Dynamic Thermal Management for Distributed Systems

Andreas Weissel • Frank Bellosa

Department of Computer Science 4 (Operating Systems) University of Erlangen-Nuremberg Martensstr. 1, 91058 Erlangen, Germany {weissel,bellosa}@cs.fau.de

Benefits of Dynamic Thermal Management

- Cooling servers, server clusters
 - cooling facilities often dimensioned for worst-case temperatures or overprovisioned
- Guarantee temperature limits
 - no need for overprovisioning of cooling units
 - reduced costs (floor space, energy consumption, maintenance, ...)
- Increased reliability
- safe operation in case of cooling unit failure
- avoid local hot-spots in the server room
- Temperature sensors

Drawbacks of Existing Approaches

- If critical temperature is reached
 - ♦ throttle the CPU:
 - e.g. halt cycles, reduced duty cycle, reduced speed
- But: neglect of application-, user- or service-specific requirements due to missing online information about
 - the originator of a specific hardware activation and
 - the amount of energy consumed by that activity
- Throttling penalizes all tasks

Outline

- From events to energy
- event-monitoring counters
- on-line estimation of energy consumption
- From energy to temperature
- temperature model
- **Energy Containers**
- accounting of energy consumption
- task-specific temperature management

Infrastructure for temperature management in distributed systems

Approaches to Energy Characterization

- Reading of thermal diode embedded in modern CPUs
 - low temporal resolution
 - significant overhead
 - no information about originator of power consumption

Approaches to Energy Characterization

- Reading of thermal diode embedded in modern CPUs
 - low temporal resolution
 - significant overhead
 - no information about originator of power consumption
- Counting CPU cycles

LACS'04

- time as an indicator for energy consumption
- time as an indicator for contribution to temperature level
- throttling according to runtime
- but: wide variation of the active power consumption

Approaches to Energy Characterization

P4 (2 GHz) running compute intensive tasks: CPU load of 100%
 variation between 30–51 W

CS'04

From Events to Energy: Event-Monitoring Counters

- Event counters register energy-critical events in the complete system architecture.
 - several events can be counted simultaneously
 - low algorithmic overhead
 - high temporal resolution
 - ♦ fast response

Energy estimation

- correlate a processor-internal event to an amount of energy
- select several events and use a linear combination of these event counts to compute the energy consumption

Energy =
$$\sum_{i} #event_{i} \cdot weight_{i}$$

From Events to Energy: Methodology

- Measure the energy consumption of training applications
- Find the events with the highest correlation to energy consumption
- Compute weights from linear combination of event counts and real power measurements of the CPU
 - solve linear optimization problem: find the linear combination of these events that produce the minimum estimation error

$$\min \left\| \sum_{i} #event_{i} \cdot weight_{i} - measured energy \right\|$$

avoid underestimation of energy consumption

measured energy
$$\leq \sum_{i} #event_{i} \cdot weight_{i}$$

From Events to Energy: Methodology

Set of events and their weights

event	weight [nJ]
time stamp counter	6.17
unhalted cycles	7.12
μop queue writes	4.75
retired branches	0.56
mispred branches	340.46
mem retired	1.73
Id miss 1L retired	13.55

LACS'04

Limitations of the Pentium 4

- insufficient events for MMX, SSE & floating point instructions
- the case for dedicated Energy Monitoring Counters

Outline

- From events to energy
- event-monitoring counters
- on-line estimation of energy consumption
- From energy to temperature
 - temperature model
- Energy Containers
- accounting of energy consumption
- task-specific temperature management

Infrastructure for temperature management in distributed systems

CPU and heat sink treated as a black box with energy in- and output

- energy input: electrical energy being consumed
- energy output: heat radiation and convection

Energy input: energy consumed by the processor

Energy output: primarily due to convection

Altogether:

 $dT = [c_1P - c_2(T - T_0)]dt$

♦ energy estimator → power consumption P

 \blacklozenge time stamp counter \rightarrow time interval dt

 \blacklozenge the constants c_1 , c_2 and T_0 have to be determined

Altogether:

 $dT = [c_1P - c_2(T - T_0)]dt$

- ♦ energy estimator → power consumption P
- \blacklozenge time stamp counter \rightarrow time interval dt
- \blacklozenge the constants c_1 , c_2 and T_0 have to be determined

Solving this differential equation yields

$$T(t) = \frac{-c_0}{c_2} \cdot e^{-c_2 t} + \underbrace{\frac{c_1}{c_2} \cdot P + T_0}_{\text{dynamic part}}$$
static part

Thermal Model: Dynamic Part

- Measurements of the processor temperature
 - on a sudden constant power consumption and
 - ♦ a sudden power reduction to HLT power.
 - \Rightarrow fit an exponential function to the data: coefficient = c_2

C S C

Thermal Model: Static Part

0,00,00

Thermal Model: Static Part

Thermal Model: Implementation

Linux 2.6 kernel

- Periodically compute a temperature estimation from the estimated energy consumption
- Deviation of a few degrees celsius over 24 hours
 - or if ambient temperature changes
- Re-calibration with measured temperature every few minutes

Thermal Model: Accuracy

0,07

Outline

- From events to energy
 - event-monitoring counters
 - on-line estimation of energy consumption
- From energy to temperature
- temperature model
- Energy Containers
 - accounting of energy consumption
 - task-specific temperature management

Infrastructure for temperature management in distributed systems

Properties of Energy Accounting

- Accounting to different tasks/activities/clients
 - example: web server serving requests from different client classes
 - ◆ e.g. Internet/Intranet, different service contracts
- "Resource principal" can change dynamically
- Client/server relationships between processes
 - account energy consumption of server to client

Energy Containers

- Resource Containers [OSDI '99] → Energy Containers
 - separation of protection domain and "resource principal"
- Container Hierarchy
 - root container (whole system)
 - processes are attached to containers
 - this association can be changed dynamically (client/server relationship)
- energy is automatically accounted to the activity responsible for it

Energy shares

- amount of energy available (depending on energy limit)
- periodically refreshed
- ♦ if a container runs out of energy, its processes are stopped

LACS'0

Energy Containers

Example:

web server working for two clients with different shares

-ACS'04

Task-specific Temperature Management

Periodically compute an energy limit for the root container (depending on the temperature limit T_{limit})

```
dT = [c_1P + c_2(T - T_0)]dt \leq T_{\text{limit}} - T
```

Dissolve to $P \rightarrow P_{\text{limit}}$

LACS'04

- Energy budgets of all containers are limited according to their shares
- Tasks are automatically throttled according to their contribution to the current temperature
- Throttling is implemented by removing tasks from the runqueue

Temperature Management

Example: Enforcing a temperature limit of 45°

Dynamic Thermal Management for Distributed Systems © Andreas Weissel • University of Erlangen-Nuremberg • Computer Science 4 (Operating Systems) • 2004

Outline

- From events to energy
 - event-monitoring counters
 - on-line estimation of energy consumption
- From energy to temperature
- temperature model
- Energy containers
- accounting of energy consumption
- task-specific temperature management

Infrastructure for temperature management in distributed systems

Energy Containers

Distributed energy accounting

- Id transmitted with the network packets (IPv6 extension headers)
- receiving process attached to the corresponding energy container
- temperature and energy are cluster-wide accounted and limited
- transparent to applications and unmodified operating systems

Energy Containers

- Energy accounting across machine boundaries
 - requests from two different clients represented by two containers
 - web server sends requests to factorization server

the energy consumption of the server is correctly accounted to the client

Infrastructure for DTM in Distributed Systems

Distributed energy accounting

- Foundation for policies managing energy and temperature in server clusters
 - account, monitor and limit energy consumption and temperature of each node
 - Examples
 - set equal energy/temperature limits for all servers
 - cluster-wide uniform temperature and power densities, no hot spots in the server room
 - use energy/temperature limits to
 - →throttle affected servers in case of a cooling unit failure
 - →reduce number of active cooling units in case of low utilization

Conclusion

- Event-monitoring counters enable
 - on-line energy accounting
 - task-specific temperature management
- Correctly account client/server relations across machine boundaries
 - Transparent to applications and unmodified operating systems
- Future directions
 - examine more sophisticated energy models
- ◆ task-specific frequency scaling to adjust the thermal load