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Abstract 
 

Although optimizations have been applied for a 
number of years to improve the performance of software, 
problems that have been long-standing remain, which 
include knowing what optimizations to apply and how to 
apply them. To systematically tackle these problems, we 
need to understand the properties of optimizations. In our 
current research, we are investigating the profitability 
property, which is useful for determining the benefit of 
applying an optimization. Due to the high cost of 
applying optimizations and then experimentally 
evaluating their profitability, we use an analytic model 
framework for predicting the profitability of 
optimizations. In this paper, we target scalar 
optimizations, and in particular, describe framework 
instances for Partial Redundancy Elimination (PRE) and 
Loop Invariant Code Motion (LICM). We implemented 
the framework for both optimizations and compare profit-
driven PRE and LICM with a heuristic-driven approach. 
Our experiments demonstrate that a model-based 
approach is effective and efficient in that it can accurately 
predict the profitability of optimizations with low 
overhead. By predicting the profitability using models, we 
can selectively apply optimizations. The model-based 
approach does not require tuning of parameters used in 
heuristic approaches and works well across different code 
contexts and optimizations. 
 
 

1. Introduction 

The field of optimization has been extremely 
successful over the past 40+ years. As new languages and 
new architectures have been introduced, novel and 
effective optimizations have been developed to target and 
exploit both the software and hardware innovations. Many 
reports from research and commercial projects have 
indicated that the performance of software improves 
significantly through aggressive optimizations. 

Most successes in the field have come from the 
development of particular optimizations, such as loop 
optimizations and path sensitive optimizations. Although 
there were several long-standing problems with 

optimizations, they have not been adequately addressed 
because optimizations were yielding performance 
improvements. These problems included knowing what 
optimizations to apply and when, where, in which order 
(i.e., phase ordering) and in which configuration (e.g., the 
tile size in loop tiling) to apply them for the best 
improvement.  

A number of events are occurring that demand 
solutions to these problems. First, because of the 
continued growth of embedded systems and the critical 
importance of time-to-market in this domain, there is an 
energetic movement to write embedded software in high-
level languages. The use of high-level languages in this 
area requires a high quality optimizing compiler that can 
intelligently apply optimizations to achieve the highest 
performance improvement. Another activity that has 
brought optimization problems to the forefront is the trend 
toward dynamic optimization. To be effective, dynamic 
optimization requires a good understanding of certain 
properties of optimizations. Currently, it is unclear when 
and where to apply optimizations dynamically and how 
aggressive optimization can be and still be profitable after 
factoring in the cost of applying the optimization. Last, 
although new optimizations continue to be developed and 
applied, the performance improvement is shrinking. The 
question then is whether the optimization field has 
reached its limit or do further improvements depend on 
solutions to these problems. We believe the latter is true. 

Traditionally, heuristics have been used to address 
some of the challenges of applying optimizations. 
However, heuristics tend to be ad hoc and focus 
specifically on a single or a small class of optimizations. 
Heuristics also require tuning parameters to select 
appropriate threshold values. The success of the heuristic 
can depend on these values and the best choice can vary 
for different optimizations and code contexts. 

To systematically tackle these problems, we need to 
better understand the properties of optimizations, 
especially operational properties. We define optimization 
properties as either semantic or operational. Semantic 
properties deal with the semantics of the optimizations 
and include correctness, soundness and optimization 
specification. Operational properties target the application 
of optimizations and include profitability and interaction 
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of optimizations. Although research on many of these 
properties has been limited, there has recently been a 
flurry of activity focusing on optimization properties. 
There are two approaches to explore the properties of 
optimizations. One is through formal techniques, which 
include developing formal specifications, analytic models, 
and proofs through model checking and theorem provers 
[20, 24, 33, 15, 32]. Another approach is experimental. 
That is, the properties are evaluated by actually applying 
optimizations and executing the optimized code. This 
approach is mostly used for exploring operational 
properties, which are useful for determining when, where 
and how to apply optimizations [31, 9, 6, 17, 1, 18]. 

Because of the high cost of applying optimizations 
and experimentally evaluating their properties [9, 18], our 
research focuses on formally investigating operational 
properties of optimizations through analytic models. With 
analytic models, we can study, for example, the 
profitability of optimizations. Also our goal is to model 
the interactions among optimizations and then use the 
models to predict the impact of a sequence of 
optimizations without actually applying them.  

In this paper, as a step toward our goal, we present a 
framework of analytic models for exploring the 
profitability of optimizations. In particular, we address the 
specific problems of how scalar optimizations impact 
registers, computation (i.e., functional units) and overall 
performance. A number of research efforts have shown 
that applying an optimization can degrade performance [4, 
36]. To avoid this degradation, we use our framework to 
first predict the profitability of applying an optimization at 
a program point. Then based on whether there is a profit 
or not, we either apply it or not. The profitability of 
optimizations depends on code context, particular 
optimizations and machine resources, all of which need to 
be modeled. Thus, the framework includes models for 
code context, optimizations and resources. As part of the 
framework, we have a Profitability Engine that uses the 
models to predict the profitability of applying an 
optimization at any code point where it is applicable.  

We developed models for a number of optimizations 
including copy propagation, constant propagation, dead 
code elimination, Partial Redundancy Elimination (PRE) 
and Loop Invariant Code Motion (LICM). In this paper, 
we focus on the models for PRE and LICM.  Models for 
the other optimizations are useful when considering the 
impact of a sequence of optimizations, which is beyond 
the scope of this paper. We implemented the models and 
the profitability engine for both optimizations and 
compared profit-driven PRE and LICM with a heuristic-
driven approach. Our experiments demonstrate that a 
model-based approach is effective and efficient in that it 
can accurately predict the profitability of optimizations 
with reasonable overhead. By determining the 

profitability, we can intelligently select profitable 
optimizations to apply in a systematic way. 

The contributions of this paper include: 
• A conceptual framework for investigating 

optimization profitability. The framework 
includes analytic code models, optimization 
models, and resource models for cache, registers 
and computation, and a profitability engine that 
uses the models to determine the performance 
profit. 

• An implementation of the framework for scalar 
optimizations (in particular PRE and LICM) that 
uses the profitability of PRE and LICM to 
determine when to apply them.  

• An experimental evaluation demonstrating that 
the model-based approach for predicting the 
profitability of optimizations is effective and 
efficient. 

• A general model-based technique that can be 
used to study properties of optimizations. 

 

2. Conceptual Profitability Framework 

To determine the profitability of an optimization, we 
require models that are useful for predicting the impact of 
the optimization on performance. Performance is 
generally affected by cache, registers and functional units. 
Thus, we need to be able to determine the profit of an 
optimization for each resource and then combine the 
profits.  Importantly, to determine the profitability, we do 
not require exact numbers but numbers “accurate 
enough” that the right decision as to when to apply an 
optimization can be made. 

 
Our framework, given in Figure 1, has three types of 

analytic models (code, optimization and resource models) 
and a profitability engine that processes the models and 
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access sequence 

 

Profitability Engine 

Figure 1. Profit-driven optimization framework 
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computes the profit. The resources considered are cache, 
registers and functional units. The focus of this paper is 
the performance profit (i.e., execution time). However, 
other resources, such as code size and power/energy can 
also be modeled and included in the framework. Register 
allocation is an optimization but it also plays a part in 
determining the impact of other optimizations on registers. 
Thus, an optimization model for register allocation is 
shown separately in Figure 1. 

 
2.1. Code Models 

The code model expresses those characteristics of the 
code segment that are changed by an optimization and 
impact a resource.  For example, array access sequences 
affect the cache so the code model would specify the 
access sequences. Live ranges can be changed by an 
optimization and impact the registers so the code model 
would express live range information for the code 
segment. Computation is also affected by an optimization 
and the code model is the list of instructions.  

When safe conditions for applying an optimization 
are detected, a model of the code is automatically 
generated by the optimizer. Note, in this work, we assume 
that data flow information is available to determine if an 
optimization is legal. If legal, we then apply profitability 
analysis. However, we could also do the reverse: we could 
determine the hot regions of the code and the profitability 
of an optimization in a region and if the transformation is 
profitable, use data flow analysis (in particular, demand-
driven data flow analysis [10]) to determine if the 
optimization is legal. 

 
2.2. Optimization Models 

Optimization models are written by the compiler 
engineer when developing a new optimization. An 
optimization model expresses the semantics of an 
optimization and its impact on the resources under 
consideration. Similar to code models, each optimization 
can have multiple models, one for each resource affected 
by the optimization. For example, if an optimization 
impacts registers and computation, then there is a model 
for that optimization’s effect on registers and another one 
for its effect on computation. 

The effect of an optimization is determined from the 
code changes that the optimization introduces. 
Optimizations can cause non-structural and structural code 
changes, which can be expressed by small editing changes 
on a control flow graph. These edits are Insert/Delete an 
instruction (including its operation and operators), 
Insert/Delete a block and Insert/Delete an edge. All 
optimization code changes can be expressed in terms of 
these edits [25]. Thus, the changes for a particular 
optimization can be expressed as a series of basic edits. 

For example, constant propagation can be expressed as 
“Delete variable v at statement P; Insert constant c at 
statement P”. 

To determine the impact of the optimizations on 
registers, an optimization model for the register allocator 
must be developed. The characteristics of the register 
allocator that need to be modeled are whether the 
allocator is local or global and how it spills the live ranges 
(i.e., the number of additional loads and stores that are 
inserted into the code).  A model for the register allocator 
can be constructed that approximates a particular register 
allocation scheme, say graph coloring [7, 11] or linear 
scan [26]. In this work, we are interested in the impact of 
other optimizations on registers rather than the impact of a 
particular register allocation scheme. Hence we only need 
a representative register allocation model, such as 
coloring. 

 
2.3. Resource Models 

The framework has a model for each resource, which 
describes the resource configuration and benefit/cost 
information in using the resource. This model is 
developed based on a particular platform. For example, to 
determine the register profit, we need to know the number 
of available hardware registers and the cost of memory 
accesses (loads and stores). When considering the caches, 
the cache configuration and the cost of a cache miss/hit 
are needed. The functional unit model has the 
computational instructions available in the architecture 
and their execution latencies. Since we do not consider 
instruction scheduling, the profit deduced using the 
computational resource model is an approximation, as is 
true for most of the resource models. 

 
2.4. Profitability Engine 

The models in the framework are descriptive and 
provide the information needed to compute profitability. 
The other important component of our framework is the 
Profitability Engine. When conditions for an optimization 
are detected, the code models (generated by the 
optimizer), the optimization models (developed offline by 
the compiler engineer), and resource models (developed 
offline for particular resources) are input into the 
Profitability Engine. This engine uses the information in 
the models to compute the profit of an optimization at a 
program point where it is safe. The profit can be 
computed for one resource or for combined resources. 
From the code and the optimization models, the engine 
determines the changes on the code models caused by the 
application of an optimization. It does this without 
applying the optimization. It then uses the resource 
models to determine the impact of the changes on the 
resource. 



Table 1. Incremental updates of live ranges  

 For example, assume the impact of an optimization 
on registers is desired. The engine inputs the code model 
for registers, a model for this optimization, an 
optimization model for register allocation, and a resource 
model of registers. Then it determines the changes on the 
live ranges (i.e., the code model for registers), using an 
incremental dataflow algorithm [25]. Since an 
optimization models its changes by basic edits [3], the 
engine takes the edits and computes the changes in live 
ranges using Table 1. The table describes how the code 

changes of an optimization affect live ranges. In this table, 
pre-s means the point immediately before statement s 
while post-s means the point immediately after statement 
s. For example, the effects on live ranges of inserting a use 
of v (1st row) depend on the current code. If v is already 
live at post-s, there is no change.  If there is a use in the 
block of u before s, then the only change is to the local 
live range of v. Otherwise, the live range of v has changed 
and v has to be added to the set of live variables at the 
beginning of the block, IN, and all reaching predecessors. 
And then the profitability engine uses a register allocation 
model to determine the spills (i.e., loads and stores) 
caused by these live range changes. The last step for the 
engine is to use the number of spills and where these loads 
and stores are inserted or deleted to compute the profit. 
 
3. Framework for Scalar Optimizations 

In this section, we describe an instance of our 
framework for predicting the profitability of scalar 
optimizations, and in particular, PRE and LICM. Since 
scalar optimizations have negligible effects on cache (i.e., 
loop behavior dominates cache performance [22]), we do 
not further consider cache models but only registers and 
computation. 

 

The impact of PRE and LICM on computation is 
clear: they insert or delete instructions at some program 
points. Their impact on registers is more complicated and 
depends on the code context. Sometimes PRE or LICM 
may introduce more register spills, while in other cases 
they may decrease the number of spills. In Figure 2, we 
show an example where PRE improves the register 
pressure by decreasing one register spill.  In the figure, 
PRE moves the last use of a and b up in the code and thus 
shortens their live ranges but introduces a new live range 

Code Change Update code model 

Insert a use u 
of variable v 
in block B at 
statement s 

If  v is  live at post-s: no change; 
Else /* insertion lengthen v’s live range*/ 

If  there is a use or definition before s 
in the block B:  

no change to global code model; 
record the local change; 

Else:  
add v to IN(B) and all reachable 
predecessors of B; 

Insert a 
definition d of 
variable v in 
block B at 

statement s 

If  v is not  live at pre-s: no change; 
Else /* insertion shorten  v’s live range*/ 

If  there is a use or definition before s 
in the block B:  

no change to global code model; 
record the local change; 

Else 
delete v from IN(B) and all 
reachable predecessors of B; 

Delete a use 
u of variable v 
in block B at 
statement s 

If  there is a use after s in the block B: 
no change; 
Else /* delete shorten v’s live range*/ 

If  there is a use or definition before s 
in the block B:  

no change to global code model; 
record the local change; 

Else 
delete v from IN(B) and all 
reachable predecessors of B; 

Delete a 
definition d of 
variable v in 
block B at 

statement s 

If  v is not  live at pre-s: no change; 
Else /* insertion lengthen  v’s live 
range*/ 

If  there is a use or definition before s 
in the block B:  

no change to global code model; 
record the local change; 

Else 
add v to IN(B) and all reachable 
predecessors of B; 

Insert an 
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to Bd 

Add all variables in IN(Bd) to the Bs and 
all reachable predecessors of Bs; 

Delete a edge 
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Delete all variables in IN(Bd) from the Bs 
and all reachable predecessors of Bs; 
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PRE decreases the number of register spills by one 
(Assume there are 5 available hardware registers) 

Figure 2: An example of PRE impacting registers 



 
for the temporary variable, v. However, if a and b were 
used later, their live ranges would remain the same. In this 
case, the total number of live ranges increases by one due 
to the temporary variable. 

In the next sections, we present models for PRE and 
LICM. Figure 3 shows our framework to predict the 
impact of PRE on registers for the example in Figure 2. 
The models and the profitability engine in this example 
are explained below.  
 
3.1. Code Models for Registers and Computation 

The code model for registers is the same for all scalar 
optimizations. The code model for registers represents the 
code as live ranges of global and local variables 
(including temporaries and parameters). We represent live 
ranges by the set of live variables at the point immediately 
before a basic block, IN, and at the point immediately 
after the block, OUT. The model also includes the code 
blocks and edges for the code involved in the optimization 
and statements in terms of uses and definitions. In Figure 
3, the boxes labeled “Code Model before/after PRE” show 
the code model of registers for the example in Figure 2. In 
a basic block, in addition to IN and OUT information, 
uses and definitions are also included. For example, “(c) 
(a, b)” expresses there is a definition of c and a use of a 
and b. 

The code model for computation represents the type 
and locations of instructions involved in the optimization. 
We represent each instruction element as 

{ } ∗
NmBmNBop ,,...,1,1, , where op is the type of 

instruction, Bi represents the block number and Ni 
expresses the static number of op instruction in block Bi.  

 
3.2. Register Allocation Optimization Model 

To more accurately determine the impact of scalar 
optimizations on registers, we need a model for register 
allocation that represents the allocator’s spilling strategy.  
For the impact of registers on profit, we need to compute 
spills for the original live ranges and the live ranges 
changed by the optimization and compare them, which is a 
time consuming process. Indeed, we take an incremental 
approach by computing the number of spills increased or 
decreased due to each code change. Our register 
allocation model reflects this incremental approach. 

The register allocator that we model does global 
graph coloring. Within the region of a code change, we 
express the number of spills increased or decreased due to 
inserting or removing a live range for each critical region. 
A critical region is the code segment where the number of 
live ranges is equal or larger than the number of available 
hardware registers. So inserting or removing a live range 
will cost or save a spill in this region. Within the critical 

 IN ( ) 
(a) ( ) 
(b) ( ) 

OUT (a, b) 

 
IN (a, b) 
(c) (a, b)  

OUT (c, a, b) 

IN (a, b) 
(c) ( ) 

OUT (c, a, b) 

IN (c, a, b) 
(d) (c) 

(f) (c, d) 
(g) (f, d) 
(h) (a, b) 

OUT (c, d, g) 
 

Figure 3: Models for the example in Figure 2 
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region, we represent definitions and uses of each variable 
and temporary, and choose to spill the live range that is 
the least costly to spill, under the assumption that the 
register allocator typically performs well. That is, we 
choose the live range which spans the critical region with 
the smallest number of definitions and uses. This register 
allocation optimization model is input to the profitability 
engine (see the next section) which then computes the 
critical regions for each basic code change, records the 
definitions and uses of variables and determines the spills. 
In Figure 3, the box labeled “Register Allocation OPT 
Model” shows the optimization model for the register 
allocator described above. 

 

3.3. Scalar Optimization Models 

PRE Optimization Models: PRE moves a statement 
from one code location to another and introduces a 
temporary to reference the common expression. The PRE 
optimization models express how these changes impact 
the code models for registers and functional units. 

PRE has three semantic actions: move a computation, 
say X, (i.e., move X to a safe code location), replace its 
destination (i.e., replace X’s destination with a temporary 
at the original code position) and replace the redundant 
expressions (i.e., replace the redundant expression’s 
destination with the temporary and insert a copy 
instruction following it). A move or a replace can be 
expressed as a deletion of the instruction at the original 
site and an insertion at the moved site. 

Figure 4 presents the PRE optimization model for 
registers, where the code changes that PRE creates are 
given. Each change is described by the action insert/delete 
(Ins/Del), an abstract variable name (also whether it is a 
use or definition), and what block and where in the block 
the variable will be inserted/deleted. The semantic actions 
of PRE are represented as three steps in Figure 4.  In step 
1, the redundant expression is moved to a safe code 
location in the statement Sd as uses and the temporary V 
is inserted as the definition. In step 2, at the original 
position, Ss, the expression is deleted and the temporary is 
inserted as the use.  In step 3, for every expression that 
made the statement redundant, the destination is replaced 
by the temporary and a copy from the temporary to the 
destination is placed. 

The optimization model for computation describes 
how PRE changes the computation code model. The 
model essentially shows how instruction elements are 
changed by the application of PRE. The model is given in 
Figure 5. The first rule describes that the computation of 
op is deleted at the original block Bs and inserted into the 
destination block Bd. The second rule represents the 
inserted copy instructions at the original block Bs and the 
blocks Baj for all redundant expressions. 

 
 

 
LICM Optimization Models: LICM moves a 

statement from the body of a loop and places it outside the 
loop. There are certain conditions that must be met to 
safely apply LICM. The actions are similar to PRE (and in 
fact can be thought of as a subcase of PRE) and the 
resulting optimization models for registers and 
computation are similar. Based on code movements, the 
models can predict register impact (with live ranges, as 
described for PRE) and computation (with code edits and 
motions, as described for PRE). We do not show these 
models for brevity because they are similar to PRE. 

 
3.4. Profitability Engine 

The profitability engine takes the code models, 
optimization models and resources models and determines 
the profit on resources. For example, assume the impact of 
an optimization on registers is desired. The engine inputs 

IF  meet the partial redundant computation exp (X op Y): 
T � exp is partial redundant at [ ]SsBs, ; 
move it to [ ]SdBd, and assign a new temporary V; 
T1 at [ ]1,1 SaBa …Tn at [ ]SanBan,  are redundant expressions 

THEN 
( ){ }Nd,Bd,Ns,Bs,Ni,Bid≠i and s≠ii∀,op � 

      ( ){ }1+Nd ,Bd,1-Ns,Bs,Ni,Bid≠i and s≠ii∀,op  

[ ]{ }Ns,Bs,Naj,Baj n,1∈j∀,Ni,Bi i∀,copy �  

      [ ]{ }1+Ns,Bs,1+Naj,Baj n,1∈j∀,Ni,Bi i∀,copy  

Figure 5. PRE optimization model for computation 

IF  meet the partial redundant computation exp (X op Y): 
T � exp is partial redundant at [ ]SsBs, ; 
move it to [ ]SdBd, and assign a new temporary V; 
T1 at [ ]1,1 SaBa …Tn at [ ]SanBan,  are redundant expressions 

THEN 

step 1: [ ] Bd, Sd  USEexp Ins  

[ ] Sd Bd,  DEFV Ins  

step 2: [ ] Ss Bs,  USEexp Del  

[ ] Ss Bs,  USEV Ins  

step 3: ∀ ]Sai,Bai[ at Ti : 

[ ] Sai Bai,  DEFTi Del  

[ ] Sai Bai,  DEFV Ins  

[ ] 1+Sai 1,+Bai  DEFTi Ins  

[ ] 1+Sai 1,+Bai  USEV Ins  

Figure 4.  PRE optimization model for registers 



the code model for registers, a model for this 
optimization, a register allocation optimization model, and 
a resource model for registers. It determines the changes 
in the live ranges according to the optimization model. 
Then it computes the benefit/cost in terms of spills (i.e., 
loads and stores) changed by the optimization according 
to the register allocation optimization model. That is, for 
each live range change, the engine finds the critical 
regions and records the number of definitions and uses in 
the critical regions. When a live range is inserted or 
deleted within the critical region, the engine chooses the 
least costly live range to spill and computes the cost or 
benefit associated with the spill. An example is shown in 
Figure 3 (see the box labeled “Profitability Engine”). The 
Profitability Engine determines the changes on the code 
model and for each change, determines how the spills are 
affected. For brevity, only detailed actions for “deleting 
the use of a at the statement 8” are shown. The critical 
region is from line 6 to line 8. Also the uses and 
definitions are recorded for the critical region. When one 
live range is deleted, one spill is decreased and a is 
chosen. The benefit of this PRE on registers comes from 
saving this spill. 

If the profits for all the resources, namely registers 
and computation are combined, they must have the same 
metric. The computation profit considers the frequency of 
a node, and therefore, the register profit also need to 
consider the execution frequency of the loads or stores, 
based on either profiling or input from the user. 

 
4. Experimental Results 

 To evaluate the effectiveness of our framework and 
the usefulness of profit-driven optimization, we 
implemented models for PRE and LICM, described in 
Section 3.3, and integrated them into the Mach SUIF 
compiler [30]. We compared our profit-driven PRE and 
LICM with always applying an optimization and a 
heuristic-driven PRE and LICM, which takes register 
pressure into consideration. We extended the PRE pass 
implemented by Rolaz [19] in Mach SUIF and 
implemented LICM [23]. To enable more PRE or LICM 
opportunities, we also applied passes of copy propagation, 
constant propagation, and dead code elimination before 
PRE or LICM. For experiments, we used a number of 
SPEC2K benchmarks (gzip, vpr, mcf, parser, vortex, and 
twolf), which are the SPEC2K benchmarks that can be 
compiled by the currently available Mach SUIF compiler. 
We used a dual-processor AMD Athlon 1.4 GHz machine, 
with 2 GB of memory running RedHat Linux. Using the 
training data sets, we performed node profiling with the 
HALT library (included in Mach SUIF) to get the 
frequency counts used in our computation models. In all 
experiments, each benchmark was run three times on a 

lightly loaded machine and the average execution time 
was computed to factor out system effects. 

Section 4.1 presents the performance improvement of 
a heuristic-driven PRE and LICM. In Section 4.2, we 
compare our profit-driven PRE and LICM with always 
applying and the heuristic-driven PRE and LICM in terms 
of performance improvement and compile time. Section 
4.3 describes the verification of our models in terms of 
their prediction accuracy. 

 
4.1. Heuristic-driven Approach 

Always applying an applicable optimization can 
sometimes lead to a performance degradation. Such a 
simple heuristic of “always applying” is not sufficient in 
making decisions about when to apply an optimization. 
Previous work has focused on developing heuristics to 
decide when to apply optimizations, such as register 
pressure sensitive redundancy elimination, which sets 
upper limits on allowable register pressure and performs 
redundancy elimination within these limits [13]. We 
implemented a similar heuristic. We set the upper limit 
(i.e., a threshold) on allowable live ranges at the places 
where the redundant expressions will be moved. 
Redundancy elimination is performed only when the 
number of live ranges is within the limit. One problem in a 
heuristic-driven approach is to the choice of the limit that 
can generally achieve good performance across all the 
benchmarks. Our experiments show different benchmarks 
need different limits to achieve the best performance for 
both heuristic-driven PRE and LICM.  

Tables 2 and 3 show the performance improvement of 
heuristic-driven PRE and LICM over the baseline. The 
baseline compiler applies only register allocation and 
simple instruction scheduling. We varied the limit on 
register pressure from zero to sixteen. For PRE, if the 
limit is zero, only full redundancies are eliminated. In 
practice, the limits are usually chosen to be the number of 
available hardware registers. Hence we choose eight as a 
limit because there are eight hardware registers that can be 
allocated for a byte-type variable in the x86. Four and 
sixteen are used to examine stricter or looser limits. In the 
tables, the best performance improvement is shown in 
bold. From the tables, we can see that different 
benchmarks need different limits in the heuristics to 
perform the best. For example, for PRE, gzip can achieve 
an improvement of 4.1% when the limit is set to sixteen, 
while mcf needs the limit set to zero to achieve the best 
improvement of 2.37%. Also, some benchmarks are very 
sensitive to the selection of the limits (e.g., twolf), while 
others are not (e.g., mcf). We can see that different 
optimizations may need different limits for the same 
benchmarks. For example, gzip needs the limit set to for 
PRE but needs the limit set to eight for LICM. So if we 
fixed the limit in the heuristic-driven approach, the usual 



approach, we can not always achieve the best performance 
improvement.  

 Table 2. Performance improvement of heuristic-
driven PRE with different limits 

 
 Table 3. Performance improvement of heuristic-

driven LICM with different limits 

 

4.2. Comparing Profit-driven PRE and LICM 
with Heuristic-driven PRE and LICM 
 
4.2.1. Performance Benefit 

 Using our model-based framework, we can 
determine the profitability of an optimization and 
selectively apply it. The cases where optimizations 
degrade the performance can be avoided. Figures 6 and 7 
show the performance benefit of profit-driven PRE and 
LICM over the baseline, compared with always applying 
and the heuristic-driven PRE and LICM. In Figure 6, A-
PRE is the improvement of always applying PRE when it 
is applicable. Heuristic-driven PRE is described as above 
and has two versions based on the register pressure 
allowed: Best-heuristic is the best case performance 
across various register pressures for each benchmark and 
Heuristic-8 uses a fixed limit of eight. Lastly, P-PRE 
represents the performance benefit of our profit-driven 
PRE. Figure 7 shows the same configurations only applied 
to LICM.  

 In Figure 6, the performance benefit of different 
approaches to decide when to apply PRE is shown. The 
problem with always applying PRE when it is applicable 
is that it may increase register pressure, which may incur 

more spills and thus degrade performance. Both the 
heuristic approach and our approach can avoid the 
unprofitable PREs.  However, the selection of limits in the 
heuristics plays an important role in the performance 
benefit, as described in Section 4.1. Our P-PRE considers 
both register pressure and computation to predict the 
profitability of PRE and applies it accordingly, without 
requiring parameters to be tuned. It consistently performs 
as good as or better than the Best-Heuristic for PRE, 
except for bzip2, where predictions are sometimes 
incorrect. 
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Figure 6. Performance benefit of profit-driven 

PRE compared with heuristic-driven PRE 

0

2

4

6

8

10

gzip vpr mcf parser vortex bzip2 twolf geomean

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t %

A-LICM Best-heuristic Heuristic-8 P-LICM

 
Figure 7. Performance benefit of profit-driven 

LICM compared with heuristic-driven LICM 

Figure 7 shows the performance benefit of the 
different approaches for applying LICM. Due to the 
register pressure increase caused by some LICMs, the 
overall performance of A-LICM can be improved by not 
applying the unprofitable ones. Although the heuristic-
driven LICM can achieve performance improvement over 
always applying in some cases, it is very important to 
choose the right limit on allowed register pressure. For 
example in parser, with a register pressure limit of 8, 
heuristic-driven LICM is worse than always applying. 
While in the best-heuristic, it is better than always 
applying. Our profit-driven LICM can perform at least as 
well as best-heuristic LICM in most cases. However, in 
one case (gzip), due to incorrect predictions, profit-driven 

Heuristic-driven PRE Benchmark 
0 4 8 16 

gzip 3.50 3.75 3.78 4.10 

vpr 1.22 0.75 1.81 1.83 

mcf 2.37 2.35 2.31 2.22 

parser 1.25 1.50 1.70 1.35 

vortex 4.73 5.25 4.66 3.86 

bzip2 7.35 7.52 8.19 7.91 

twolf 1.07 0.88 1.14 0.02 

Heuristic-driven LICM Benchmark 
0 4 8 16 

gzip 2.90 3.29 5.40 3.27 

vpr -0.40 -0.38 0.52 0.69 

mcf 2.50 2.62 2.58 2.47 

parser 2.55 2.86 1.99 2.23 

vortex 4.88 5.69 4.99 5.28 

bzip2 7.02 7.35 6.70 4.57 

twolf 0.52 0.38 2.14 1.91 



LICM has worse performance than the heuristic-driven 
approach.  

Thus, our experiments show that a model-based 
approach can be used to explore and determine the 
profitability of optimizations, and this profitability 
property can be useful in deciding when to apply 
optimizations. Also, the profitability measure predicted by 
our framework has other uses, such as being used as the 
fitness value in a heuristic search for the best optimization 
sequence [1, 18]. 

 
4.2.2. Compile-time 

Because our approach uses analytic models to make 
decisions about applying optimizations, we investigated 
how compile-time is impacted by profit-driven 
optimization. Tables 4 and 5 show the compile-time for 
different optimization strategies for PRE and LICM. 

Table 4. Compile time for PRE (in seconds) 

Benchmark A-PRE Heuristic PRE P-PRE 

gzip 42 45.14 48.78 

vpr 128.38 193 216 

mcf 20.89 29 30.5 

parser 100.67 123 136.31 

vortex 490.48 575.33 633.1 

bzip2 33.77 42.6 44.1 

twolf 755.55 1087 1187.16 

Table 5. Compile time for LICM (in seconds) 

Benchmark A-LICM Heuristic LICM P-LICM 

gzip 47.8 59.04 61.09 
vpr 128 147 161 
mcf 20.8 27.6 28.97 

parser 109.3 133.47 138.19 
vortex 492.1 547.39 569 
bzip2 38.59 48.55 51.67 
twolf 591 817.76 916.26 

From Table 4, the A-PRE compile-time varies from 
approximately 20 seconds to 755 seconds. Compile-time 
shown for the heuristic approach is the average for the 
different limits. It increases 7 % to 50% over A-PRE, with 
an average of 30% because heuristic-driven PRE has to 
compute and update live range information. The compile 
time for profit-driven PRE increases over A-PRE by 16% 
to 68%, with an average of 40%. Because P-PRE 
considers computation and register pressure in a more 
precise way than the heuristic-driven PRE, it incurs a 
modest overhead increase over the heuristic approach by 
an average of 8.3%. 

From Table 5, similar compile-time trends can be 
seen for A-LICM, heuristic LICM and P-LICM. The A-

LICM compile-time varies from approximately 20 
seconds to 591 seconds. Heuristic LICM increases 
compile-time over A-LICM from 11% to 38% (average 
24%) and P-LICM increases compile time over A-LICM 
by 15% to 55% (average 31%). Finally, in comparison to 
heuristic LICM, our P-LICM increases compile time by an 
average of 6.2%. 

As the tables show, the increase in compile-time of 
our profit-driven approach is modest and about the same 
as the heuristic-driven approach. These small increases 
show that our approach is feasible and efficient. However, 
our prototype has several implementation artifacts that 
hurt performance; a production implementation could 
decrease the compile time further. We conclude that the 
modest compile-time increase is worth the benefit of 
applying the optimizations more effectively. 

 
4.3. Model Verification 

We validated our models by determining their 
accuracy when predicting the profitability of an 
optimization. We validated the prediction accuracy by 
considering only registers. We did not evaluate the 
computation profit because our computation model is 
exact in terms of instruction count, given relative node 
frequencies from a profile. If the relative frequencies in 
the profile do not match what happens in an actual run, 
then there can be an inaccuracy in the computation profit. 
However, this inaccuracy is a property of the profile – not 
of the computation models. 

For deciding when to apply optimizations, a correct 
prediction is one in which we predict there is a benefit for 
registers (i.e., if register profit is positive, it indicates a 
spill reduction) and the actual executions show the same 
result. The accuracy prediction is measured by how often 
we make the correct prediction. To validate the prediction 
accuracy, we checked every prediction and compared the 
value predicted with the actual execution (i.e., we use the 
number of memory accesses before and after applying an 
optimization to reflect the spill changes). 

Table 6. Prediction accuracy of our framework 

Table 6 shows the prediction accuracy of our 
framework for PRE and LICM. In the table, “TP” is the 
total number of predictions and “CP” is the number of 

PRE LICM Benchmark 
TP CP %Acc TP CP %Acc 

gzip 48 43 89.58 45 38 84.44 
vpr 303 291 96.04 230 217 94.35 
mcf 51 44 86.27 52 43 82.69 

parser 293 210 87.87 75 68 90.67 
vortex 530 431 81.13 346 303 87.57 
bzip2 56 44 78.57 88 79 89.77 
twolf 475 433 91.12 345 306 88.70 



correct predictions when using our framework. “%Acc” is 
the overall percentage accuracy of our framework. 

As the table shows, the prediction accuracy varies 
from 78% to 96%, with an average of 88%. The results 
demonstrate that our models are indeed accurate and can 
correctly predict the profit (or cost) and the profit-driven 
optimizations can achieve performance benefit.  

On average, 12% of the time, our framework made 
inaccurate predictions. The inaccuracy is primarily from a 
simplified assumption used in the register optimization 
model about how the register allocator spills registers. The 
model assumes that the allocator will select the spill 
priority based solely on the number of uses and definitions 
in a live range. However, the Mach SUIF register 
allocator also uses the number of conflicting edges in the 
interference graph to make the decisions. Note that even 
without the detailed implementation information, our 
models achieve good prediction accuracy. If more 
accuracy is needed, the accuracy of our models can be 
improved by incorporating implementation information. 

 

5. Related Work 

In the introduction, we indicated prior work on 
optimization properties. In this section, we discuss prior 
work that relates to profitability of optimizations. To our 
knowledge, ours is the first work that focuses on 
predicting the impact of scalar optimizations and the 
impact on registers and computation. 

Our previous paper developed a framework that had 
code, loop optimization and cache models and 
demonstrated that the benefit of applying loop 
optimizations on cache could be predicted [36]. The work 
relied on models that had already been developed for 
modeling the cache and array access sequences [12, 14].  
It did not consider scalar optimizations, registers or 
computation.  In this paper, we develop a more powerful 
and general framework that has a profitability engine as 
well as models and thus can be used for many types of 
optimizations.  

There have been several approaches to address the 
problems of the application of optimizations. An approach 
to discover a best optimization configuration uses an 
analytic model of machine resources to statically estimate 
the performance of the optimized code instead of 
executing it [31]. However, because optimizations are not 
modeled in this approach, they still need to be applied. 
Another approach is to select an optimization level to 
recompile the methods based on an experimental resource 
model [2, 21]. The optimizer uses a simple benefit-cost 
analysis to decide whether to recompile a method at a 
higher optimization level. The benefit of an optimization 
level is estimated as a constant by offline experiments. 
However, this model does not include some aspects of 
optimization behavior (e.g., the effect of optimizations 

depends on the code context). The last approach is based 
on analytic models of code, optimizations and resources 
[34, 35, 27, 22, 8, 29, 5, 16, 12, 28]. The idea is to use a 
resource cost model (e.g., cache cost) and optimization 
models (e.g., unimodular matrix transformations) to select 
a program-specified sequence or configuration to apply 
optimizations that maximizes the benefit. These 
techniques demonstrate that analytic models are efficient 
in driving the application of optimizations. However, all 
these techniques use models that express only a small set 
of optimizations (loop optimizations and data 
optimizations) and mainly attack a single problem; i.e., to 
improve the performance of cache [9]. 

Research using register pressure sensitive PRE [13] 
sets upper limits on allowable register pressure and then 
performs redundancy elimination within these limits. In 
this paper, we develop independent models of 
optimizations, while register pressure sensitive PRE  uses 
data flow analysis to determine  register pressure, which is 
integrated with  the PRE algorithm and only works for 
PRE. They also do not consider the impact of PRE on 
computation. 

 

6. Conclusions 

In this paper, we presented a novel model-based 
framework that can be used to determine the profitability 
of optimizations. This work coupled with prior work, 
which considered loop optimizations, has a wide range of 
applicability in terms of optimizations and resources. 
Here, we demonstrate the value of our framework for the 
scalar optimizations PRE and LICM. Our model-based 
technique can make accurate predictions without applying 
and executing the optimized code. As such the potential 
exists for faster searches over different optimization 
sequences to determine an effective optimization order 
since we do not have to actually apply the optimizations 
or run the resulting code. Although our focus was on 
exploring the profitability property, other properties can 
be explored using the model-based approach. For 
example, we believe that models can be used to explore 
the interaction property. Using models, a good sequence 
of optimizations can be found without the added expense 
of applying and then removing the optimization (undoing 
the optimization or storing two versions of the code).  
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