by consolidation, overprovisioning & density trends

Addressing the Temperature Problem

- Conventional approaches at facilities level
 - New cooling approaches or better cooling delivery
- This work: temperature-aware resource provisioning
 - Architecting a temperature-aware resource scheduler
 - Characterizing the indirectly-controlled delayed-response metric
 - Metrology: Leverage thermo-dynamics-based air-flow equations
 - Combining IT level and facilities level (space and topology relations)
 - Monitoring: Deploy a location-aware knowledge plane [Splice]
 - Dealing with discrete power states
 - Policies: Algorithms for "zonal proximity"
 - Preliminary results
 - Significant cooling savings (within 94% of best-effort case)
 - Eliminate system failures caused by thermal emergencies

Outline for talk

- Motivation
- Background and methodology
- Temperature-aware resource scheduling
 - Metrology
 - Monitoring
 - Policy
- Summary and Future Work

Background and Methodology

Conventional data center model

- 11.7mx8.5mx3.1m with 0.6m plenum
- 1120 servers
 - 4 rows x 7 racks x 40 1U servers
- 4 CRAC @ 86KW, hot/cold aisles
- Server-pair power states
 - 300W (idle), 580W (full)

Scheduling media rendering workloads

@ utilizations of 25% and 50%

Defining the problem: temperature as an indirectly-controlled metric

Data Center

- Temperature as an indirectly-controlled metric
 - Non-intuitive correlations between system usage, power, temperature
 - Delayed response times
 - Need metrology to characterize these effects

Metrology to capture temperature variation effects [Sharma+2003]

- Thermodynamics-based proxies for thermal behavior
 - Model hot air infiltration into cold aisle and mixing
 - Model short circuiting (cold air directly to CRAC inlet)
- Thermal policies for heat distribution

- W = Q/COP; COP = f(Tref); Q = mCp(Treturn-Tref)

- Reducing *Treturn* means *Tref* can be increased correspondingly
- This talk: Use exhaust temperature as first-order proxy
 - Make exhaust temp uniform to maximize inlet temperature (~25C)
 - Distribute heat inversely proportional to exhaust temp

- "Ideal distribution"
$$P_i = \left(\frac{T_i - T_{ref}}{T_{i=0} - T_{ref}}\right)^{-1} P_{i=0}$$

 $\frac{\delta Q}{22}$

cold

T^rin

T_{ref}

SHI =

 $Q = \sum \sum m_{i,j}^r C_p \left(\left(T_{out}^r \right)_{i,j} - \left(T_{in}^r \right)_{i,j} \right)$

 $\delta Q = \sum_{i} \sum_{i} m_{i,j}^{r} C_{p} \left(\left(T_{in}^{r} \right)_{i,j} - T_{ref} \right)$

rack

hot

Savings from applying "ideal" policy

Smoothed exhaust temperature profile Higher CRAC efficiency + higher return temp

Cooling energy savings 25%

Implementation?

- Thermodynamics-based formulation of objective function and actuation impact
- BUT how do we implement this in a real system

Instrumentation and Monitoring

 Current instrumentation approaches inadequate for temperature-aware resource scheduling

Needs

- Instrumentation across IT/facilities layers
 - "Expanded computing environment"
 - Conventional IT metrics (e.g., CPU, network, etc.)
 - Environmental sensors (power, temperature, humidity)
 - Proprietary and diverse "publish models" (e.g, OPC)
 - Synchronization
- Data repository and access
 - Need for scalability to hundreds of sensors, millions of readings
 - Notion of higher-level and hierarchical object views
 - Speed of query access

A location-aware information plane [Moore+2003]

- Instrumentation data sources
 - Unified correlated data collection and aggregation
- Data collection and filtering
 - Support for multiple interfaces
- Database schema
 - Enables higher-level object views, scalable, support for newer data types
- Analysis and control agents
 - SQL interface to database

Deployment

Splice deployed at HP Labs Utility Data Center (UDC)

 HP Openview for performance metrics and OPC interface for temperature and power sensors

Use with temperature-aware scheduling

But also other IT-facilitiesboundary optimizations

 E.g., operations automation (problem detection, cause-effect analysis, provisioning, ...)

Policies

"Ideal thermal policy" is analog

- How do we discretize it for server power states and static task scheduling with no workload migration?
- Simple heuristic based on thermal policy
 - Sort exhaust temperatures
 - Place hot loads on coolest spots
 - For our data center => interior middle racks

40% worse compared to ideal!

- Discreteness leads to imbalance and new hot spots
 - Increased energy to cool

Proximity-based algorithms

"Two-pass Discretize"

- Intra-row first-pass; inter-rack second-pass
 - Schedule per floor of analog allocation
 - Schedule excess with bias towards "median"

"Proximity-based Poaching"

- Single pass through three-dimensional space
 - Assign server load
 - derate adjacent servers for new analog allocation

Power savings close to ideal!

- Heat distribution matches at zonal level
 - Two-pass within 15%; Poaching within 6% of ideal
 - Poaching yields close to 25% energy savings w.r.t bad scheduling

Temperature-aware scheduling for thermal emergencies

- Faster response to thermal emergencies
 - Controlling heat source better than adjusting heat sinks
 - Same algorithms can be applied with emergency trigger

Temperature-aware scheduling for thermal emergencies

- Applying "proximity-based-poaching"
 - Reduce thermal redlining servers by 55% in first 30 sec
 - Potential to fully eliminate thermal redlining failures

Summary

- Temperature-aware provisioning valuable at data center level
 - Cooling costs reduction and increased reliability/availability
- This work: Architecting a temperature-aware resource scheduler
 - Characterizing the indirectly-controlled delayed-response metric
 - Metrology: Leverage thermo-dynamics-based air-flow equations
 - Combining IT level and facilities level (space and topology relations)
 - Monitoring: Deploy a location-aware knowledge plane [Splice]
 - Dealing with discrete power states
 - Policies: Algorithms for "zonal proximity"
 - Preliminary results
 - Significant cooling savings (within 94% of best-effort case)
 - Eliminate system failures caused by thermal emergencies
- Ongoing work
 - More elaborate thermal policies and coarser grain policies
 - More discrete power states (v/f scaling, virtual machines)
 - Control on CRAC air flow rates

Questions?

Related Work

- Traditional approaches
 - Facilities-level work on cooling systems [IPACK]
 - Costs, granularity of control and response, do not address heat
 - Power-aware IT resource scheduling [SOSP02, PACS02, WCOP01]
 - Focus on IT power, temperature can be improved or worsened
- Hybrid approach: Control at IT-facilities intersection
 - Workload migration proposed in Sharma et al [HPLTR03]
 - Focus on thermo-dynamic thermal policies in ideal scenario
- Our work: temperature-aware resource scheduling
 - Real-world constraints, architected solution

Temperature-aware scheduling: Challenges

- Temperature as an indirectly-controlled metric
 - Non-intuitive correlations between system usage, power, temperature
 - Delayed response times
- Need for location-enhanced knowledge plane
 - Integrate IT-level metrics with facilities-level metrics
 - Capture spatial and topological relationships
- Discreteness in power states
 - Constraints on power modes in system
 - Constraints on workload migration modes

35

– 6-8 kW

– 27k BTU/hr

Average power /cooling - 16 kW

- 55k BTU/hr

Proximity-based scheduling

