
Efficient Time-Aware Prioritization with Knapsack Solvers

Sara Alspaugh†, Kristen R. Walcott†, Michael Belanich‡,
Gregory M. Kapfhammer‡ and Mary Lou Soffa†

†Department of Computer Science
University of Virginia

{alspaugh, walcott, soffa}@cs.virginia.edu

‡Department of Computer Science
Allegheny College

{belanim, gkapfham}@allegheny.edu

ABSTRACT
Regression testing is frequently performed in a time con-
strained environment. This paper explains how 0/1 knap-
sack solvers (e.g., greedy, dynamic programming, and the
core algorithm) can identify a test suite reordering that
rapidly covers the test requirements and always terminates
within a specified testing time limit. We conducted experi-
ments that reveal fundamental trade-offs in the (i) time and
space costs that are associated with creating a reordered
test suite and (ii) quality of the resulting prioritization. We
find knapsack-based prioritizers that ignore the overlap in
test case coverage incur a low time overhead and a mod-
erate to high space overhead while creating prioritizations
exhibiting a minor to modest decrease in effectiveness. We
also find that the most sophisticated 0/1 knapsack solvers
do not always identify the most effective prioritization, sug-
gesting that overlap-aware prioritizers with a higher time
overhead are useful in certain testing contexts.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
I.2.8 [Computing Methodologies]: Problem Solving, Con-
trol Methods, and Search

General Terms
Experimentation, Algorithms, Verification

Keywords
test prioritization, coverage testing, knapsack problem

1. INTRODUCTION
As a software system is developed and maintained, it is

selectively retested to ensure that the addition of function-
ality and correction of faults does not introduce new errors.
This regression testing process is necessary, yet it often in-
curs high time overhead, since large test suites can take days
or weeks to run [9]. In order to reduce this cost, testers can
either choose to execute a subset of tests or order the test

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WEASELTech’07, November 5, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 978-1-59593-880-0/07/0011 ...$5.00.

cases according to some priority measure. However, these
approaches often ignore the time constraints of the test-
ing environment. For an example of these time constraints,
many developers choose to do nightly builds of the applica-
tion [7], and this limits the amount of time in which a test
suite has to run. With this in mind, if test cases are priori-
tized according to greatest fault-detection capacity per unit
of execution time, then more faults will be detected at the
beginning of the test suite’s execution [12]. Thus, whenever
testing time constraints are known, this type of prioritization
will detect more faults than would otherwise be possible.

For example, suppose that test suite T = 〈T1, T2, T3, T4〉
and each test case detects four, one, two, and six faults,
respectively (i.e., the test suite isolates a total of thirteen
defects). If each test consumes an equal amount of execu-
tion time and the testing time constraint only allows half of
the tests to run, then it is better to use the reordered test
suite T ′ = 〈T4, T1, T3, T2〉. This is due to the fact that T
results in the detection of five faults while T ′ can detect ten
faults in the same period of time. Thus, as this example
demonstrates, test prioritization can achieve a compromise
between detecting as many faults as possible during testing
and executing the test suite in less time.

This paper empirically evaluates the efficiency and effec-
tiveness of techniques that construct a time-aware test suite
prioritization. In lieu of directly measuring fault detection
effectiveness, we use surrogate metrics such as code cover-
age, coverage preservation, and order-aware code coverage,
as discussed in Section 3. We selected these metrics because
experiments by Hutchins et al. demonstrate that high cov-
erage tests suites are good at detecting faults [5]. As such,
we measure the code coverage of both the test suite and the
time-aware prioritization. Code coverage is the percentage
of the structural elements within the program (e.g., basic
blocks or methods) that are executed during testing, with a
high value indicating strong effectiveness. Coverage preser-
vation is the proportion of code covered by a prioritization
to the code covered by the original test suite. Order-aware
coverage, as defined in [12], gives preference to prioritiza-
tions that cover a greater amount of code earlier on in the
execution phase of that prioritization.

As long as the overlap in code coverage is not consid-
ered, the problem of constructing the best time constrained
test suite is equivalent to the 0/1 knapsack problem, which
can be described in the following manner: given a knapsack
with fixed capacity and a set of distinct items each with its
own value and weight, find the maximum cumulative value
of items that can fit in the knapsack such that the sum of

the item weights in the knapsack does not exceed the knap-
sack’s capacity [6]. An extended version of the 0/1 knapsack
problem occurs if code coverage overlap is considered, as in
Walcott et al. [12]. In summary, the important contributions
of this paper are:

1. A description of an approach to time-aware test suite
prioritization that uses traditional 0/1 knapsack solvers
(Section 2).

2. An empirical study that measures the efficiency and ef-
fectiveness of test suite prioritization algorithms (Sec-
tions 3 and 4) according to:

(a) The time and space overheads associated with pri-
oritization techniques that ignore the overlap in
test coverage versus those that include it.

(b) The effectiveness of the prioritization schemes as
measured by the code coverage, coverage preser-
vation, and order-aware coverage metrics.

2. TIME-AWARE PRIORITIZATION
To address the problem of constructing a time-constrained

test suite prioritization, this paper uses traditional tech-
niques to solve the 0/1 knapsack problem. We define a test
suite T as a tuple of test cases Ti from i = 1 to i = n
as 〈T1, T2, . . . , Tn〉. The prioritization of T is denoted T ′.
In the context of the 0/1 knapsack problem, the maximum
amount of time within which a prioritized test suite must
run is the maximum capacity of the knapsack, the test cases
are the knapsack items, each test case’s execution time is
its weight, and its percentage of code coverage is its value.
When these values are passed into a 0/1 knapsack algorithm,
the output is a final solved knapsack, namely, a prioritiza-
tion that fits within the desired time limit.

After obtaining prioritization results, we next compare
each prioritization to the results obtained by an algorithm
that considers an extended 0/1 knapsack problem. This al-
gorithm takes into account the fact that as test cases are
added to a prioritization, their total value, or the percentage
of program code covered by these test cases, is not cumula-
tive. Rather, code coverage accumulates as test cases that
cover code not already covered by test cases in the prioriti-
zation are added [12].

As defined by Kellerer et al., the 0/1 knapsack problem
can be defined formally in terms of test suite prioritization
in the following manner [6]:

Maximize:
Pn

i=1 cixi

Subject to:
Pn

i=1 tixi ≤ tmax, xi = 0 or 1,

where ci is the code coverage, ti is the execution time of
test case Ti, and tmax is the maximum time allowed for the
execution of the prioritization.

The extended version of the 0/1 knapsack problem occurs
if we take into account the fact that test cases may cover the
same portion of code. Executing two test cases that cover
the same requirements does not increase the overall cover-
age of the test suite under examination. Thus, we modify
the knapsack problem statement such that the value of a test
case is dependent upon the current contents of the knapsack.
The value of each remaining test case must be adjusted ac-
cordingly. For example, if a test case that covers method M
is placed in a prioritization, then other test cases that also
cover M would add less value to the test case ordering if

ta T1 T2 T3 copt
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 2+copt0 0 0 2
4 2+copt1 1+copt0 0 2
5 2+copt2 1+copt1 3+copt0 3

Figure 1: Generalized Tabular Example.

they were added. The overall value of a prioritization takes
into account both the test case order and the test case code
coverage overlap.

2.1 Knapsack Solvers as Prioritizers
The 0/1 knapsack problem is an NP-complete problem [3].

There are a number of algorithms that approximate the op-
timal solution to this problem, which vary in complexity and
optimality. Seven knapsack algorithms are used in this pa-
per and are described in terms of the test suite prioritization
problem as follows:

Random: While the total execution time of the priori-
tization is less than or equal to the maximum allowed time
limit, select a test case Ti randomly from the set of unused
test cases and add it to the prioritization. If the addition
of a test case causes the maximum time limit tmax to be
exceeded, remove that test case and return the remaining
test case ordering.

Greedy by Ratio: For each test case Ti, calculate the
code-coverage-to-execution-time ratio, ci

ti
. Sort the test cases

in descending order according to this ratio, then successively
place test cases from this ordering into the prioritization
until the addition of the next test would cause the maxi-
mum time limit to be exceeded. Greedy by Value and
Greedy by Weight are performed similarly, except code
coverage and test execution time are used in place of the
code-coverage-to-execution-time ratio, respectively.

Dynamic Programming: Divide the problem into sub-
problems, and solve each piece separately, storing the an-
swers so as to avoid repeatedly solving the same problem
[6]. The total code coverage of the prioritization for i test
cases and tmax execution time is zero if there are no test
cases in the solution or if tmax is zero. Otherwise, the solu-
tion for i test cases and tmax time either includes the ith test
case or does not. In the first case, the total code coverage
of the prioritization for i test cases and tmax time is equal
to the total code coverage of the prioritization for i− 1 test
cases and tmax − ti time plus the code coverage of the ith
test case, ci. In the second case, the total code coverage is
equal to the code coverage of the prioritization for i− 1 test
cases and tmax time. The best solution is selected.

Generalized Tabular: Like dynamic programming, solve
subproblems of the main problem using a large table [4].
The table has tmax + 1 rows and n + 1 columns, where n
is the number of test cases. Each row i represents a prob-
lem with maximum time limit tai for values 0 to tmax. The
last item in each row is the optimal coverage solution, de-
noted copttai , for that problem. An example with test cases
〈T1, T2, T3〉 having coverages 2, 1, 3, and times 3, 4, 5, re-
spectively, and tmax = 5 is shown in Figure 1. As seen in the
example, the optimal coverage for each time limit is stored
in the last column of the table, while the rows are numbered
by the time limits. The other columns each correspond to a
test case Tj . Element atai,Tj , as shown in Figure 1, is equal
to cj + copttai−tj if Ti can be added within the time limit

Test Case T1 T2 T3 T4 T5 T6
coverage 4 5 2 6 8 1
time 105 60 60 95 225 32
c/t ratio 0.0381 0.0833 0.0333 0.0632 0.0356 0.0313

Figure 2: Example Test Cases.

Comparison Inequality Action
Compare T2 and T4 5 × ¨ 445

60

˝ ≥ 6 × ` 445
95

´
Add T2 to T ′

35 ≥ 28.1053 Time left = 385

Compare T4 and T1 6 × ¨ 385
95

˝ ≥ 4 × ` 385
105

´
Add T4 to T ′

24 ≥ 14.6667 Time left = 290

Compare T1 and T5 4 × ¨ 290
105

˝ ≥ 8 × ` 290
225

´
Not conclusive

8 6≥ 10.3331 Time left = 290

Figure 3: Scaling Heuristic Example.

tai, and 0 otherwise. After the table is complete, the full
solution is recovered by working backward and retracing the
steps taken to compute the elements of the table.

Core: Create a“core”solution using a subset of test cases,
then use this core to find a solution to the overall prioriti-
zation problem [8]. First, find a good solution (the core
solution) using the greedy by weight algorithm. Then, us-
ing the dynamic programming algorithm, try to find a better
solution by replacing each test case in the core solution with
another unused test case.

In addition to examining the efficiency and effectiveness of
these seven techniques, each algorithm is examined in con-
junction with the use of scaling. When scaling, the problem
is reduced by means of a theorem described by Gossett [4].
The version specific to the prioritization problem addressed
in this paper follows.

Suppose that for a prioritization with maximum allowed
execution time tmax, there are n test cases in the test
suite. Denote the code coverage values of the test cases
by c1, c2, . . . , cn and the execution time of the test cases by
t1, t2, ..., tn. Assume the test cases have already been or-

dered such that c1
t1
≥ c2

c2
≥ . . . ≥ cn

tn
. If c1 ×

j
tmax

t1

k
≥

c2×
“

tmax
t2

”
, then it is possible to find an optimal knapsack

solution that includes T1.
To perform scaling, order all test cases by their code-

coverage-to-execution-time ratios, as indicated by the the-

orem. Check if the inequality c1 ×
j

tmax
t1

k
≥ c2 ×

“
tmax

t2

”

holds. If it does, put T1 in the prioritization and subtract
the execution time t1 of T1 from the maximum execution
time tmax. Now consider the prioritization with maximum
execution time tmax− t1 for the remaining list of test cases,
with T2 now occurring first in the list, and so on. Continue
down the list in this manner until the inequality ceases to
hold—let us say that this occurs at Ti—and then stop. The
i − 1 test cases placed in the knapsack through this pro-
cess are guaranteed to be part of an optimal solution for the
prioritization with maximum allowed execution time tmax.
Finish by using any of the aforementioned techniques on the
remaining unselected test cases. These test cases have max-
imum allowed execution time tmax−

Pi−1
j=1 tj . The test cases

that will be in the final solution for the prioritization with
maximum allowed execution time tmax will be those in the
solution for the prioritization with maximum allowed execu-
tion time tmax −

Pi−1
j=1 tj plus those determined to be part

of the optimal solution by the scaling heuristic.
For example, suppose there are six test cases, with code

coverages and execution times as shown in Figure 2, and a

Figure 4: Overview of Prioritization Infrastructure.

maximum execution time of 445 units. First, the test cases
are ordered according to their code-coverage-to-execution-
time ratio to yield 〈T2, T4, T1, T5, T3, T6〉. Then comparisons
are performed, as shown in Figure 3. After the last com-
parison fails, the heuristic no longer yields any information,
so the rest of the problem is solved using one of the seven
algorithms described in this section.

3. EXPERIMENT GOALS AND DESIGN
The goals of this experiment are:

1. Measure empirically, using two case studies, the ef-
ficiency of seven knapsack algorithms used in priori-
tization, each with and without the use of a scaling
heuristic, in terms of time and memory overhead.

2. Record, graph and analyze the effectiveness of each of
these algorithms with and without scaling in terms of
three coverage-based metrics: code coverage, coverage
preservation, and order-aware coverage.

All of the algorithms described in this paper were imple-
mented in Java and were used to prioritize JUnit test cases
from two case study applications, described below. The pri-
oritizations were performed on a dual-core AMD Opteron
Processor, each core being 1.8 GHz, running the Fedora
Core 3 GNU/Linux operating system with 2 GB of main
memory and 2048 MB maximum heap size. To perform a
prioritization, first the execution time and code coverage in-
formation of each test case in the test suite is recorded. From
this information, a set of knapsack items is created. Next
these items are used as input to the knapsack algorithms.
Each algorithm returns a list of test cases representing the
final test suite prioritization, as depicted in Figure 4. As
the algorithms run, time overhead and memory information
is gathered. Afterwards, code coverage, coverage preserva-
tion, and order-aware coverage information are calculated
for each prioritization. The time, memory, and coverage in-
formation is used to compare the algorithms and examine
the key trade-offs.

In order to measure the effectiveness of these algorithms in
test suite prioritization, the test suites of two case study pro-
grams were used: JDepend and GradeBook. JDepend is a tool
for creating design quality metrics for Java packages in terms
of extensibility, reusability, and maintainability. GradeBook

is a program that provides functions to perform tasks asso-
ciated with creating and maintaining a grade book system
for a course. Figure 5 gives information regarding each ap-
plication and their test suites. The longer average execution

Gradebook JDepend

Classes 5 22
Functions 73 305
NCSS 591 1808
Test Cases 28 53
Test Exec. Time 7.008 s 5.468 s

Figure 5: Case Study Applications.

time for the GradeBook test cases is due to the fact that its
test cases involve frequent I/O interactions with a database.

3.1 Evaluation Metrics
In order to measure the effectiveness of these algorithms,

three metrics were used: code coverage, coverage preserva-
tion, and order-aware coverage. These were used despite the
fact that ideally, the effectiveness of a test suite prioritiza-
tion would be based on the average percentage of faults it
detected given a time constraint. However, since the na-
ture and location of faults are unknown and unique to each
program, it is not possible to calculate this metric, known
as APFD [1], unless faults are artificially seeded into a pro-
gram. While this can be a useful way of empirically judging
the effectiveness of a prioritization, it runs the risk of not
being representative of the type and number of faults that
occur in real-world applications. Therefore, coverage infor-
mation, which has been shown to be highly predictive of
fault-detection potential, is used [12].

Code coverage, denoted cc(P, T), where P is the program
being tested, is a measure of the percentage of program
source statements that are executed when the prioritized
test suite is run. There are several different levels of gran-
ularity at which code coverage can be measured; this paper
uses block coverage, where a block is defined as a sequence
of instructions without any jumps or jump targets. A block
is considered as covered when it is entered.

Coverage preservation, denoted cp(P, T, T ′), is a propor-
tional measure of the amount of code covered by the time-
aware prioritization versus the amount of code covered by
the entire test suite. In other words,

cp(P, T, T ′) =
cc(P, T ′)
cc(P, T)

(1)

Order-aware coverage, as defined in Walcott et al. [12],
takes into account not only the percentage of code covered by
test cases in a prioritization, but also the order in which the
test cases in the prioritization execute. This provides a way
to measure the amount of code covered in conjunction with
the time during the execution phase at which that code was
covered. This is important because, as explained previously,
it is desirable to have the test cases with the highest fault-
detecting potential occur earlier in the prioritized test suite
execution phase. Order-aware coverage is calculated in two
parts, primary and secondary, which are summed. Let T ′

be a possible prioritization of T , and let w be a weighting
factor. The primary value Cpri is obtained by measuring the
code coverage of the entire prioritization and weighting that
measurement by a value large enough to cause the primary
component to dominate the result of the final order-aware
coverage value. For simplicity in this study, we set w to 100.
Then the primary overlap-aware coverage of T ′ is

Cpri(P, T ′, w) = cc(P, T ′)× w (2)

Next, the secondary component Csec considers the incre-
mental code coverage of the prioritization and is calculated

in two parts. The secondary-actual value Cs−actual, the
first calculation, is computed by summing the products of
the execution time time (〈Ti〉) and the code coverage cc of
T ′{1,i} = 〈T1 . . . Ti〉 for each test case Ti ∈ T ′. In other words,
the first value in the summation is the product of the exe-
cution time and the code coverage of T1, the second value is
the product of the execution time and code coverage of T1

and T2, and the ith value in the summation is the product
of the execution time and code coverage of T1 through Ti.
Then for T ′,

Cs−actual(P, T ′) =

|T ′|X
i=1

time (〈Ti〉)× cc
`
P, T ′{1,i}

´
(3)

The second part, secondary-max Cs−max, represents the max-
imum value that secondary-actual function could take, that
is, what the value of Cs−max would be if the first test case
covered 100% of the code covered by the entire prioritiza-
tion. The secondary-max value for T ′ is

Cs−max(P, T ′) = cc(P, T ′)×
|T ′|X
i=1

time (〈Ti〉) (4)

The secondary value Csec, then, is the ratio of the secondary-
actual and the secondary-max values. For T ′,

Csec(P, T ′) =
Cs−actual(P, T ′)
Cs−max(P, T ′)

(5)

All of the coverage information is obtained using Emma,
an open source Java code coverage tool that reports code
coverage statistics at method, class, package, and all-classes
levels [10]. The results reported in this paper are based
on block level coverage, because the use of block level cov-
erage has been shown to give better results than levels of
a coarser grain, such as method level [12]. As this paper
also examines the trade-offs between the effectiveness of a
prioritization and the time and space overhead incurred in
performing the prioritization, execution time and memory
statistics were also obtained. To do so, a Linux process
tool, which calculates the peak memory use and total user
and system time required by a program, was used.

4. EXPERIMENTS AND RESULTS
Experiments were run in order to analyze the effectiveness

and efficiency of the seven test suite prioritizers described in
Section 2.1 and the overlap-aware solver described by Wal-
cott et al. [12]. The solvers prioritized the test suites of
Gradebook and JDepend so that resulting test tuples would
execute within 25, 50, and 75% of the total execution time
of the initial test suites.

Prioritizer Effectiveness. First, we examine the over-
all coverage, order-aware coverage, and coverage preserva-
tion of each of the resulting prioritizations. These can be
seen in Figures 6(a)- 6(d). As would be expected, the cover-
age overlap-aware solver achieves the highest overall cover-
age for each testing time constraint. Greedy by value, solver
3, also performs very well for Gradebook, while greedy by
ratio and greedy by weight, solvers 2 and 4, create good
prioritizations for JDepend.

The success of these solvers is understandable in light of
the nature of the test suites. In the Gradebook test suite,
there is only a little coverage overlap between test cases,
so a greedy by value approach is likely to add worthwhile

test cases to the prioritization at each iteration, which is
shown in Figure 6(c). JDepend’s test cases have very short
execution times, and many of them cover about the same
amount of code. Thus, a solver that orders the test cases
so that the shortest tests run first does well. For such a
test suite, a greedy algorithm prioritizing based on the ratio
of code coverage to execution time performs equally well,
as seen in Figure 6(d). Note that because the execution
time difference between JDepend’s test cases is much smaller
than that of Gradebook’s test cases, we observe a less drastic
coverage difference over the JDepend prioritizations and as
the time limit increases. Figures 6(a) and 6(b) show a similar
trend with regard to coverage preservation.

One might think that the core algorithm would produce
best results among the non-overlap-aware solvers. However,
in Figures 6(a)- 6(d), we observe that this is not true for
either JDepend or Gradebook. While the core algorithm
achieves a higher utility result than other solvers, there is
no guarantee that the total coverage will also be high once
overlapping coverage is considered.

Prioritizer Efficiency. Next we evaluated the time
and space overheads incurred by each prioritizer, which are
displayed in Figures 6(e)- 6(h). Among the traditional knap-
sack solvers, the time and memory costs were insignificant in
all but the dynamic programming, generalized tabular, and
core algorithms. In Figure 6(g), we see that the memory re-
quirements of the generalized tabular solver were especially
prohibitive, reaching over 1039MB at peak usage.

The overlap-aware algorithm compared favorably in terms
of memory, requiring only 9.1MB of memory [12]. However,
the algorithm is time intensive and needs multiple hours to
execute. For the seven algorithms described in this paper,
the scaling technique successfully reduced the prioritization
execution time. In one case in Gradebook, the time was
decreased by 330%, as seen in Figure 6(e). However, as
described in Figure 6(h), scaling does not always improve the
time overhead. It also occasionally had a negative impact on
memory overhead, particularly for JDepend in Figure 6(g).

Discussion. Results indicate that a trade-off must be
made between efficiency and final coverage. The design of
the test suite is also of great importance. As shown in Fig-
ure 6(a), if there is little overlap between the test cases, a
cheaper prioritizer can be used with favorable results, com-
parable to those of an overlap-aware solver. However, if
there is a large amount of overlap between test cases, the
added expense of an overlap-aware solver would be worth-
while. While more sophisticated solvers such as dynamic
programming, generalized tabular, and core are likely to ob-
tain higher utility than simple solvers, neither group can
make any guarantee regarding final cumulative coverage of
the result. Thus, if correctness of the program is of highest
importance, resources should be better spent using a solver
that takes test case overlapping coverage into account.

5. RELATED WORK
We differentiate this paper from prior work because it

presents time-aware prioritization algorithms that guaran-
tee the termination of a test suite within a specified time
limit. Moreover, the empirical assessment in this paper in-
corporates metrics that are related to both the (i) time and
space overhead of the prioritizers and (ii) effectiveness of the
resulting prioritizations. As an example of related research,
Srivastava and Thiagarajan report on a testing tool that

prioritizes a test suite according to the coverage of program
changes at the basic block level [11]. Even though their
Echelon tool can consider the running time of each test, the
experimental analysis does not evaluate this configuration
of their testing framework. Elbaum et al. also present prior-
itization algorithms that incorporate both the cost and the
criticality of a test case [2]. However, their method does not
solve instances of the 0/1 knapsack problem to prioritize test
suites for time constrained execution. Finally, Elbaum et al.
empirically study prioritization effectiveness while reserving
an experimental study of efficiency for later work.

6. CONCLUSIONS AND FUTURE WORK
This paper describes how knapsack solvers can efficiently

perform time-aware test suite prioritization. When provided
with a testing time budget, these prioritization techniques
create a reordered test suite that quickly covers the test re-
quirements and always stops execution within a specified
time limit. The experimental results demonstrate that it is
sensible to ignore the overlap in test case coverage when (i)
the prioritization algorithm must incur a minimal time over-
head and (ii) a modest decrease in coverage preservation is
acceptable. However, we also find that the most sophisti-
cated 0/1 knapsack solvers do not always create the most
effective ordering of the test suite, suggesting that overlap-
aware prioritizers with a higher time overhead are appropri-
ate in contexts where correctness is the highest priority. In
future research, we will experimentally evaluate how other
knapsack solvers (e.g., branch and bound) trade-off the effi-
ciency of prioritization with the effectiveness of the reordered
tests. Future empirical studies will incorporate additional
case study applications that are larger and written in other
programming languages. We also intend to calculate other
measures of test suite effectiveness (e.g., APFD).

7. REFERENCES
[1] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case

prioritization: A family of empirical studies. IEEE Trans.
Softw. Eng., 28(2):159–182, 2002.

[2] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel.
Incorporating varying test costs and fault severities into test
case prioritization. In Proc. of 23rd ICSE, pages 329–338, 2001.

[3] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman
& Co., New York, NY, USA, 1979.

[4] E. Gossett. Discrete Mathematics with Proof. Pearson
Education, Inc., Upper Saddle River, New Jersey, 2003.

[5] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proc. of ICSE,
pages 191–200, 1994.

[6] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems.
Springer-Verlag, Berlin, Germany, 2004.

[7] A. Memon, I. Banerjee, N. Hashmi, and A. Nagarajan. DART:
A framework for regression testing “nightly/daily builds” of
GUI applications. In Proc. of ICSM, 2003.

[8] D. Pisinger. Core problems in knapsack algorithms. Operations
Research, 47(4):570–575, 1999.

[9] G. Rothermel, R. J. Untch, and C. Chu. Prioritizing test cases
for regression testing. IEEE Trans. on Softw. Eng.,
27(10):929–948, 2001.

[10] V. Roubtsov. Emma: a free java code coverage tool.
http://emma.sourceforge.net/index.html, March 2005.

[11] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests
in development environment. In Proc. of ISSTA, pages 97–106,
2002.

[12] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S.
Roos. Time-aware test suite prioritization. In Proc. of ISSTA,
pages 1–12, New York, NY, USA, 2006.

25% 50% 75%

Coverage Preservation Ratio: Gradebook

Percent of Total Time

C
ov

er
ag

e
P

re
se

rv
at

io
n

R
at

io

0.
25

0.
35

0.
45

0.
55

0.
65

0.
75

0.
85

0.
95

(a)

25% 50% 75%

Coverage Preservation Ratio: JDepend

Percent of Total Time

C
ov

er
ag

e
P

re
se

rv
at

io
n

R
at

io

0.
92

0.
94

0.
96

0.
98

1.
00

(b)

25% 50% 75%

Coverage and Order−Aware Coverage: Gradebook

Percent of Total Time

P
er

ce
nt

 o
f C

od
e

C
ov

er
ag

e/
O

rd
er

−
A

w
ar

e
C

ov
er

ag
e

25% 50% 75%

Coverage and Order−Aware Coverage: Gradebook

Percent of Total Time

P
er

ce
nt

 o
f C

od
e

C
ov

er
ag

e/
O

rd
er

−
A

w
ar

e
C

ov
er

ag
e

20
30

40
50

60
70

80

(c)

25% 50% 75%

Coverage and Order−Aware Coverage: JDepend

Percent of Total Time

P
er

ce
nt

 o
f C

od
e

C
ov

er
ag

e/
O

rd
er

−
A

w
ar

e
C

ov
er

ag
e

25% 50% 75%

Coverage and Order−Aware Coverage: JDepend

Percent of Total Time

P
er

ce
nt

 o
f C

od
e

C
ov

er
ag

e/
O

rd
er

−
A

w
ar

e
C

ov
er

ag
e

64
66

68
70

72
74

76
78

(d)

25% 50% 75%

Time Overhead: Gradebook

Percent of Total Time

K
na

ps
ac

k
S

ol
ve

r
E

xe
cu

tio
n

T
im

e
(s

)

0
5

10
15

20
25

30
35

40

(51203 s) (43436 s) (34876 s)

(e)

25% 50% 75%

Memory Overhead: Gradebook

Percent of Total Time

K
na

ps
ac

k
S

ol
ve

r
M

em
or

y
O

ve
rh

ea
d

(M
B

)

0
10

0
20

0
30

0
40

0
50

0
60

0

(f)

25% 50% 75%

Memory Overhead: JDepend

Percent of Total Time

K
na

ps
ac

k
S

ol
ve

r
M

em
or

y
O

ve
rh

ea
d

(M
B

)

0
10

0
30

0
50

0
70

0
90

0
11

00

(g)

25% 50% 75%

Time Overhead: JDepend

Percent of Total Time

K
na

ps
ac

k
S

ol
ve

r
E

xe
cu

tio
n

T
im

e
(s

)

0
5

10
15

20
25

30
35

40
45

(72865 s) (63195 s) (48423 s)

(h)

Figure 6: Efficiency and Effectiveness of Test Suite Prioritization.

