

A Model-based Framework: an Approach for Profit-driven Optimization

Min Zhao
University of Pittsburgh

lilyzhao@cs.pitt.edu

Bruce R. Childers
University of Pittsburgh

childers@cs.pitt.edu

Mary Lou Soffa
University of Virginia
soffa@cs.virginia.edu

Abstract

Although optimizations have been applied for a
number of years to improve the performance of software,
problems that have been long-standing remain, which
include knowing what optimizations to apply and how to
apply them. To systematically tackle these problems, we
need to understand the properties of optimizations. In our
current research, we are investigating the profitability
property, which is useful for determining the benefit of
applying an optimization. Due to the high cost of
applying optimizations and then experimentally
evaluating their profitability, we use an analytic model
framework for predicting the profitability of
optimizations. In this paper, we target scalar
optimizations, and in particular, describe framework
instances for Partial Redundancy Elimination (PRE) and
Loop Invariant Code Motion (LICM). We implemented
the framework for both optimizations and compare profit-
driven PRE and LICM with a heuristic-driven approach.
Our experiments demonstrate that a model-based
approach is effective and efficient in that it can accurately
predict the profitability of optimizations with low
overhead. By predicting the profitability using models, we
can selectively apply optimizations. The model-based
approach does not require tuning of parameters used in
heuristic approaches and works well across different code
contexts and optimizations.

1. Introduction

The field of optimization has been extremely
successful over the past 40+ years. As new languages and
new architectures have been introduced, novel and
effective optimizations have been developed to target and
exploit both the software and hardware innovations. Many
reports from research and commercial projects have
indicated that the performance of software improves
significantly through aggressive optimizations.

Most successes in the field have come from the
development of particular optimizations, such as loop
optimizations and path sensitive optimizations. Although
there were several long-standing problems with

optimizations, they have not been adequately addressed
because optimizations were yielding performance
improvements. These problems included knowing what
optimizations to apply and when, where, in which order
(i.e., phase ordering) and in which configuration (e.g., the
tile size in loop tiling) to apply them for the best
improvement.

A number of events are occurring that demand
solutions to these problems. First, because of the
continued growth of embedded systems and the critical
importance of time-to-market in this domain, there is an
energetic movement to write embedded software in high-
level languages. The use of high-level languages in this
area requires a high quality optimizing compiler that can
intelligently apply optimizations to achieve the highest
performance improvement. Another activity that has
brought optimization problems to the forefront is the trend
toward dynamic optimization. To be effective, dynamic
optimization requires a good understanding of certain
properties of optimizations. Currently, it is unclear when
and where to apply optimizations dynamically and how
aggressive optimization can be and still be profitable after
factoring in the cost of applying the optimization. Last,
although new optimizations continue to be developed and
applied, the performance improvement is shrinking. The
question then is whether the optimization field has
reached its limit or do further improvements depend on
solutions to these problems. We believe the latter is true.

Traditionally, heuristics have been used to address
some of the challenges of applying optimizations.
However, heuristics tend to be ad hoc and focus
specifically on a single or a small class of optimizations.
Heuristics also require tuning parameters to select
appropriate threshold values. The success of the heuristic
can depend on these values and the best choice can vary
for different optimizations and code contexts.

To systematically tackle these problems, we need to
better understand the properties of optimizations,
especially operational properties. We define optimization
properties as either semantic or operational. Semantic
properties deal with the semantics of the optimizations
and include correctness, soundness and optimization
specification. Operational properties target the application
of optimizations and include profitability and interaction

The paper appears in the proceedings of the ACM/IEEE International Symposium on Code Generation and Optimization (CGO),
San Jose, California, March 2005.

of optimizations. Although research on many of these
properties has been limited, there has recently been a
flurry of activity focusing on optimization properties.
There are two approaches to explore the properties of
optimizations. One is through formal techniques, which
include developing formal specifications, analytic models,
and proofs through model checking and theorem provers
[20, 24, 33, 15, 32]. Another approach is experimental.
That is, the properties are evaluated by actually applying
optimizations and executing the optimized code. This
approach is mostly used for exploring operational
properties, which are useful for determining when, where
and how to apply optimizations [31, 9, 6, 17, 1, 18].

Because of the high cost of applying optimizations
and experimentally evaluating their properties [9, 18], our
research focuses on formally investigating operational
properties of optimizations through analytic models. With
analytic models, we can study, for example, the
profitability of optimizations. Also our goal is to model
the interactions among optimizations and then use the
models to predict the impact of a sequence of
optimizations without actually applying them.

In this paper, as a step toward our goal, we present a
framework of analytic models for exploring the
profitability of optimizations. In particular, we address the
specific problems of how scalar optimizations impact
registers, computation (i.e., functional units) and overall
performance. A number of research efforts have shown
that applying an optimization can degrade performance [4,
36]. To avoid this degradation, we use our framework to
first predict the profitability of applying an optimization at
a program point. Then based on whether there is a profit
or not, we either apply it or not. The profitability of
optimizations depends on code context, particular
optimizations and machine resources, all of which need to
be modeled. Thus, the framework includes models for
code context, optimizations and resources. As part of the
framework, we have a Profitability Engine that uses the
models to predict the profitability of applying an
optimization at any code point where it is applicable.

We developed models for a number of optimizations
including copy propagation, constant propagation, dead
code elimination, Partial Redundancy Elimination (PRE)
and Loop Invariant Code Motion (LICM). In this paper,
we focus on the models for PRE and LICM. Models for
the other optimizations are useful when considering the
impact of a sequence of optimizations, which is beyond
the scope of this paper. We implemented the models and
the profitability engine for both optimizations and
compared profit-driven PRE and LICM with a heuristic-
driven approach. Our experiments demonstrate that a
model-based approach is effective and efficient in that it
can accurately predict the profitability of optimizations
with reasonable overhead. By determining the

profitability, we can intelligently select profitable
optimizations to apply in a systematic way.

The contributions of this paper include:
• A conceptual framework for investigating

optimization profitability. The framework
includes analytic code models, optimization
models, and resource models for cache, registers
and computation, and a profitability engine that
uses the models to determine the performance
profit.

• An implementation of the framework for scalar
optimizations (in particular PRE and LICM) that
uses the profitability of PRE and LICM to
determine when to apply them.

• An experimental evaluation demonstrating that
the model-based approach for predicting the
profitability of optimizations is effective and
efficient.

• A general model-based technique that can be
used to study properties of optimizations.

2. Conceptual Profitability Framework

To determine the profitability of an optimization, we
require models that are useful for predicting the impact of
the optimization on performance. Performance is
generally affected by cache, registers and functional units.
Thus, we need to be able to determine the profit of an
optimization for each resource and then combine the
profits. Importantly, to determine the profitability, we do
not require exact numbers but numbers “accurate
enough” that the right decision as to when to apply an
optimization can be made.

Our framework, given in Figure 1, has three types of

analytic models (code, optimization and resource models)
and a profitability engine that processes the models and

Cache

access sequence

Profitability Engine

Figure 1. Profit-driven optimization framework

Code Models

Register

live ranges

Computation

instruction list

Cache
changes on

access sequence

Optimization Models

Register
changes on
live ranges

Computation
changes on

instruction list

Cache

configuration & cost

Resource Models

Register

configuration & cost

Computation

configuration & cost

Register Allocation
spills on live ranges

computes the profit. The resources considered are cache,
registers and functional units. The focus of this paper is
the performance profit (i.e., execution time). However,
other resources, such as code size and power/energy can
also be modeled and included in the framework. Register
allocation is an optimization but it also plays a part in
determining the impact of other optimizations on registers.
Thus, an optimization model for register allocation is
shown separately in Figure 1.

2.1. Code Models

The code model expresses those characteristics of the
code segment that are changed by an optimization and
impact a resource. For example, array access sequences
affect the cache so the code model would specify the
access sequences. Live ranges can be changed by an
optimization and impact the registers so the code model
would express live range information for the code
segment. Computation is also affected by an optimization
and the code model is the list of instructions.

When safe conditions for applying an optimization
are detected, a model of the code is automatically
generated by the optimizer. Note, in this work, we assume
that data flow information is available to determine if an
optimization is legal. If legal, we then apply profitability
analysis. However, we could also do the reverse: we could
determine the hot regions of the code and the profitability
of an optimization in a region and if the transformation is
profitable, use data flow analysis (in particular, demand-
driven data flow analysis [10]) to determine if the
optimization is legal.

2.2. Optimization Models

Optimization models are written by the compiler
engineer when developing a new optimization. An
optimization model expresses the semantics of an
optimization and its impact on the resources under
consideration. Similar to code models, each optimization
can have multiple models, one for each resource affected
by the optimization. For example, if an optimization
impacts registers and computation, then there is a model
for that optimization’s effect on registers and another one
for its effect on computation.

The effect of an optimization is determined from the
code changes that the optimization introduces.
Optimizations can cause non-structural and structural code
changes, which can be expressed by small editing changes
on a control flow graph. These edits are Insert/Delete an
instruction (including its operation and operators),
Insert/Delete a block and Insert/Delete an edge. All
optimization code changes can be expressed in terms of
these edits [25]. Thus, the changes for a particular
optimization can be expressed as a series of basic edits.

For example, constant propagation can be expressed as
“Delete variable v at statement P; Insert constant c at
statement P”.

To determine the impact of the optimizations on
registers, an optimization model for the register allocator
must be developed. The characteristics of the register
allocator that need to be modeled are whether the
allocator is local or global and how it spills the live ranges
(i.e., the number of additional loads and stores that are
inserted into the code). A model for the register allocator
can be constructed that approximates a particular register
allocation scheme, say graph coloring [7, 11] or linear
scan [26]. In this work, we are interested in the impact of
other optimizations on registers rather than the impact of a
particular register allocation scheme. Hence we only need
a representative register allocation model, such as
coloring.

2.3. Resource Models

The framework has a model for each resource, which
describes the resource configuration and benefit/cost
information in using the resource. This model is
developed based on a particular platform. For example, to
determine the register profit, we need to know the number
of available hardware registers and the cost of memory
accesses (loads and stores). When considering the caches,
the cache configuration and the cost of a cache miss/hit
are needed. The functional unit model has the
computational instructions available in the architecture
and their execution latencies. Since we do not consider
instruction scheduling, the profit deduced using the
computational resource model is an approximation, as is
true for most of the resource models.

2.4. Profitability Engine

The models in the framework are descriptive and
provide the information needed to compute profitability.
The other important component of our framework is the
Profitability Engine. When conditions for an optimization
are detected, the code models (generated by the
optimizer), the optimization models (developed offline by
the compiler engineer), and resource models (developed
offline for particular resources) are input into the
Profitability Engine. This engine uses the information in
the models to compute the profit of an optimization at a
program point where it is safe. The profit can be
computed for one resource or for combined resources.
From the code and the optimization models, the engine
determines the changes on the code models caused by the
application of an optimization. It does this without
applying the optimization. It then uses the resource
models to determine the impact of the changes on the
resource.

Table 1. Incremental updates of live ranges

 For example, assume the impact of an optimization
on registers is desired. The engine inputs the code model
for registers, a model for this optimization, an
optimization model for register allocation, and a resource
model of registers. Then it determines the changes on the
live ranges (i.e., the code model for registers), using an
incremental dataflow algorithm [25]. Since an
optimization models its changes by basic edits [3], the
engine takes the edits and computes the changes in live
ranges using Table 1. The table describes how the code

changes of an optimization affect live ranges. In this table,
pre-s means the point immediately before statement s
while post-s means the point immediately after statement
s. For example, the effects on live ranges of inserting a use
of v (1st row) depend on the current code. If v is already
live at post-s, there is no change. If there is a use in the
block of u before s, then the only change is to the local
live range of v. Otherwise, the live range of v has changed
and v has to be added to the set of live variables at the
beginning of the block, IN, and all reaching predecessors.
And then the profitability engine uses a register allocation
model to determine the spills (i.e., loads and stores)
caused by these live range changes. The last step for the
engine is to use the number of spills and where these loads
and stores are inserted or deleted to compute the profit.

3. Framework for Scalar Optimizations

In this section, we describe an instance of our
framework for predicting the profitability of scalar
optimizations, and in particular, PRE and LICM. Since
scalar optimizations have negligible effects on cache (i.e.,
loop behavior dominates cache performance [22]), we do
not further consider cache models but only registers and
computation.

The impact of PRE and LICM on computation is
clear: they insert or delete instructions at some program
points. Their impact on registers is more complicated and
depends on the code context. Sometimes PRE or LICM
may introduce more register spills, while in other cases
they may decrease the number of spills. In Figure 2, we
show an example where PRE improves the register
pressure by decreasing one register spill. In the figure,
PRE moves the last use of a and b up in the code and thus
shortens their live ranges but introduces a new live range

Code Change Update code model

Insert a use u
of variable v
in block B at
statement s

If v is live at post-s: no change;
Else /* insertion lengthen v’s live range*/

If there is a use or definition before s
in the block B:

no change to global code model;
record the local change;

Else:
add v to IN(B) and all reachable
predecessors of B;

Insert a
definition d of
variable v in
block B at

statement s

If v is not live at pre-s: no change;
Else /* insertion shorten v’s live range*/

If there is a use or definition before s
in the block B:

no change to global code model;
record the local change;

Else
delete v from IN(B) and all
reachable predecessors of B;

Delete a use
u of variable v
in block B at
statement s

If there is a use after s in the block B:
no change;
Else /* delete shorten v’s live range*/

If there is a use or definition before s
in the block B:

no change to global code model;
record the local change;

Else
delete v from IN(B) and all
reachable predecessors of B;

Delete a
definition d of
variable v in
block B at

statement s

If v is not live at pre-s: no change;
Else /* insertion lengthen v’s live
range*/

If there is a use or definition before s
in the block B:

no change to global code model;
record the local change;

Else
add v to IN(B) and all reachable
predecessors of B;

Insert an
edge from Bs

to Bd

Add all variables in IN(Bd) to the Bs and
all reachable predecessors of Bs;

Delete a edge
from Bs to Bd

Delete all variables in IN(Bd) from the Bs
and all reachable predecessors of Bs;

1: a � 1
2: b � 2

3: c � a * b
3: v � a * b

3’ c� v

4: c � 1
4’: v � a * b

5: d � c + 1
6: f � d + c
7: g � f + d
8: h� a * b

8: h � v

1

2

3

4

5

6

7

8

a

b

c

d

f

g

v

4’

PRE decreases the number of register spills by one
(Assume there are 5 available hardware registers)

Figure 2: An example of PRE impacting registers

for the temporary variable, v. However, if a and b were
used later, their live ranges would remain the same. In this
case, the total number of live ranges increases by one due
to the temporary variable.

In the next sections, we present models for PRE and
LICM. Figure 3 shows our framework to predict the
impact of PRE on registers for the example in Figure 2.
The models and the profitability engine in this example
are explained below.

3.1. Code Models for Registers and Computation

The code model for registers is the same for all scalar
optimizations. The code model for registers represents the
code as live ranges of global and local variables
(including temporaries and parameters). We represent live
ranges by the set of live variables at the point immediately
before a basic block, IN, and at the point immediately
after the block, OUT. The model also includes the code
blocks and edges for the code involved in the optimization
and statements in terms of uses and definitions. In Figure
3, the boxes labeled “Code Model before/after PRE” show
the code model of registers for the example in Figure 2. In
a basic block, in addition to IN and OUT information,
uses and definitions are also included. For example, “(c)
(a, b)” expresses there is a definition of c and a use of a
and b.

The code model for computation represents the type
and locations of instructions involved in the optimization.
We represent each instruction element as

{ } ∗
NmBmNBop ,,...,1,1, , where op is the type of

instruction, Bi represents the block number and Ni
expresses the static number of op instruction in block Bi.

3.2. Register Allocation Optimization Model

To more accurately determine the impact of scalar
optimizations on registers, we need a model for register
allocation that represents the allocator’s spilling strategy.
For the impact of registers on profit, we need to compute
spills for the original live ranges and the live ranges
changed by the optimization and compare them, which is a
time consuming process. Indeed, we take an incremental
approach by computing the number of spills increased or
decreased due to each code change. Our register
allocation model reflects this incremental approach.

The register allocator that we model does global
graph coloring. Within the region of a code change, we
express the number of spills increased or decreased due to
inserting or removing a live range for each critical region.
A critical region is the code segment where the number of
live ranges is equal or larger than the number of available
hardware registers. So inserting or removing a live range
will cost or save a spill in this region. Within the critical

 IN ()
(a) ()
(b) ()

OUT (a, b)

IN (a, b)
(c) (a, b)

OUT (c, a, b)

IN (a, b)
(c) ()

OUT (c, a, b)

IN (c, a, b)
(d) (c)

(f) (c, d)
(g) (f, d)
(h) (a, b)

OUT (c, d, g)

Figure 3: Models for the example in Figure 2

PRE OPT Model
Figure 4

Code Model before PRE

Profitability Engine

Live range changes:
< Ins a Use at 4’>: no spill change
<Ins b Use at 4’>: no spill change
<Ins v Def at 4’>: no spill change
<Del a Use at 8>:
Critical region: (6, 7, 8)
def-use in critical region: (1 use of
a, 1 use of b, 1 use of c, 2 use of d,
1 use of g, 1 use of f, …)
� decrease one spill (a)
<Del b Use at 8>: no spill change
<Ins v Use at 8>: no spill change
<Del c Def at 3>: no spill change
<Ins v Def at 3>: no spill change
<Ins v Use at 3’>: no spill change
<Ins c Def at 3’>: no spill change Register Resource Model

of hardware registers: 5

Average memory access time:
3 cycles

Register Allocation OPT Model
1) global graph coloring
2) insert or delete a live range

within a critical region will cost
or save a spill

3) record the defs and uses in
critical regions

4) choose the least costly live
range to spill

profitability on registers

IN ()
(a) ()
(b) ()

OUT (a, b)

IN (a, b)
(v) (a, b)

(c) (v)
OUT (c, v)

IN (a, b)
(c) ()

(v) (a, b)
OUT (c, v)

IN (c, v)
(d) (c)

(f) (c, d)
(g) (f, d)
(h) (v)

OUT (c, d, g)

Code Model after PRE

region, we represent definitions and uses of each variable
and temporary, and choose to spill the live range that is
the least costly to spill, under the assumption that the
register allocator typically performs well. That is, we
choose the live range which spans the critical region with
the smallest number of definitions and uses. This register
allocation optimization model is input to the profitability
engine (see the next section) which then computes the
critical regions for each basic code change, records the
definitions and uses of variables and determines the spills.
In Figure 3, the box labeled “Register Allocation OPT
Model” shows the optimization model for the register
allocator described above.

3.3. Scalar Optimization Models

PRE Optimization Models: PRE moves a statement
from one code location to another and introduces a
temporary to reference the common expression. The PRE
optimization models express how these changes impact
the code models for registers and functional units.

PRE has three semantic actions: move a computation,
say X, (i.e., move X to a safe code location), replace its
destination (i.e., replace X’s destination with a temporary
at the original code position) and replace the redundant
expressions (i.e., replace the redundant expression’s
destination with the temporary and insert a copy
instruction following it). A move or a replace can be
expressed as a deletion of the instruction at the original
site and an insertion at the moved site.

Figure 4 presents the PRE optimization model for
registers, where the code changes that PRE creates are
given. Each change is described by the action insert/delete
(Ins/Del), an abstract variable name (also whether it is a
use or definition), and what block and where in the block
the variable will be inserted/deleted. The semantic actions
of PRE are represented as three steps in Figure 4. In step
1, the redundant expression is moved to a safe code
location in the statement Sd as uses and the temporary V
is inserted as the definition. In step 2, at the original
position, Ss, the expression is deleted and the temporary is
inserted as the use. In step 3, for every expression that
made the statement redundant, the destination is replaced
by the temporary and a copy from the temporary to the
destination is placed.

The optimization model for computation describes
how PRE changes the computation code model. The
model essentially shows how instruction elements are
changed by the application of PRE. The model is given in
Figure 5. The first rule describes that the computation of
op is deleted at the original block Bs and inserted into the
destination block Bd. The second rule represents the
inserted copy instructions at the original block Bs and the
blocks Baj for all redundant expressions.

LICM Optimization Models: LICM moves a

statement from the body of a loop and places it outside the
loop. There are certain conditions that must be met to
safely apply LICM. The actions are similar to PRE (and in
fact can be thought of as a subcase of PRE) and the
resulting optimization models for registers and
computation are similar. Based on code movements, the
models can predict register impact (with live ranges, as
described for PRE) and computation (with code edits and
motions, as described for PRE). We do not show these
models for brevity because they are similar to PRE.

3.4. Profitability Engine

The profitability engine takes the code models,
optimization models and resources models and determines
the profit on resources. For example, assume the impact of
an optimization on registers is desired. The engine inputs

IF meet the partial redundant computation exp (X op Y):
T � exp is partial redundant at []SsBs, ;
move it to []SdBd, and assign a new temporary V;
T1 at []1,1 SaBa …Tn at []SanBan, are redundant expressions

THEN
(){ }Nd,Bd,Ns,Bs,Ni,Bid≠i and s≠ii∀,op �

 (){ }1+Nd ,Bd,1-Ns,Bs,Ni,Bid≠i and s≠ii∀,op

[]{ }Ns,Bs,Naj,Baj n,1∈j∀,Ni,Bi i∀,copy �

 []{ }1+Ns,Bs,1+Naj,Baj n,1∈j∀,Ni,Bi i∀,copy

Figure 5. PRE optimization model for computation

IF meet the partial redundant computation exp (X op Y):
T � exp is partial redundant at []SsBs, ;
move it to []SdBd, and assign a new temporary V;
T1 at []1,1 SaBa …Tn at []SanBan, are redundant expressions

THEN

step 1: [] Bd, Sd USEexp Ins

[] Sd Bd, DEFV Ins

step 2: [] Ss Bs, USEexp Del

[] Ss Bs, USEV Ins

step 3: ∀]Sai,Bai[at Ti :

[] Sai Bai, DEFTi Del

[] Sai Bai, DEFV Ins

[] 1+Sai 1,+Bai DEFTi Ins

[] 1+Sai 1,+Bai USEV Ins

Figure 4. PRE optimization model for registers

the code model for registers, a model for this
optimization, a register allocation optimization model, and
a resource model for registers. It determines the changes
in the live ranges according to the optimization model.
Then it computes the benefit/cost in terms of spills (i.e.,
loads and stores) changed by the optimization according
to the register allocation optimization model. That is, for
each live range change, the engine finds the critical
regions and records the number of definitions and uses in
the critical regions. When a live range is inserted or
deleted within the critical region, the engine chooses the
least costly live range to spill and computes the cost or
benefit associated with the spill. An example is shown in
Figure 3 (see the box labeled “Profitability Engine”). The
Profitability Engine determines the changes on the code
model and for each change, determines how the spills are
affected. For brevity, only detailed actions for “deleting
the use of a at the statement 8” are shown. The critical
region is from line 6 to line 8. Also the uses and
definitions are recorded for the critical region. When one
live range is deleted, one spill is decreased and a is
chosen. The benefit of this PRE on registers comes from
saving this spill.

If the profits for all the resources, namely registers
and computation are combined, they must have the same
metric. The computation profit considers the frequency of
a node, and therefore, the register profit also need to
consider the execution frequency of the loads or stores,
based on either profiling or input from the user.

4. Experimental Results

 To evaluate the effectiveness of our framework and
the usefulness of profit-driven optimization, we
implemented models for PRE and LICM, described in
Section 3.3, and integrated them into the Mach SUIF
compiler [30]. We compared our profit-driven PRE and
LICM with always applying an optimization and a
heuristic-driven PRE and LICM, which takes register
pressure into consideration. We extended the PRE pass
implemented by Rolaz [19] in Mach SUIF and
implemented LICM [23]. To enable more PRE or LICM
opportunities, we also applied passes of copy propagation,
constant propagation, and dead code elimination before
PRE or LICM. For experiments, we used a number of
SPEC2K benchmarks (gzip, vpr, mcf, parser, vortex, and
twolf), which are the SPEC2K benchmarks that can be
compiled by the currently available Mach SUIF compiler.
We used a dual-processor AMD Athlon 1.4 GHz machine,
with 2 GB of memory running RedHat Linux. Using the
training data sets, we performed node profiling with the
HALT library (included in Mach SUIF) to get the
frequency counts used in our computation models. In all
experiments, each benchmark was run three times on a

lightly loaded machine and the average execution time
was computed to factor out system effects.

Section 4.1 presents the performance improvement of
a heuristic-driven PRE and LICM. In Section 4.2, we
compare our profit-driven PRE and LICM with always
applying and the heuristic-driven PRE and LICM in terms
of performance improvement and compile time. Section
4.3 describes the verification of our models in terms of
their prediction accuracy.

4.1. Heuristic-driven Approach

Always applying an applicable optimization can
sometimes lead to a performance degradation. Such a
simple heuristic of “always applying” is not sufficient in
making decisions about when to apply an optimization.
Previous work has focused on developing heuristics to
decide when to apply optimizations, such as register
pressure sensitive redundancy elimination, which sets
upper limits on allowable register pressure and performs
redundancy elimination within these limits [13]. We
implemented a similar heuristic. We set the upper limit
(i.e., a threshold) on allowable live ranges at the places
where the redundant expressions will be moved.
Redundancy elimination is performed only when the
number of live ranges is within the limit. One problem in a
heuristic-driven approach is to the choice of the limit that
can generally achieve good performance across all the
benchmarks. Our experiments show different benchmarks
need different limits to achieve the best performance for
both heuristic-driven PRE and LICM.

Tables 2 and 3 show the performance improvement of
heuristic-driven PRE and LICM over the baseline. The
baseline compiler applies only register allocation and
simple instruction scheduling. We varied the limit on
register pressure from zero to sixteen. For PRE, if the
limit is zero, only full redundancies are eliminated. In
practice, the limits are usually chosen to be the number of
available hardware registers. Hence we choose eight as a
limit because there are eight hardware registers that can be
allocated for a byte-type variable in the x86. Four and
sixteen are used to examine stricter or looser limits. In the
tables, the best performance improvement is shown in
bold. From the tables, we can see that different
benchmarks need different limits in the heuristics to
perform the best. For example, for PRE, gzip can achieve
an improvement of 4.1% when the limit is set to sixteen,
while mcf needs the limit set to zero to achieve the best
improvement of 2.37%. Also, some benchmarks are very
sensitive to the selection of the limits (e.g., twolf), while
others are not (e.g., mcf). We can see that different
optimizations may need different limits for the same
benchmarks. For example, gzip needs the limit set to for
PRE but needs the limit set to eight for LICM. So if we
fixed the limit in the heuristic-driven approach, the usual

approach, we can not always achieve the best performance
improvement.

 Table 2. Performance improvement of heuristic-
driven PRE with different limits

 Table 3. Performance improvement of heuristic-

driven LICM with different limits

4.2. Comparing Profit-driven PRE and LICM
with Heuristic-driven PRE and LICM

4.2.1. Performance Benefit

 Using our model-based framework, we can
determine the profitability of an optimization and
selectively apply it. The cases where optimizations
degrade the performance can be avoided. Figures 6 and 7
show the performance benefit of profit-driven PRE and
LICM over the baseline, compared with always applying
and the heuristic-driven PRE and LICM. In Figure 6, A-
PRE is the improvement of always applying PRE when it
is applicable. Heuristic-driven PRE is described as above
and has two versions based on the register pressure
allowed: Best-heuristic is the best case performance
across various register pressures for each benchmark and
Heuristic-8 uses a fixed limit of eight. Lastly, P-PRE
represents the performance benefit of our profit-driven
PRE. Figure 7 shows the same configurations only applied
to LICM.

 In Figure 6, the performance benefit of different
approaches to decide when to apply PRE is shown. The
problem with always applying PRE when it is applicable
is that it may increase register pressure, which may incur

more spills and thus degrade performance. Both the
heuristic approach and our approach can avoid the
unprofitable PREs. However, the selection of limits in the
heuristics plays an important role in the performance
benefit, as described in Section 4.1. Our P-PRE considers
both register pressure and computation to predict the
profitability of PRE and applies it accordingly, without
requiring parameters to be tuned. It consistently performs
as good as or better than the Best-Heuristic for PRE,
except for bzip2, where predictions are sometimes
incorrect.

0

2

4

6

8

10

gzip vpr mcf parser vortex bzip2 twolf geomean

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t %

A-PRE Best-heuristic Heuristic-8 P-PRE

Figure 6. Performance benefit of profit-driven

PRE compared with heuristic-driven PRE

0

2

4

6

8

10

gzip vpr mcf parser vortex bzip2 twolf geomean

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t %

A-LICM Best-heuristic Heuristic-8 P-LICM

Figure 7. Performance benefit of profit-driven

LICM compared with heuristic-driven LICM

Figure 7 shows the performance benefit of the
different approaches for applying LICM. Due to the
register pressure increase caused by some LICMs, the
overall performance of A-LICM can be improved by not
applying the unprofitable ones. Although the heuristic-
driven LICM can achieve performance improvement over
always applying in some cases, it is very important to
choose the right limit on allowed register pressure. For
example in parser, with a register pressure limit of 8,
heuristic-driven LICM is worse than always applying.
While in the best-heuristic, it is better than always
applying. Our profit-driven LICM can perform at least as
well as best-heuristic LICM in most cases. However, in
one case (gzip), due to incorrect predictions, profit-driven

Heuristic-driven PRE Benchmark
0 4 8 16

gzip 3.50 3.75 3.78 4.10

vpr 1.22 0.75 1.81 1.83

mcf 2.37 2.35 2.31 2.22

parser 1.25 1.50 1.70 1.35

vortex 4.73 5.25 4.66 3.86

bzip2 7.35 7.52 8.19 7.91

twolf 1.07 0.88 1.14 0.02

Heuristic-driven LICM Benchmark
0 4 8 16

gzip 2.90 3.29 5.40 3.27

vpr -0.40 -0.38 0.52 0.69

mcf 2.50 2.62 2.58 2.47

parser 2.55 2.86 1.99 2.23

vortex 4.88 5.69 4.99 5.28

bzip2 7.02 7.35 6.70 4.57

twolf 0.52 0.38 2.14 1.91

LICM has worse performance than the heuristic-driven
approach.

Thus, our experiments show that a model-based
approach can be used to explore and determine the
profitability of optimizations, and this profitability
property can be useful in deciding when to apply
optimizations. Also, the profitability measure predicted by
our framework has other uses, such as being used as the
fitness value in a heuristic search for the best optimization
sequence [1, 18].

4.2.2. Compile-time

Because our approach uses analytic models to make
decisions about applying optimizations, we investigated
how compile-time is impacted by profit-driven
optimization. Tables 4 and 5 show the compile-time for
different optimization strategies for PRE and LICM.

Table 4. Compile time for PRE (in seconds)

Benchmark A-PRE Heuristic PRE P-PRE

gzip 42 45.14 48.78

vpr 128.38 193 216

mcf 20.89 29 30.5

parser 100.67 123 136.31

vortex 490.48 575.33 633.1

bzip2 33.77 42.6 44.1

twolf 755.55 1087 1187.16

Table 5. Compile time for LICM (in seconds)

Benchmark A-LICM Heuristic LICM P-LICM

gzip 47.8 59.04 61.09
vpr 128 147 161
mcf 20.8 27.6 28.97

parser 109.3 133.47 138.19
vortex 492.1 547.39 569
bzip2 38.59 48.55 51.67
twolf 591 817.76 916.26

From Table 4, the A-PRE compile-time varies from
approximately 20 seconds to 755 seconds. Compile-time
shown for the heuristic approach is the average for the
different limits. It increases 7 % to 50% over A-PRE, with
an average of 30% because heuristic-driven PRE has to
compute and update live range information. The compile
time for profit-driven PRE increases over A-PRE by 16%
to 68%, with an average of 40%. Because P-PRE
considers computation and register pressure in a more
precise way than the heuristic-driven PRE, it incurs a
modest overhead increase over the heuristic approach by
an average of 8.3%.

From Table 5, similar compile-time trends can be
seen for A-LICM, heuristic LICM and P-LICM. The A-

LICM compile-time varies from approximately 20
seconds to 591 seconds. Heuristic LICM increases
compile-time over A-LICM from 11% to 38% (average
24%) and P-LICM increases compile time over A-LICM
by 15% to 55% (average 31%). Finally, in comparison to
heuristic LICM, our P-LICM increases compile time by an
average of 6.2%.

As the tables show, the increase in compile-time of
our profit-driven approach is modest and about the same
as the heuristic-driven approach. These small increases
show that our approach is feasible and efficient. However,
our prototype has several implementation artifacts that
hurt performance; a production implementation could
decrease the compile time further. We conclude that the
modest compile-time increase is worth the benefit of
applying the optimizations more effectively.

4.3. Model Verification

We validated our models by determining their
accuracy when predicting the profitability of an
optimization. We validated the prediction accuracy by
considering only registers. We did not evaluate the
computation profit because our computation model is
exact in terms of instruction count, given relative node
frequencies from a profile. If the relative frequencies in
the profile do not match what happens in an actual run,
then there can be an inaccuracy in the computation profit.
However, this inaccuracy is a property of the profile – not
of the computation models.

For deciding when to apply optimizations, a correct
prediction is one in which we predict there is a benefit for
registers (i.e., if register profit is positive, it indicates a
spill reduction) and the actual executions show the same
result. The accuracy prediction is measured by how often
we make the correct prediction. To validate the prediction
accuracy, we checked every prediction and compared the
value predicted with the actual execution (i.e., we use the
number of memory accesses before and after applying an
optimization to reflect the spill changes).

Table 6. Prediction accuracy of our framework

Table 6 shows the prediction accuracy of our
framework for PRE and LICM. In the table, “TP” is the
total number of predictions and “CP” is the number of

PRE LICM Benchmark
TP CP %Acc TP CP %Acc

gzip 48 43 89.58 45 38 84.44
vpr 303 291 96.04 230 217 94.35
mcf 51 44 86.27 52 43 82.69

parser 293 210 87.87 75 68 90.67
vortex 530 431 81.13 346 303 87.57
bzip2 56 44 78.57 88 79 89.77
twolf 475 433 91.12 345 306 88.70

correct predictions when using our framework. “%Acc” is
the overall percentage accuracy of our framework.

As the table shows, the prediction accuracy varies
from 78% to 96%, with an average of 88%. The results
demonstrate that our models are indeed accurate and can
correctly predict the profit (or cost) and the profit-driven
optimizations can achieve performance benefit.

On average, 12% of the time, our framework made
inaccurate predictions. The inaccuracy is primarily from a
simplified assumption used in the register optimization
model about how the register allocator spills registers. The
model assumes that the allocator will select the spill
priority based solely on the number of uses and definitions
in a live range. However, the Mach SUIF register
allocator also uses the number of conflicting edges in the
interference graph to make the decisions. Note that even
without the detailed implementation information, our
models achieve good prediction accuracy. If more
accuracy is needed, the accuracy of our models can be
improved by incorporating implementation information.

5. Related Work

In the introduction, we indicated prior work on
optimization properties. In this section, we discuss prior
work that relates to profitability of optimizations. To our
knowledge, ours is the first work that focuses on
predicting the impact of scalar optimizations and the
impact on registers and computation.

Our previous paper developed a framework that had
code, loop optimization and cache models and
demonstrated that the benefit of applying loop
optimizations on cache could be predicted [36]. The work
relied on models that had already been developed for
modeling the cache and array access sequences [12, 14].
It did not consider scalar optimizations, registers or
computation. In this paper, we develop a more powerful
and general framework that has a profitability engine as
well as models and thus can be used for many types of
optimizations.

There have been several approaches to address the
problems of the application of optimizations. An approach
to discover a best optimization configuration uses an
analytic model of machine resources to statically estimate
the performance of the optimized code instead of
executing it [31]. However, because optimizations are not
modeled in this approach, they still need to be applied.
Another approach is to select an optimization level to
recompile the methods based on an experimental resource
model [2, 21]. The optimizer uses a simple benefit-cost
analysis to decide whether to recompile a method at a
higher optimization level. The benefit of an optimization
level is estimated as a constant by offline experiments.
However, this model does not include some aspects of
optimization behavior (e.g., the effect of optimizations

depends on the code context). The last approach is based
on analytic models of code, optimizations and resources
[34, 35, 27, 22, 8, 29, 5, 16, 12, 28]. The idea is to use a
resource cost model (e.g., cache cost) and optimization
models (e.g., unimodular matrix transformations) to select
a program-specified sequence or configuration to apply
optimizations that maximizes the benefit. These
techniques demonstrate that analytic models are efficient
in driving the application of optimizations. However, all
these techniques use models that express only a small set
of optimizations (loop optimizations and data
optimizations) and mainly attack a single problem; i.e., to
improve the performance of cache [9].

Research using register pressure sensitive PRE [13]
sets upper limits on allowable register pressure and then
performs redundancy elimination within these limits. In
this paper, we develop independent models of
optimizations, while register pressure sensitive PRE uses
data flow analysis to determine register pressure, which is
integrated with the PRE algorithm and only works for
PRE. They also do not consider the impact of PRE on
computation.

6. Conclusions

In this paper, we presented a novel model-based
framework that can be used to determine the profitability
of optimizations. This work coupled with prior work,
which considered loop optimizations, has a wide range of
applicability in terms of optimizations and resources.
Here, we demonstrate the value of our framework for the
scalar optimizations PRE and LICM. Our model-based
technique can make accurate predictions without applying
and executing the optimized code. As such the potential
exists for faster searches over different optimization
sequences to determine an effective optimization order
since we do not have to actually apply the optimizations
or run the resulting code. Although our focus was on
exploring the profitability property, other properties can
be explored using the model-based approach. For
example, we believe that models can be used to explore
the interaction property. Using models, a good sequence
of optimizations can be found without the added expense
of applying and then removing the optimization (undoing
the optimization or storing two versions of the code).

7. Acknowledgements

This research is supported in part by the National
Science Foundation, Next Generation Software, grants
CNS-0305198 and CNS-0203945. We would also like to
thank John Regehr and the anonymous reviewers for their
useful suggestions on how to improve the paper.

8. References
[1] L. Almagor, K. Cooper, A. Grosul, T. Harvey, S. Reeves,

D. Subramanian, L. Torczon and T. Waterman. Finding
effective compilation sequences. ACM 2004 Conf. On
Languages, Compilers, and Tools for Embedded Systems.

[2] M. Arnold, S. Fink, D. Grove, M. Hind, and
P. F. Sweeney. Adaptive optimization in the Jalapeño
JVM. ACM 2000 Conf. on Object-oriented Programming,
systems, languages, and applications.

[3] M. P. Bivens and M. L. Soffa. Incremental register
reallocation. Software Practice & Experience,20(10), 1990.

[4] P. Briggs and K. D. Cooper. Effective partial redundancy
elimination. SIGPLAN’94 Conf. on Programming
Language Design and Implementation.

[5] B. Chandramouli, J. Carter, W. Hsieh, and S. McKee. A
cost framework for evaluating integrated restructuring
optimizations. Int’l. Conf. on Parallel Architectures and
Compilation Techniques, September 2001.

[6] K. Cooper, T.J. Harvey, D. Subramanian, and L. Torczon.
Compilation order matters. Technical Report, Rice
University, 2002.

[7] G. Chaitin. Register allocation and spilling via graph
coloring. ACM SIGPLAN Symp. on Compiler
Construction, June 1982.

[8] S. Coleman and K. S. McKinley. Tile size selection using
cache organization and data Layout. SIGPLAN’95
Conference on Programming Language Design and
Implementation, June 1995.

[9] K. Cooper, D. Subramanian, and L. Torczon. Adaptive
optimizing compilers for the 21st century. The Journal of
Supercomputing, August 2002.

[10] E. Duesterwald, R. Gupta, M. L. Soffa. Practical
framework for demand-driven interprocedural data flow
analysis. ACM Transactions on Programming Languages
and Systems, November 1997.

[11] L. George and A. Appel. Iterated register coalescing. ACM
Transactions on Programming Languages and Systems,
May 1996.

[12] S. Ghosh, M. Martonosi, and S. Malik. Cache miss
equations: a compiler framework for analyzing and tuning
behavior. ACM Transactions on Programming Languages
and Systems, July 1999.

[13] R. Gupta and R. Bodík. Register pressure sensitive
redundancy elimination. 8th Int’l. Conf. on Compiler
Construction , 1999.

[14] J. S. Hu, M. Kandemir, N. Vijaykrishnan, M. J. Irwin,
H. Saputra, and W. Zhang. Compiler directed cache
polymorphis, Proc. of LCTES/SCOPES, June 2002.

[15] C. Jaramillo, R. Gupta, and M.L. Soffa. Comparison
Checking: An approach to avoid debugging of optimized
code. Proceedings of Foundation of Software
Engineering, 1999.

[16] M. Kandemir, J. Ramanujam, and A. Choudhary.
Improving cache locality by a combination of loop and
data transformations. IEEE Transactions on Computers,
February 1999.

[17] T. Kisuki, P. M. W. Knijnenburg and M. F. P. O’Boyle.
Combined selection of tile Size and unroll factors using
iterative compilation. Int’l Conference on Parallel
Architectures and Compilation Techniques, 2000.

[18] P.Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson,
and D. Jones. Fast searches for effective optimization
phase sequences. SIGPLAN’04 Conf. on Programming
Language Design and Implementation, 2004.

[19] L. Rolaz. An implementation of lazy code motion for
MachSUIF. URL:
http://lapwww.epfl.ch/dev/machsuif/opt_passes/lcm.pdf

[20] S. Lerner, T. Millstein, and C. Chambers. Automatically
proving the correctness of compiler optimizations.
SIGPLAN’03 on Programming Language Design and
Implementation, 2003.

[21] U. Holzle and D. Ungar. Reconciling responsiveness with
performance in pure object-oriented languages. ACM
Transactions on Programming Languages and Systems,
July 1996.

[22] K. McKinley, S. Carr, and C. Tseng. Improving Data
Locality with Loop Transformations. ACM Transactions
on Programming Languages and Systems, July 1996.

[23] S. S. Muchnick. Advanced Compiler Design
Implementation. Morgan Kaufmann Publishers, 1997.

[24] G. C. Necula. Translation validation for an optimizing
compiler. SIGPLAN 2000 conference on Programming
language design and implementation.

[25] L. Pollock and M.L. Soffa. An Incremental Version of
Iterative Data Flow Analysis. IEEE Transactions on
Software Engineering, December 1989.

[26] M. Poletto and V. Sarkar. Linear Scan Register
Allocation. ACM Transactions on Programming
Languages and Systems, September 1999.

[27] W. Pugh. Uniform Techniques for Loop Optimization. 5th
International Conference on Supercomputing, 1991.

[28] V. Sarkar and N. Megiddo. An Analytic Model for Loop
Tiling and its Solution. Int’l. Symp. on Performance
Analysis of Systems and Software, 2000.

[29] V. Sarkar, Automatic Selection of high-order
transformations in the IBM XL FORTRAN compilers,
IBM Journal of Research and Development, May 1997.

[30] M. D. Smith and G. Holloway. An Introduction to
Machine SUIF and Its Portable Libraries for Analysis and
Optimization. URL:
http://www.eecs.harvard.edu/hube/software

[31] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and
D. I. August. Compiler Optimization-space Exploration.
Int’l. Symp. on Code Generation and Optimization, 2003.

[32] D. Whitfield and M. L. Soffa. An Approach to Ordering
optimizing transformations. ACM SIGPLAN Symposium
on Principles & Practice of Parallel Programming, 1990.

[33] D. Whitfield and M. L. Soffa. An Approach for Exploring
Code Improving Transformations. ACM Transactions on
Programming Languages, November 1997.

[34] M. Wolf and M. Lam. A Data Locality Optimizing
Algorithm. SIGPLAN’91 Conference on Programming
Language Design and Implementation.

[35] M. E.Wolf, D. E. Maydan and D. Chen. Combining Loop
Transformations Considering Caches and Scheduling.
Int’l. Symp. on Mircoarchitecture, 1996.

[36] M. Zhao, B. R. Childers, and M. L. Soffa. Predicting the
Impact of Optimizations for Embedded Systems. ACM
Conf. On Languages, Compilers, and Tools for Embedded
Systems, 2003.

