A Model-based Framework: an Approach for Profit-driven Optimization

Min Zhao
University of Pittsburgh
lilyzhao@cs.pitt.edu

Abstract

Bruce R. Childers
University of Pittsburgh
childers@cs.pitt.edu

Mary Lou Soffa
University of Virginia
soffa@cs.virginia.edu

optimizations, they have not been adequately adddes
because optimizations were yielding performance

Although optimizations have been applied for a improvements. These problems included knowing what

number of years to improve the performance of sofiw

optimizations to apply and when, where, in whickesr

problems that have been long-standing remain, which (i-€., phase ordering) and in which configuratierg(, the

include knowing what optimizations to apply and htow
apply them. To systematically tackle these problenes
need to understand the properties of optimizatibmsur
current research, we are investigating the profiiab
property, which is useful for determining the bénef
applying an optimization. Due to the high cost of
applying optimizations and then experimentally
evaluating their profitability, we use an analytigodel
framework for predicting the profitability of
optimizations. In this paper, we target scalar
optimizations, and in particular, describe framewor
instances for Partial Redundancy Elimination (PR&H
Loop Invariant Code Motion (LICM). We implemented
the framework for both optimizations and comparefipr
driven PRE and LICM with a heuristic-driven apprbac
Our experiments demonstrate
approach is effective and efficient in that it Gaoturately
predict the profitability of optimizations with low
overhead. By predicting the profitability using netsj we
can selectively apply optimizations. The model-Base
approach does not require tuning of parameters ugsed
heuristic approaches and works well across differmte
contexts and optimizations.

1. Introduction

The field of optimization has been extremely
successful over the past 40+ years. As new languaige

tile size in loop tiling) to apply them for the bes
improvement.

A number of events are occurring that demand
solutions to these problems. First, because of the
continued growth of embedded systems and the alritic
importance of time-to-market in this domain, thé&en
energetic movement to write embedded software gh-hi
level languages. The use of high-level languagethim
area requires a high quality optimizing compileattban
intelligently apply optimizations to achieve thegtmést
performance improvement. Another activity that has
brought optimization problems to the forefronthe trend
toward dynamic optimization. To be effective, dymam
optimization requires a good understanding of @erta
properties of optimizations. Currently, it is uradevhen

that a model-basedand where to apply optimizations dynamically andvho

aggressive optimization can be and still be prbfgaafter
factoring in the cost of applying the optimizatidrast,
although new optimizations continue to be developed
applied, the performance improvement is shrinkinle
question then is whether the optimization field has
reached its limit or do further improvements depemnd
solutions to these problems. We believe the ladtaue.
Traditionally, heuristics have been used to address
some of the challenges of applying optimizations.
However, heuristics tend to be ad hoc and focus
specifically on a single or a small class of opziations.
Heuristics also require tuning parameters to select
appropriate threshold values. The success of thadtie

new architectures have been introduced, novel andcan depend on these values and the best choiceacan

effective optimizations have been developed toetaagd
exploit both the software and hardware innovatidmany

reports from research and commercial projects havebetter

for different optimizations and code contexts.
To systematically tackle these problems, we need to
understand the properties of optimizations,

indicated that the performance of software improves especially operational properties. We define ogtation

significantly through aggressive optimizations.

properties as either semantic or operational. Stman

Most successes in the field have come from the properties deal with the semantics of the optintrat

development of particular optimizations, such aeplo
optimizations and path sensitive optimizations.haiigh
there were several long-standing problems

and include correctness, soundness and optimization
specification. Operational properties target thgliaption

with of optimizations and include profitability and irdetion

The paper appears in the proceedings oMBBI/IEEE International Symposium on Code Generasind Optimization (CGQ)

San Jose, California, March 2005.

of optimizations. Although research on many of ¢hes
properties has been limited, there has recenthn kee
flurry of activity focusing on optimization propess.
There are two approaches to explore the propedies
optimizations. One is through formal techniquesjciwh
include developing formal specifications, analytiodels,
and proofs through model checking and theorem psove
[20, 24, 33, 15, 32]. Another approach is experitaen
That is, the properties are evaluated by actuadylyéng
optimizations and executing the optimized code.sThi
approach is mostly used for exploring operational
properties, which are useful for determining whehere
and how to apply optimizations [31, 9, 6, 17, 1].18

Because of the high cost of applying optimizations
and experimentally evaluating their properties]8}, our
research focuses on formally investigating openatio
properties of optimizations through analytic mod&&th
analytic models, we can study, for example,
profitability of optimizations. Also our goal is tmodel
the interactions among optimizations and then ulee t
models to predict the impact of a sequence of
optimizations without actually applying them.

In this paper, as a step toward our goal, we ptesen
framework of analytic models for exploring the
profitability of optimizations. In particular, weldress the

the

specific problems of how scalar optimizations intpac the optimization on

registers, computation (i.e., functional units) angrall

profitability, we can intelligently select
optimizations to apply in a systematic way.
The contributions of this paper include:

profitkh

e A conceptual framework for investigating
optimization profitability. The framework
includes analytic code models, optimization

models, and resource models for cache, registers
and computation, and a profitability engine that
uses the models to determine the performance
profit.

An implementation of the framework for scalar
optimizations (in particular PRE and LICM) that
uses the profitability of PRE and LICM to
determine when to apply them.

An experimental evaluation demonstrating that
the model-based approach for predicting the
profitability of optimizations is effective and
efficient.

A general model-based technique that can be
used to study properties of optimizations.

2. Conceptual Profitability Framework

To determine the profitability of an optimizatiowe
require models that are useful for predicting theact of
performance. Performance
generally affected by cache, registers and funatianits.

is

performance. A number of research efforts have show Thus, we need to be able to determine the profiarof

that applying an optimization can degrade perfocadH,
36]. To avoid this degradation, we use our framdéwor
first predict the profitability of applying an optization at
a program point. Then based on whether there i©fit p
or not, we either apply it or not. The profitaliliof
optimizations depends on code context, particular
optimizations and machine resources, all of whiechto
be modeled. Thus, the framework includes models for
code context, optimizations and resources. As @fatthe
framework, we have a Profitability Engine that usies
models to predict the profitability of applying an
optimization at any code point where it is applieab

We developed models for a number of optimizations
including copy propagation, constant propagatiosacd
code elimination, Partial Redundancy EliminatiorRE}
and Loop Invariant Code Motion (LICM). In this pape
we focus on the models for PRE and LICM. Models fo
the other optimizations are useful when considethn
impact of a sequence of optimizations, which isdoely
the scope of this paper. We implemented the maatads
the profitability engine for both optimizations and
compared profit-driven PRE and LICM with a heudsti

optimization for each resource and then combine the
profits. Importantly, to determine the profitability, we do
not require exact numbers but numberaccurate
enough” that the right decision as to when to apply an
optimization can be made.

Code Models Optimization Models Resource Models
Cache Cache Cache
access sequence changes on configuration & cost

access sequence

Computation Computation
changes on

instruction list

Computation

instruction list configuration & cost

Register Register Register
live ranges c_hanges on configuration & cost
live ranges

Register Allocation
spills on live ranges

v

Profitability Engine

driven approach. Our experiments demonstrate that a Figure 1. Profit-driven optimization framework

model-based approach is effective and efficienthat it
can accurately predict the profitability of optimions

with reasonable overhead. By determining the

Our framework, given in Figure 1, has three typkes o
analytic models (code, optimization and resourcelets)
and a profitability engine that processes the nweaeid

computes the profit. The resources considered acheg
registers and functional units. The focus of theper is
the performance profit (i.e., execution time). Hoeg
other resources, such as code size and power/enargy
also be modeled and included in the framework. Repi
allocation is an optimization but it also plays artpin
determining the impact of other optimizations ogiseers.
Thus, an optimization model for register allocatimn
shown separately in Figure 1.

2.1. Code M odels

The code model expresses those characteristite of t
code segment that are changed by an optimizatiah an
impact a resource. For example, array access Seggie
affect the cache so the code model would speciéy th

access sequences. Live ranges can be changed by an

optimization and impact the registers so the codeleh
would express live range information for the code
segment. Computation is also affected by an optititn
and the code model is the list of instructions.

When safe conditions for applying an optimization

are detected, a model of the code is automaticallyinformation

generated by the optimizer. Note, in this work,assume
that data flow information is available to determiifi an
optimization is legal. If legal, we then apply ptability
analysis. However, we could also do the reversecoutd
determine the hot regions of the code and the tptwlfity

of an optimization in a region and if the transfation is
profitable, use data flow analysis (in particuldemand-
driven data flow analysis [10]) to determine if the
optimization is legal.

2.2. Optimization M odels

Optimization models are written by the compiler
engineer when developing a new optimization. An
optimization model

expresses the semantics of an

For example, constant propagation can be expreased
“Delete variablev at statemenf; Insert constant at
statemenpP”.

To determine the impact of the optimizations on
registers, an optimization model for the registévcator
must be developed. The characteristics of the texgis
allocator that need to be modeled are whether the
allocator is local or global and how it spills thes ranges
(i.e., the number of additional loads and stored tre
inserted into the code). A model for the registéwcator
can be constructed that approximates a particelgister
allocation scheme, say graph coloring [7, 11] oeédr
scan [26]. In this work, we are interested in tmpact of
other optimizations on registers rather than thgsich of a
particular register allocation scheme. Hence wg aekd
a representative register allocation model, such as
loring.

2.3. Resource M odels

The framework has a model for each resource, which
describes the resource configuration and benedit/co
in using the resource. This model is
developed based on a particular platform. For exanp
determine the register profit, we need to knowrthmber
of available hardware registers and the cost of omgm
accesses (loads and stores). When considerinqathes,
the cache configuration and the cost of a cacha/hiis
are needed. The functional unit model has
computational instructions available in the arattitee
and their execution latencies. Since we do not idens
instruction scheduling, the profit deduced using th
computational resource model is an approximatignisa
true for most of the resource models.

the

2.4. Profitability Engine

The models in the framework are descriptive and

optimization and its impact on the resources underprovide the information needed to compute profitbi

consideration. Similar to code models, each opttion
can have multiple models, one for each resourescti
by the optimization. For example, if an optimizatio
impacts registers and computation, then there risdel
for that optimization’s effect on registers and teo one
for its effect on computation.

The effect of an optimization is determined frora th
code changes that the optimization introduces.
Optimizations can cause non-structural and strattade
changes, which can be expressed by small editiagges
on a control flow graph. These edits are Insergizehn
instruction (including its operation and operatprs)
Insert/Delete a block and Insert/Delete an edgd. Al
optimization code changes can be expressed in tefms
these edits [25]. Thus, the changes for a particula
optimization can be expressed as a series of leafiis.

The other important component of our frameworkhis t
Profitability Engine. When conditions for an optiration

are detected, the code models (generated by the
optimizer), the optimization models (developedinélby

the compiler engineer), and resource models (dpeelo
offine for particular resources) are input intoeth
Profitability Engine. This engine uses the inforimatin

the models to compute the profit of an optimizataira
program point where it is safe. The profit can be
computed for one resource or for combined resources
From the code and the optimization models, the rengi
determines the changes on the code models causthe by
application of an optimization. It does this witthou
applying the optimization. It then uses the reseurc
models to determine the impact of the changes en th
resource.

Table 1. Incremental updates of live ranges

Code Change Update code model

Insert a use u
of variable v

in block B at
statement s

If vis live at post-s: no change;
Else /* insertion lengthen v’s live range*/
If there is a use or definition before s
in the block B:
no change to global code model;
record the local change;

Else:
add v to IN(B) and all reachable
predecessors of B;

Insert a If vis not live at pre-s: no change;
definition d of | Else /* insertion shorten Vv's live range*/
variable v in If there is a use or definition before s

block B at in the block B:

statement s no change to global code model;
record the local change;

Else
delete v from IN(B) and all

reachable predecessors of B;

Delete ause | If there is a use after s in the block B:
u of variable v | no change;
in block B at | Else /* delete shorten v's live range*/

If there is a use or definition before s
in the block B:
no change to global code model;
record the local change;
Else
delete v from IN(B) and all
reachable predecessors of B;

statement s

Delete a If visnot live at pre-s: no change;
definition d of | Else /* insertion lengthen v’s live
variable vin | range*/
block B at If there is a use or definition before s
statement s in the block B:

no change to global code model;
record the local change;

Else
add v to IN(B) and all reachable
predecessors of B;

Insert an Add all variables in IN(Bd) to the Bs and
edge from Bs | all reachable predecessors of Bs;
to Bd

Delete a edge
from Bs to Bd

Delete all variables in IN(Bd) from the Bs
and all reachable predecessors of Bs;

For example, assume the impact of an optimization
on registers is desired. The engine inputs the cooidel
for registers, a model for this optimization,
optimization model for register allocation, andeaaurce
model of registers. Then it determines the chaogethe
live ranges (i.e., the code model for registersjngi an
incremental dataflow algorithm [25]. Since
optimization models its changes by basic edits {Bg
engine takes the edits and computes the changigin
ranges using Table 1. The table describes how dde c

an

an

changes of an optimization affect live rangeshis table,
pre-s means the point immediately before statement
while post-smeans the point immediately after statement
s. For example, the effects on live ranges of insgr use

of v (1% row) depend on the current codevlis already
live at post-s there is no change. If there is a use in the
block of u befores, then the only change is to the local
live range ofv. Otherwise, the live range wfhas changed
andv has to be added to the set of live variables at th
beginning of the block, IN, and all reaching presk=ors.
And then the profitability engine uses a registircation
model to determine the spills (i.e., loads and estpr
caused by these live range changes. The last ctethd
engine is to use the number of spills and whersettheads
and stores are inserted or deleted to computertfi. p

3. Framework for Scalar Optimizations

In this section, we describe an instance of our
framework for predicting the profitability of scala
optimizations, and in particular, PRE and LICM. &n
scalar optimizations have negligible effects onheag.e.,
loop behavior dominates cache performance [22])dwe
not further consider cache models but only registard
computation.

lLa<1 a
2:b €2 1
b
2
v
s ~
3 €
3e<ath 4c€1l .
ivEarb 4:v&arb| 4 ’
3ccv :——-1Ir-—1ly—--d _____ +-14
I5 ! I 1
1 ! I f 1
16— !
oo g | !
17 —+— h
1 ! I I
I ! I 1
S I O I

PRE decreases the number of register spills by one
(Assume there are 5 available hardware registers)

Figure 2: An example of PRE impacting registers

The impact of PRE and LICM on computation is
clear: they insert or delete instructions at som@ym@mm
points. Their impact on registers is more compédaand
depends on the code context. Sometimes PRE or LICM
may introduce more register spills, while in otlaises
they may decrease the number of spills. In Figurev&
show an example where PRE improves the register
pressure by decreasing one register spill. Infidhere,
PRE moves the last use@findb up in the code and thus
shortens their live ranges but introduces a nees lange

Code Model before PRE

PRE OPT Model Code Model after PRE

Figure 4

! IN() ! INQ) !
: @0 | : @0 :
| (b) () : | (b) () |
i OUT (a, b) ! Profitability Engine : OUT (a, b) !
! e T i Live range changes: | P ~ i
! IN (a, b) IN (a, b) ! <Ins a Use at 4>: no spill change | IN (a, b) IN (a, b) !
' (c) (a, b) ©) () ! <Ins b Use at 4’>: no spill change | (v) (a, b) ©) () !
1| OUT (c, a, b) OUT (c,a, b) | <Ins v Def at 4'>: no spill change | () (v) (v) (a, b) !
: | <Del a Use at 8>: | OUT (c, v) ouT(c,v) |
: IN (. a, b) E_’ Critical region: (6, 7, 8) —> :
!) (c) i def-use in critical region: (1 use of ' IN (c, v) !
! @ (c, d) i a, 1 use of b, 1 use of ¢, 2 use of d, ' (d) (c) !
! (9) (f, d) : luseofg, 1useoff,..) | ® (c,d) !
! (h) (a, b) i > decrease one spill (a) ' (9) (f, d) !
' ouUT (c, d, g) | <Del b Use at 8>: no spill change ! (h) (v) i
! ! <Ins v Use at 8>: no spill change ! OUT (c, d, g) |
<Del c Def at 3>: no spill change ! :

Register Allocation OPT Model ::”5 v Bef att?g; no Sp'l!lfhﬁnge ____________________________

1) global graph colorin nsviuse a s - o spiit change
2; ?nsert ogr dglete a IivéJ range <Ins ¢ Def at 3">: no spill change \ Register Resource Model

within a critical region will cost
or save a spill

3) record the defs and uses in
critical regions

4) choose the least costly live
range to spill

profitability on registers

of hardware registers: 5
Average memory access time:
3 cycles

Figure 3: Models for the example in Figure 2

for the temporary variable;. However, ifa andb were
used later, their live ranges would remain the samthis
case, the total number of live ranges increasesneydue
to the temporary variable.

In the next sections, we present models for PRE and

The code model for computation represents the type
and locations of instructions involved in the opgation.
We represent each instruction element as

<op,{<BlN1>,...,<BmNm>}>D, where op is the type of

LICM. Figure 3 shows our framework to predict the instruction, Bi represents the block number amd

impact of PRE on registers for the example in Fegar
The models and the profitability engine in this rexde
are explained below.

3.1. Code Modelsfor Registersand Computation

The code model for registers is the same for allesc
optimizations. The code model for registers reprissthe

expresses the static numberogpfinstruction in blockBi.

3.2. Register Allocation Optimization Model

To more accurately determine the impact of scalar
optimizations on registers, we need a model foisteg
allocation that represents the allocator’s spillgtgategy.
For the impact of registers on profit, we need dmpute

code as live ranges of global and local variables SPills for the original live ranges and the livengas

(including temporaries and parameters). We reptdsen
ranges by the set of live variables at the poimh@diately
before a basic block, IN, and at the point immexdyat
after the block, OUT. The model also includes tbdec
blocks and edges for the code involved in the apttion
and statements in terms of uses and definition&idare
3, the boxes labeled “Code Model before/after PRttw
the code model of registers for the example in fedu In
a basic block, in addition to IN and OUT informaitjo
uses and definitions are also included. For exanifdg
(a, b)” expresses there is a definitioncodnd a use oh
andb.

changed by the optimization and compare them, wisieh
time consuming process. Indeed, we take an incretnen
approach by computing the number of spills incrdase
decreased due to each code change. Our
allocation model reflects this incremental approach
The register allocator that we model does global
graph coloring. Within the region of a code change,
express the number of spills increased or decredisedo
inserting or removing a live range for eaxfiical region.
A critical region is the code segment where the lmemof
live ranges is equal or larger than the numbeaflable
hardware registers. So inserting or removing a tlasgge
will cost or save a spill in this region. Withinetteritical

register

region, we represent definitions and uses of eactalvie

and temporary, and choose to spill the live rarg is IF meet the partial redundant computation exp (X op Y):
the least costly to spill, under the assumptiort the T € exp is partial redundant at [Bs Sg;

register allocator typically performs well. That, e move it to [Bd, Sd| and assign a new temporary V;

choose the live range which spans the criticaloregiith Tiat [Bal Sd]...That [Ban Sar] are redundant expressions

the smallest number of definitions and uses. Tédgster
allocation optimization model is input to the ptahkility THEN

engine (see the next section) which then computes t step 1: (InsexpUSE[Bd,)
critical regions for each basic code change, recdhe (lnsv DEF[Bd,Sd]>
definitions and uses of variables and determinesfills.

In Figure 3, the box labeled “Register AllocatiolP D step 2:<De|eXpUSE[BS’SS]>
Model” shows the optimization model for the registe (lnsV USE[BS,SSD

allocator described above. step 3: L] Tiat[Bai,Sal :
(DelTi DEF[Bai,Sa])
3.3. Scalar Optimization Models (Insv DEF[Bai,Sa])
PRE Optimization Models: PRE moves a statement (InsTi DEF[Bai +1,Sai+1]>

from one code location to another and introduces a
temporary to reference the common expression. Rig P
optimization models express how these changes impac| Figure 4. PRE optimization model for registers
the code models for registers and functional units.

PRE has three semantic actions: move a computation

(InsVv USE[Bai +1,8ai+1])

say X, (i.e., move X to a safe code location), aeplits IF meet the partial redundant computation exp (X op Y):
destination (i.e., replace X's destination witheaporary ~ |T € exp is partial redundant at [Bs S ;
at the original code position) and replace the neldnt move it to [Bd, Sd| and assign a new temporary V;

expressions (i.e., replace the redundant expréssion |T;at [BalSdl...T.at [Ban Sar are redundant expressions
destination with the temporary and insert a copy

instruction following it). A move or a replace cde THEN : _ o
expressed as a deletion of the instruction at tiginal <0P7{Vi (i #sandi #d)(Bi,Ni).(Bs, NS>7<Bd:Nd>}> >
site and an insertion at the moved site. <Op7{v1 (i #sandi #d)(Bi,Ni).(Bs, Ns-1>,(Bd,Nd+1>}>

Figure 4 presents theRE optimization model for
registers, where the code changes that PRE creates are<00p)ﬂ{Vl<Bini>Wﬁ <[1.n| (Baj Naj),(Bs NS>}>-)
given. Each change is described by the actiontidstete . .

(Ins/Del), an abstract variable name (also wheiher a <C0py’{v'<B"N'>’m Elln](BaJ’ Na]+1>’<BS NS+1>}>
use or definition), and what block and where in bieck
the variable will be inserted/deleted. The semaatitions Figure 5. PRE optimization model for computation
of PRE are represented as three steps in Figute dtep
1, the redundant expression is moved to a safe code [|CM Optimization Models: LICM moves a
location in the statemer@d as uses and the temporary V statement from the body of a loop and places #idatthe

is inserted as the definition. In step 2, at theioal loop. There are certain conditions that must be toet
position,Ss the expression is deleted and the temporary issafely apply LICM. The actions are similar to PRE(in
inserted as the use. In step 3, for every exmes$iat fact can be thought of as a subcase of PRE) and the
made the statement redundant, the destinatiorpiaced resulting optimization models for registers and
by the temporary and a copy from the temporaryht® t computation are similar. Based on code movemehes, t
destination is placed. models can predict register impact (with live rasgas

The optimization model for computation describes described for PRE) and computation (with code eatiis
how PRE changes the computation code model. Themotions, as described for PRE). We do not showethes
model essentially shows how instruction elements ar models for brevity because they are similar to PRE.
changed by the application of PRE. The model ismiv
Figure 5. The first rule describes that the comipurnaof 3.4. Profitability Engine
op is deleted at the original blo&s and inserted into the

destination blockBd. The second rule represents the ~ The profitability engine takes the code models,
inserted copy instructions at the original bld@kand the ~ Optimization models and resources models and detesm
blocksBaj for all redundant expressions. the profit on resources. For example, assume thadtrof

an optimization on registers is desired. The engipets

the code model for registers, a model for
optimization, a register allocation optimizationaed and

a resource model for registers. It determines tlenges

in the live ranges according to the optimizationdelo
Then it computes the benefit/cost in terms of sfile.,
loads and stores) changed by the optimization daugpr
to the register allocation optimization model. Tigtfor
each live range change, the engine finds the atlitic
regions and records the number of definitions as&bun
the critical regions. When a live range is insertad
deleted within the critical region, the engine chem the
least costly live range to spill and computes thst or
benefit associated with the spill. An example isve in
Figure 3 (see the box labeled “Profitability Engind he
Profitability Engine determines the changes on dbde
model and for each change, determines how thes spil
affected. For brevity, only detailed actions foreleting
the use ofa at the statement 8” are shown. The critical
region is from line 6 to line 8. Also the uses and
definitions are recorded for the critical regionh& one
live range is deleted, one spill is decreased and
chosen. The benefit of this PRE on registers cdinues
saving this spill.

If the profits for all the resources, namely regjist
and computation are combined, they must have the sa
metric. The computation profit considers the fretpyeof
a node, and therefore, the register profit alsodnte
consider the execution frequency of the loads orest
based on either profiling or input from the user.

4. Experimental Results

this lightly loaded machine and the average executiore ti

was computed to factor out system effects.

Section 4.1 presents the performance improvement of
a heuristic-driven PRE and LICM. In Section 4.2, we
compare our profit-driven PRE and LICM with always
applying and the heuristic-driven PRE and LICMenmts
of performance improvement and compile time. Sectio
4.3 describes the verification of our models inmigrof
their prediction accuracy.

4.1. Heuristic-driven Approach

Always applying an applicable optimization can
sometimes lead to a performance degradation. Such a
simple heuristic of “always applying” is not suféat in
making decisions about when to apply an optimizratio
Previous work has focused on developing heurigtics
decide when to apply optimizations, such as registe
pressure sensitive redundancy elimination, whicks se
upper limits on allowable register pressure andopers
redundancy elimination within these limits [13]. We
implemented a similar heuristic. We set the upjpeait |
(i.e., a threshold) on allowable live ranges at pieces
where the redundant expressions will be moved.
Redundancy elimination is performed only when the
number of live ranges is within the limit. One pleri in a
heuristic-driven approach is to the choice of ihatlthat
can generally achieve good performance acrosshall t
benchmarks. Our experiments show different bencksnar
need different limits to achieve the best perforogafor
both heuristic-driven PRE and LICM.

Tables 2 and 3 show the performance improvement of

To evaluate the effectiveness of our framework and heuristic-driven PRE and LICM over the baselineeTh

the usefulness of profit-driven optimization, we

baseline compiler applies only register allocatiand

implemented models for PRE and LICM, described in simple instruction scheduling. We varied the liroi
Section 3.3, and integrated them into the Mach SUIFregister pressure from zero to sixteen. For PREhef

compiler [30]. We compared our profit-driven PREdan
LICM with always applying an optimization and a
heuristic-driven PRE and LICM, which takes register

limit is zero, only full redundancies are elimindten
practice, the limits are usually chosen to be thmlrer of
available hardware registers. Hence we choose aglat

pressure into consideration. We extended the PRE pa limit because there are eight hardware registertscdin be

implemented by Rolaz [19] in Mach SUIF and
implemented LICM [23]. To enable more PRE or LICM
opportunities, we also applied passes of copy wafian,

constant propagation, and dead code eliminatioorbef

allocated for a byte-type variable in the x86. Famd
sixteen are used to examine stricter or loosetdinhm the
tables, the best performance improvement is shawn i
bold. From the tables, we can see that different

PRE or LICM. For experiments, we used a number of benchmarks need different limits in the heuristics

SPEC2K benchmarkgip, vpr, mcf, parser, vorteand

perform the best. For example, for PREip can achieve

twolf), which are the SPEC2K benchmarks that can bean improvement of 4.1% when the limit is set tdesix,

compiled by the currently available Mach SUIF colempi

while mcf needs the limit set to zero to achieve the best

We used a dual-processor AMD Athlon 1.4 GHz maghine improvement of 2.37%. Also, some benchmarks arg ver

with 2 GB of memory running RedHat Linux. Using the
training data sets, we performed node profilinghwte
HALT library (included in Mach SUIF) to get the
frequency counts used in our computation madalsll
experiments, each benchmark was run three timea on

sensitive to the selection of the limits (egvolf), while
others are not (e.ginc. We can see that different
optimizations may need different limits for the sam
benchmarks. For examplgzip needs the limit set to for
PRE but needs the limit set to eight for LICM. $ave
fixed the limit in the heuristic-driven approachgetusual

approach, we can not always achieve the best peafure
improvement.

more spills and thus degrade performance. Both the
heuristic approach and our approach can avoid the
unprofitable PREs. However, the selection of kniit the
heuristics plays an important role in the perforoman
benefit, as described in Section 4.1. Our P-PREidens

Table 2. Performance improvement of heuristic-
driven PRE with different limits

Heuristic-driven PRE both_ re_g_ister pressure and _com_putation_to pref_h'et t
Benchmark 5 7 3 16 profitability of PRE and applies it accordingly, thout
- requiring parameters to be tuned. It consistengisfqgms
921p 3:50 .75 3.78 4.10 as good as or better than the Best-Heuristic foE PR
vpr 1.22 0.75 1.81 1.83 except for bzip2 where predictions are sometimes
mcf 2.37 2.35 231 2.22 incorrect.
parser 125 1.50 1.70 1.35 10 7—|@mA-PRE mBest-heuristic O Heuristic-8 0O P-PRE
vortex 4.73 5.25 4.66 3.86
bzip2 7.35 7.52 8.19 7.91 8 =
twolf 1.07 0.88 1.14 0.02

o

Table 3. Performance improvement of heuristic-
driven LICM with different limits

N
I

Performance Improvement %

mﬂ[ﬁ w

Heuristic-driven LICM 21
Benchmark
0 4 8 16
gzip 2.90 3.29 5.40 3.27 0 _
gzip vpr mcf parser vortex bzip2 twolf geomean
vpr -0.40 -0.38 0.52 0.69 Fi 6. Perf b fit of fit-diri
igure 6. Pertormance benefit of protit-ariven
mcf 2.50 2.62 2.58 2.47 . . .
PRE compared with heuristic-driven PRE
parser 2.55 2.86 1.99 2.23
vortex 4.88 5.69 4.99 5.28 10 ’4‘DA—LICM B Best-heuristic OHeuristic-8 OP-LICM[|
bzip2 7.02 7.35 6.70 4.57
twolf 0.52 0.38 2.14 191 -

4.2. Comparing Profit-driven PRE and LICM
with Heuristic-driven PRE and LICM

4.2.1. Performance Benefit

Using our model-based framework, we can
determine the profitability of an optimization and
selectively apply it. The cases where optimizations gzip vpr mcf parser vorex bzip2 twolf geomean
degrade the performance can be avoided. Figuresi & a Figure 7. Performance benefit of profit-driven
show the performance benefit of profit-driven PRitl a LICM compared with heuristic-driven LICM
LICM over the baseline, compared with always apmyi
and the heuristic-driven PRE and LICM. In FigureA6, i y
PRE is the improvement of always applying PRE witen dlffc_erent approach_es for applying LICM. Due to the
is applicable. Heuristic-driven PRE is describechbeve ~ '€JISter pressure increase caused by some LICMs, th
and has two versions based on the register pressur@/erall performance of A-LICM can be improved byt no
allowed: Best-heuristicis the best case performance 2PPIyiNg the unprofitable ones. Although the higris
across various register pressures for each benkhanar driven LICM can achieve performance improvementrove
Heuristic-8 uses a fixed limit of eight. Lastly, P-PRE 2&Ways applying in some cases, it is very important
represents the performance benefit of our profitedy ~ CN0OSe the right limit on allowed register pressier
PRE. Figure 7 shows the same configurations orjiegb example inparser, with a register pressure limit of 8,
to LICM. heuristic-driven LICM is worse than always applying

In Figure 6, the performance benefit of different While in the best-heuristic, it is better than afwa
approaches to decide when to apply PRE is showe. Th applying. Our profit-driven LICM can perform at &aas
problem with always applying PRE when it is appiea well as best-heuristic LICM in most cases. Howewer,
is that it may increase register pressure, whicl imeur one casedzip), due to incorrect predictions, profit-driven

Pesformanse Imprewementés

o
I

Figure 7 shows the performance benefit of the

LICM has worse performance than the heuristic-drive
approach.
Thus, our experiments show that a model-based

LICM compile-time varies from approximately 20
seconds to 591 seconds. Heuristic LICM increases
compile-time over A-LICM from 11% to 38% (average

approach can be used to explore and determine th&4%) and P-LICM increases compile time over A-LICM

profitability of optimizations, and this profitaki
property can be useful in deciding when to apply
optimizations. Also, the profitability measure pictdd by
our framework has other uses, such as being uséteas
fithess value in a heuristic search for the betihopation
sequence [1, 18].

4.2.2. Compile-time

by 15% to 55% (average 31%). Finally, in comparigon
heuristic LICM, our P-LICM increases compile timg dn
average of 6.2%.
As the tables show, the increase in compile-time of

our profit-driven approach is modest and aboutsidwme

as the heuristic-driven approach. These small azae
show that our approach is feasible and efficiemweler,
our prototype has several implementation artifabist

Because our approach uses analytic models to makéwrt performance; a production implementation could

decisions about applying optimizations, we investd
how compile-time is impacted by profit-driven
optimization. Tables 4 and 5 show the compile-tiime
different optimization strategies for PRE and LICM.

Table 4. Compile time for PRE (in seconds)

Benchmark A-PRE Heuristic PRE P-PRE
gzip 42 45.14 48.78
vpr 128.38 193 216
mcf 20.89 29 30.5

parser 100.67 123 136.31
vortex 490.48 575.33 633.1
bzip2 33.77 42.6 44.1
twolf 755.55 1087 1187.16

Table 5. Compile time for LICM (in seconds)

Benchmark A-LICM Heuristic LICM P-LICM
gzip 47.8 59.04 61.09
vpr 128 147 161
mcf 20.8 27.6 28.97

parser 109.3 133.47 138.19
vortex 492.1 547.39 569

bzip2 38.59 48.55 51.67
twolf 591 817.76 916.26

From Table 4, the A-PRE compile-time varies from
approximately 20 seconds to 755 seconds. Compile-ti
shown for the heuristic approach is the averagetter
different limits. It increases 7 % to 50% over AfBRvith
an average of 30% because heuristic-driven PREdas
compute and update live range information. The dlemp
time for profit-driven PRE increases over A-PRE18§6
to 68%, with an average of 40%. Because P-PRE
considers computation and register pressure in e mo
precise way than the heuristic-driven PRE, it iscar
modest overhead increase over the heuristic apiprogc
an average of 8.3%.

From Table 5, similar compile-time trends can be
seen for A-LICM, heuristic LICM and P-LICM. The A-

decrease the compile time further. We conclude ttmat
modest compile-time increase is worth the benefit o
applying the optimizations more effectively.

4.3. Model Verification

We validated our models by determining their
accuracy when predicting the profitability of an
optimization. We validated the prediction accurdny
considering only registers. We did not evaluate the
computation profit because our computation model is
exact in terms of instruction count, given relativede
frequencies from a profile. If the relative frequiEs in
the profile do not match what happens in an aatua)
then there can be an inaccuracy in the computatiofit.
However, this inaccuracy is a property of the peofi not
of the computation models.

For deciding when to apply optimizations, a correct
prediction is one in which we predict there is adfé for
registers (i.e., if register profit is positive, iitdicates a
spill reduction) and the actual executions showsame
result. The accuracy prediction is measured by bften
we make the correct prediction. To validate thedjatéeon
accuracy, we checked every prediction and comptred
value predicted with the actual execution (i.e.,use the
number of memory accesses before and after apphying
optimization to reflect the spill changes).

Table 6. Prediction accuracy of our framework

Benchmark PRE LICM

TP | CP | %Acc | TP | CP | %Acc
gzip 48 | 43 [8958 | 45 | 38 [84.44
vpr 303 | 291 | 96.04 | 230 | 217 | 94.35
mcf 51 44 | 86.27 | 52 43 | 82.69
parser 293 | 210 | 87.87 | 75 68 | 90.67
vortex 530 | 431 | 81.13 | 346 | 303 | 87.57
bzip2 56 44 | 78.57 | 88 79 | 89.77
twolf 475 | 433 | 91.12 | 345 | 306 | 88.70
Table 6 shows the prediction accuracy of our

framework for PRE and LICM. In the table, “TP” iget
total number of predictions and “CP” is the numioér

correct predictions when using our framework. “%Aisc
the overall percentage accuracy of our framework.

depends on the code context). The last approahsied
on analytic models of code, optimizations and resesl

As the table shows, the prediction accuracy varies[34, 35, 27, 22, 8, 29, 5, 16, 12, 28]. The idetoisise a

from 78% to 96%, with an average of 88%. The result
demonstrate that our models are indeed accurateamd
correctly predict the profit (or cost) and the firdfiven
optimizations can achieve performance benefit.

resource cost model (e.g., cache cost) and optiimiza
models (e.g., unimodular matrix transformationsjétect
a program-specified sequence or configuration tplyap
optimizations that maximizes the benefit. These

On average, 12% of the time, our framework made techniques demonstrate that analytic models areiexft

inaccurate predictions. The inaccuracy is primdrityn a
simplified assumption used in the register optiiira
model about how the register allocator spills reygs The
model assumes that the allocator will select th#l sp
priority based solely on the number of uses anahttiehs

in a live range. However, the Mach SUIF register
allocator also uses the number of conflicting edgethe
interference graph to make the decisions. Note ¢kiah
without the detailed implementation information, r ou
models achieve good prediction accuracy. If more
accuracy is needed, the accuracy of our modelshean
improved by incorporating implementation informatio

5. Related Work

In the introduction, we indicated prior work on
optimization properties. In this section, we discpsior
work that relates to profitability of optimizatian§o our
knowledge, ours is the first work that focuses on
predicting the impact of scalar optimizations arm t
impact on registers and computation.

in driving the application of optimizations. Howeyell
these techniques use models that express only lh sgha
of optimizations (loop optimizations and data
optimizations) and mainly attack a single problée; to
improve the performance of cache [9].

Research using register pressure sensitive PRE [13]
sets upper limits on allowable register pressum then
performs redundancy elimination within these limits
this paper, we develop independent models
optimizations, while register pressure sensitiviEPRses
data flow analysis to determine register pressuhéch is
integrated with the PRE algorithm and only works f
PRE. They also do not consider the impact of PRE on
computation.

of

6. Conclusions

In this paper, we presented a novel model-based
framework that can be used to determine the phulity
of optimizations. This work coupled with prior work
which considered loop optimizations, has a wideyeaof

Our previous paper developed a framework that hadapplicability in terms of optimizations and resasc

code, loop optimization and
demonstrated that the benefit of applying loop
optimizations on cache could be predicted [36]. WMoek

cache models and Here, we demonstrate the value of our frameworkHer

scalar optimizations PRE and LICM. Our model-based
technique can make accurate predictions withoulyayp

relied on models that had already been developed fo and executing the optimized code. As such the piaten

modeling the cache and array access sequence&4]L2,
It did not consider scalar optimizations, registens
computation. In this paper, we develop a more pfuve
and general framework that has a profitability eegas
well as models and thus can be used for many tgpes
optimizations.

exists for faster searches over different optinmzat
sequences to determine an effective optimizatiateror
since we do not have to actually apply the optitiize

or run the resulting code. Although our focus was o0
exploring the profitability property, other propes can

be explored using the model-based approach. For

There have been several approaches to address thexample, we believe that models can be used toexpl

problems of the application of optimizations. Arpegach
to discover a best optimization configuration uses
analytic model of machine resources to staticadlyneate
the performance of the optimized code instead
executing it [31]. However, because optimizatiores ot
modeled in this approach, they still need to beliagp
Another approach is to select an optimization letzel
recompile the methods based on an experimentalimaso
model [2, 21]. The optimizer uses a simple berefgt
analysis to decide whether to recompile a method at
higher optimization level. The benefit of an optiation
level is estimated as a constant by offline expenits

However, this model does not include some aspefcts o

optimization behavior (e.g., the effect of optintiaas

the interaction property. Using models, a good saqe
of optimizations can be found without the addedemse
of applying and then removing the optimization (oimdj

of the optimization or storing two versions of the epd

7. Acknowledgements

This research is supported in part by the National
Science Foundation, Next Generation Software, grant
CNS-0305198 and CNS-0203945. We would also like to
thank John Regehr and the anonymous reviewersiéar t
useful suggestions on how to improve the paper.

8. References

(1]

(2]

(3]
(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]

L. Almagor, K. Cooper, A. Grosul, T. Harvey, Reeves,
D. Subramanian, L. Torczon and T. Waterman. Finding
effective compilation sequencésCM 2004 Conf. On
Languages, Compilers, and Tools for Embedded Sgstem
M. Arnold, S. Fink, D. Grove, M. Hind, and

P. F. Sweeney. Adaptive optimization in the Jalapen
JVM. ACM 2000 Conf. on Object-oriented Programming,
systems, languages, and applications.

M. P. Bivens and M. L. Soffa. Incrementadjister
reallocation Software Practice & Experien@g(10), 1990.
P. Briggs and K. D. Cooper. Effective partiedundancy
elimination.SIGPLAN’94 Conf. on Programming
Language Design and Implementation.

B. Chandramouli, J. Carter, W. Hsieh, and/8Kee. A
cost framework for evaluating integrated restruomr
optimizationsInt’l. Conf. on Parallel Architectures and
Compilation Techniques, September 2001

K. Cooper, T.J. Harvey, D. Subramanian, An@orczon.
Compilation order matter§.echnical Report, Rice
University, 2002.

G. Chaitin. Register allocation and spillingigraph
coloring.ACM SIGPLAN Symp. on Compiler
Construction, June 1982.

S. Coleman and K. S. McKinley. Tile size seleatusing
cache organization and data Laydi#GPLAN’95
Conference on Programming Language Design and
Implementation, June 1995.

K. Cooper, D. Subramanian, and L. Torczon. Atap
optimizing compilers for the 21st centuihe Journal of
Supercomputing, August 2002.

E. Duesterwald, R. Gupta, M. L. Soffa. Pieatt
framework for demand-driven interprocedural dadavfl
analysisACM Transactions on Programming Languages
and Systems, November 1997.

L. George and A. Appel. Iterated registealescing ACM
Transactions on Programming Languages and Systems,
May 1996.

S. Ghosh, M. Martonosi, and S. Malik. Caahiss
equations: a compiler framework for analyzing amuirig
behavior ACM Transactions on Programming Languages
and Systems, July 1999.

R. Gupta and R. Bodik. Register pressursitiea
redundancy eliminatior8th Int’l. Conf. on Compiler
Construction , 1999.

J. S. Hu, M. Kandemir, N. Vijaykrishnan, Nl Irwin,

H. Saputra, and W. Zhang. Compiler directed cache
polymorphis,Proc. of LCTES/SCOPES, June 2002.

C. Jaramillo, R. Gupta, and M.L. Soffa. Caripon
Checking: An approach to avoid debugging of optédiz
code.Proceedings of Foundation of Software
Engineering, 1999.

M. Kandemir, J. Ramanujam, and A. Choudhary.
Improving cache locality by a combination of loaa
data transformation$EEE Transactions on Computers,
February1999.

T. Kisuki, P. M. W. Knijnenburg and M. F. B!Boyle.
Combined selection of tile Size and unroll factosgng
iterative compilationint’l Conference on Parallel
Architectures and Compilation Techniques, 2000.

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

P.Kulkarni, S. Hines, J. Hiser, D. Whalley, Davidson,
and D. Jones. Fast searches for effective optifoizat
phase sequenceSIGPLAN’04 Conf. on Programming
Language Design and Implementation, 2004.

L. Rolaz. An implementation of lazy code oot for
MachSUIF. URL:
http://lapwww.epfl.ch/dev/imachsuif/opt_passes/Idi.p
S. Lerner, T. Millstein, and C. Chamberstdmatically
proving the correctness of compiler optimizations.
SIGPLAN’'03 on Programming Language Design and
Implementation, 2003.

U. Holzle and D. Ungar. Reconciling respmesiess with
performance in pure object-oriented language&vi
Transactions on Programming Languages and Systems,
July 1996.

K. McKinley, S. Carr, and C. Tseng. ImprogiData
Locality with Loop Transformation®ACM Transactions
on Programming Languages and Systems, July 1996.
S. S. Muchnick. Advanced Compiler Design
ImplementationMorgan Kaufmann Publishers, 1997.
G. C. Necula. Translation validation for artiopzing
compiler.SIGPLAN 2000 conference on Programming
language design and implementation.

L. Pollock and M.L. Soffa. An Incremental Vs of
Iterative Data Flow AnalysidEEE Transactions on
Software Engineering, December 1989.

M. Poletto and V. Sarkar. Linear Scan Register
Allocation. ACM Transactions on Programming
Languages and Systems, September 1999.

W. Pugh. Uniform Techniques for Loop Optimipat 5th
International Conference on Supercomputing, 1991.
V. Sarkar and N. Megiddo. An Analytic Modekfoboop
Tiling and its SolutionInt’l. Symp. on Performance
Analysis of Systems and Software, 2000.

V. Sarkar, Automatic Selection of high-order
transformations in the IBM XL FORTRAN compilers,
IBM Journal of Research and Development, May 1997.
M. D. Smith and G. Holloway. An Introductioa t
Machine SUIF and Its Portable Libraries for Anasyand
Optimization. URL:
http://www.eecs.harvard.edu/hube/software

S. Triantafyllis, M. Vachharajani, N. Vachhgmai, and
D. I. August. Compiler Optimization-space Explooati
Int’l. Symp. on Code Generation and OptimizatiodQ2
D. Whitfield and M. L. Soffa. An Approach tor@ering
optimizing transformationACM SIGPLAN Symposium
on Principles & Practice of Parallel Programming990.
D. Whitfield and M. L. Soffa. An Approach f&xploring
Code Improving Transformation8CM Transactions on
Programming Languages, November 1997.

M. Wolf and M. Lam. A Data Locality Optimizing
Algorithm. SIGPLAN’91 Conference on Programming
Language Design and Implementation.

M. E.Wolf, D. E. Maydan and D. Chen. CombigiLoop
Transformations Considering Caches and Scheduling.
Int’l. Symp. on Mircoarchitecture, 1996.

M. Zhao, B. R. Childers, and M. L. SoffaeBicting the
Impact of Optimizations for Embedded SysteAGM
Conf. On Languages, Compilers, and Tools for Emeddd
Systems, 2003.

