

Temperature Affects Cooling Cost

• IBM S/390:

Demonstrate Affects Reliability Demonstrate Affects Reliability Demonstrate Affects Reliability MF: mean time to failure at T A: empirical constant A: enpirical constant A: enpirical constant A: enpirical constant B: exturation energy A: boltzmann's constant T: absolute temperature Die metalization (Corrosion, Electromigration, Contact spiking) Die metalization (Corrosion, Electromigration, Contact spiking) Die die (charge trapping, gate oxide breakdown, hot electrons) Device (ionic contamination, second breakdown, surface-charge) Die attach (fracture, thermal breakdown, adhesion fatigue) Ackage (cracking, whisker and dendritic growth, lid seal failure)

Most of the above increase with T (Arrhenius) Notable exception: hot electrons are worse at low temperatures

Source: K. Skadron et al., Tutorial ISCA 2004

Basic Concepts

- Temperature is a function of power density
- Reducing temperature implies

- Increasing area

- Increases wire delays → Big impact on performace
- Reducing power (slower transistors, simpler blocks)
 - May impact performance if not done carefully

Critical Areas of Research

- Modeling
 - Heat transfer
 - Thermal sensor's response
- Floorplan
 - Tradeoff between wire delays and peak temperature

Microarchitecture techniques

- Throttling
- Clustering
 - Thermal steering
 - Cluster hopping
- DVS/DFS
 - GALS
 - At the core granularity (multi-core)
- Adaptive microarchitectures
- More effective cooling solutions
 - Constrained by weight, noise and power

Will Put Off the Thermal Wall but...

A breakthrough is needed

- New materials (e.g. High-K gate dielectric)
- -New devices (e.g. Tri-gate transistors)
- New technology (e.g. carbon nanotubes, III-V transistors)
- New circuit design techniques (e.g. asynchronous)
- -New microarchitectures (e.g. many simple cores)

The Challenge:

Reduce Energy While Increasing Performance