
Refining Buffer Overflow Detection via Demand-Driven
Path-Sensitive Analysis

Wei Le and Mary Lou Soffa
Department of Computer Science

University of Virginia
Charlottesville, VA 22904, USA
{weile, soffa}@cs.virginia.edu

Abstract
Although static analysis is an important technique for detecting
buffer overflow before software deployment, current statictools
rely on considerable human effort for annotating code to help anal-
ysis, or for diagnosing warnings, many of which are false positives.
This paper presents an analysis technique that refines information
about the paths that involve a potential buffer overflow to help in the
diagnosis and debugging of vulnerabilities. Instead of only report-
ing a vulnerable buffer or statement in the program, which most
tools do, our analysis categorizes paths of a possibly vulnerable
statement into five types: Vulnerable, Overflow-User-Independent,
Safe, Infeasible and Don’t-Know. Thus, safe and infeasiblepaths
can be excluded from being inspected, providing focus on prob-
lematic paths. For scalability, we designed and implemented our
analysis as an interprocedural, demand-driven path-sensitive anal-
ysis. Our experiments demonstrate that various path types do go
through a possibly vulnerable buffer statement. The results also in-
dicate that our technique is efficient and practical.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms Algorithms, Reliability, Security, Verification

Keywords Path-Sensitive, Demand-Driven, Infeasible Paths

1. Introduction
Although much effort has been expended to detect and avoid buffer
overflow in software, we are still plagued with exploits thatare
costly to fix, disruptive, and promote a general loss of trustin soft-
ware. Since many applications are written in unsafe languages and
it is difficult for programmers to correctly write applications that
use buffers, buffer overflow is still being introduced into software
and is the most commonly exploited vulnerability [5, 21]. In2006,
SecuriTeam reported 134 vulnerable overflows, a quarter of the to-
tal security warnings [21], and many of them have caused severe
impact such as unauthorized access and denial of service. Todetect
vulnerabilities, dynamic detectors are used but they slow down the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PASTE’07 June 13–14, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-595-3/07/0006. . . $5.00

execution by a factor of 2 to 30 due to the increase of code size,
branch mispredictions and data cache misses [24]. Therefore dy-
namic buffer overflow detection is difficult to apply for timecon-
strained software. In addition, patches to fix the vulnerability are
expensive due to the number of computers typically effected. For
these reasons, a number of software companies rely on staticanal-
ysis to detect buffer overflow before software release [12, 13].

However, current static tools require considerable human ef-
fort, either for diagnosing warnings or for annotating programs to
help analysis [4, 11, 13, 18, 22, 24]. Many tools report warnings
about potentially vulnerable program points, such as statements or
buffers, for example, Splint, BOON and ARCHER [11, 22, 24].
The code reviewer has no knowledge about the paths through the
program point that actually produce the vulnerability. Tools that re-
port vulnerable paths instead of statements include Prefix,ESPx
and Prefast [4, 13, 18]. The analysis is performed exhaustively
along all program paths. The challenge for these tools is scalability,
in particular when the vulnerability may cross procedure bound-
aries. As a result, the tools sometime have to give up after exploring
a certain number of paths [18]. Although heuristics can be applied
to select and merge paths, excessive warnings are produced [4].
Some tools address scalability by introducing annotationsto spec-
ify the buffer contract between procedures and thus turn thebuffer
overflow detection intraprocedural [13]. But both writing and ver-
ification of annotations are costly, and thus, correctness of annota-
tions is not guaranteed.

This paper presents an interprocedural demand-driven path-
sensitive analysis with the goal of reducing the effort required to
identify program paths that are vulnerable and providing more pre-
cise information about the vulnerability to help users find the root
cause. Our analysis classifies paths as infeasible, safe, vulnerable
with potential for exploits, overflow with little chance to be ex-
ploited, and don’t-know. Our analysis is driven by statements that
have a definition or redefinition of a buffer. By using a demand-
driven algorithm, our analysis is directed to those paths that can
be executed and maybe vulnerable, and the analysis terminates as
soon as the vulnerability decision is discovered. Through our anal-
ysis, we exclude paths that are infeasible and safe, and prioritize
paths that can overflow based on their chance of being exploited.

In summary, the contributions of the paper include:

1. A categorization and identification of five types of paths for
buffer overflow.

2. An interprocedural demand-driven path-sensitive diagnosis tool
for identifying the types of paths through a potential overflow
buffer.

3. Experimental results that demonstrate the path types existing in
real programs and the time and space costs of the analysis.

63

Figure 1. A Simple Example

Section 2 gives an overview of our approach using a simple
example. Section 3 defines five path types. Section 4 describes
the demand-driven model and framework. Experimental results are
given in Section 5, followed by the related work in Section 6,and a
summary in Section 7.

2. Overview and an Example
We present an overview of our technique through an example in
Figure 1 that is based on the work of Bodik et al [3]. In the
discussion of the example, we assume that a demand-driven path-
sensitive infeasibility analysis has already been done [3].

In Figure 1, nodes 3, 4, 8, 12 and 14 write strings to a buffer.
Overflow might occur at any of these five nodes. The nodes 3 and
4 are identified to be safe buffer definitions since both the buffer
size and the content of the buffer can be determined locally.For the
nodes 8, 12 and 14, we need more context to make a judgment as
to their vulnerability.

Consider the buffer at node 12, which is a string copy. We first
construct and raise the queryBSize(b) > TPos(a) at node 12,
which means after thestrcpy, if the size of bufferb, BSize(b),
is larger than the index of the null string terminator in the buffer,
TPos(a), the buffer access is safe (we assume the index starts at 0).
The query is then propagated backwards to the nodes 11 and then 9.
No information is collected at these two nodes to update the query
as they have no impact on the query. At each step of propagation,
we cache the query at the node for reuse. At node 9, we propagate
the query along three paths to its predecessors, namely nodes 16, 8
and 5. At node 16, the query enters a loop, which does not update
the query. Thus the query is merged at node 9 and not propagated
further. The query from node 8 reaches an infeasible path segment,
〈8, 9, 11, 12〉, and terminates. From node 5, the query is propagated
to node 4. Here, it is discovered thatTPos(a) = 3, and the query

1 vo id f t p B u i l d T i t l e U r l (F t p S t a t eD a t a∗ f t p S t a t e){
2 r e q u e s t t ∗r e q u e s t = f t p S t a t e−>r e q u e s t ;
3 s i z e t l en ;
4 char ∗ t ;
5 l en = 64
6 + s t r l e n (f t p S t a t e−>u s e r)
7 + s t r l e n (f t p S t a t e−>password)
8 + s t r l e n (r eq u es t−>h o s t)
9 + s t r l e n (r eq u es t−>u r l p a t h) ;

10 . . .
11 t = x c a l l o c (l en , 1) ;
12 s t r c a t (t , ” f t p : / / ”) ;
13 i f (s t rcmp (f t p S t a t e−>user , ” anonymous ”)){
14 s t r c a t (t , r f c 1 7 3 8e s c a p ep a r t (
15 f t p S t a t e−>u s e r)) ;
16 i f (f t p S t a t e−>p as s w o r d u r l) {
17 s t r c a t (t , ” : ”) ;
18 s t r c a t (t , r f c 1 7 3 8e s c a p ep a r t (
19 f t p S t a t e−>password)) ;
20 }
21 s t r c a t (t , ”@”) ;
22 }
23 s t r c a t (t , r eq u es t−>h o s t) ;
24 . . .
25 }

Figure 2. Code Snippet from Squid-2.3 ftp.c.

is updated toBSize(b) > 3. Meanwhile, a flag is set in the query
to indicate the buffer content currently is constant. The propagation
continues and the information at node 3 indicatesBSize(b) = 2.
Thus the query is resolved by2 > 3 as false. The constant flag
shows the buffer is overflowed by some constant string and is not
dependent on input. Note that propagation halts as soon as the query
is resolved. We propagate this answer to the nodes we have visited
to determine the path.

3. Path Types
In this section, we describe the types of paths that we identify.
We consider both feasibility and buffer overflow in the classifi-
cation. Our goals for categorizing paths include: 1) distinguishing
faulty paths from safe and infeasible paths, 2) prioritizing vulner-
able paths based on their possible exploitation consequences, and
3) identifying what paths should be further explored to determine
its vulnerability. We now classify paths that go through a potentially
vulnerable statement,PVS.

Infeasible: Infeasible paths can never be executed. Therefore,
the overflow property of buffers on those paths is meaningless for
judging whether or not a buffer overflow exists. Infeasible paths
occur when there exist branch correlations along a path thatmake
a branch unexecutable. Previous work shows that there are 9–40%
statically detectable branch correlations [2], which indicates that
it is necessary to try to identify them. However, identifying all
infeasible paths is not computable [1].

Safe: Given a PVS, some paths that execute the PVS are safe
either because the bounds checking is properly done along the
path or the overflow will not happen under any input that leadsto
traversal of these paths. For example, in Figure 2, code fromSquid-
2.3 ftp.c shows that the path〈1 − 13, 23〉 is always safe regardless
of a possibly vulnerablestrcat at the line 23.

Vulnerable: Many attacks through buffer overflow are con-
ducted through external inputs, e.g., command line, file, network
packets or environment variables. Attack incidents show that im-
portant attack data such as control transfer code in the control-
data attack and data used to corrupt program variables in thenon-
control-data attack [7] are usually injected through the overflowed
buffer [5, 21]. The data such as malicious payload for stack smash-
ing [19] or parameters for system calls to launch return-into-lib at-
tack [23] are also often located in the overflowed buffer [5, 21].
Therefore we consider a buffer that can overflow with user input
as a likely exploitable buffer. If feasible paths reach these types
of buffer, we call them vulnerable paths. In Figure 1, the path

64

〈1 − 6, 18, 19, 7, 8〉 is considered vulnerable ifstr gets a string
from the user input.

Overflow-User-Independent: Not all buffer overflows are ex-
ploitable by unknown users, e.g., when the buffer can overflow only
with constants in the program, the chance of exploitation islow
compared to a buffer overflowed through external input. A crash
or corruption of the data could still be possible. Paths containing
these buffers are placed in a lower priority than vulnerablepaths.
This prioritization is useful when the message volume is large and
there is a time limit imposed for correcting the code. In a large code
base, it is impossible to fix every bug before releasing the software.
〈1 − 5, 9, 11, 12〉 in Figure 1 is an overflow-user-independent path.
It can overflow the bufferb with the C string"y" (the character ’y’
followed by the null terminator ’\0’).

Don’t-Know : We identify paths as don’t-know when their de-
tection is beyond the power of static analysis, e.g., the library
source will not be known until link time. Instead of merging im-
precise dataflow facts with precise facts and generating conser-
vative results, we identify those don’t-know paths and the rea-
son that makes them don’t-know so that a code reviewer is aware
of them and other detection facilities such as testing can beap-
plied. In Figure 2, paths entering theif statement at line 13, such
as 〈1 − 23〉, encounter the library callrfc1738 escape part
at line 14 or line 18, which may defineftpState->user and
ftpState->password. Thus the content written to the buffert
cannot be judged by the static analyzer.

4. Buffer Overflow Analysis
A demand-driven analysis has a number of advantages that lead to
scalability. Firstly, each query of a PVS is independent andthus
all queries can be performed in parallel. The intermediate queries
generated for solving a query can be cached and reused for check-
ing queries from other buffers. Also, the analysis only visits the
nodes reachable from the PVS, collects information relatedto user
queries, and terminates as soon as the query is resolved. Experi-
ments on a demand-driven copy constant propagation framework
reported the speedup of a factor of 1.4–44.3 for a set of bench-
marks [10]. A demand-driven approach also provides a user with
flexibility for diagnosing and debugging errors with regardto which
buffer should be checked.

Our analysis for buffer overflows instantiates and extends a
general demand-driven framework based on Duesterwald et al’s
work [10]. The demand-driven approach has showed scalability
for solving dataflow problems such as reaching definition andcon-
stant propagation [10]. However, according to our knowledge, it
has not been investigated for detecting software errors or vulner-
abilities. According to Duesterwald et al [10], in order to build a
concrete demand-driven analyzer, we should answer the following
questions: 1) What is the query and where is it raised? 2) How
should the query be propagated? 3) What information is used for
updating queries? 4) With the information, what are the updating
rules for queries? 5) When is the search terminated?

4.1 The Demand-Driven Model

For designing a buffer overflow demand-driven analyzer, we de-
velop a demand-driven model using the above questions as a guide.
Some descriptions below are language dependent and we use C and
C++ for explanation.

Query. We define a set of program points of interest as PVSs
where queries are raised. Conservatively, we assume that every
definition to a buffer (write to a buffer) is dangerous, thus is a PVS.
A buffer overflow query is regarding whether a buffer access at
the PVS would be safe and whether the user input could write to
the buffer. These two parts are represented as a constraint of buffer
size and string length, and a flag in the query. We designed a set

of query templates for PVSs. The second column of Table 1 shows
some example constraints for the selected PVSs.

Information for Updating Queries. There is a set of program
points where information could be extracted to update queries.
They include buffer definitions, buffer allocations, indexdefini-
tions, alias operations and pointer arithmetic. Buffer definitions are
PVSs, as we explained above. Buffer allocations often specify the
size of a buffer. For example, stack buffer can be declared aschar
a[10], and the heap buffer is usually allocated by themalloc fam-
ily of library calls. The information also can come from constant
assignment, branch conditions and the declared type. The extracted
information is formatted as assertions so that the analysiscan use
substitution or inequality rules to update queries. The third column
of Table 1 showed some assertions formatted from the node of the
buffer definition and allocation.

Propagation Rules.Based on the work of Bodik and Duester-
wald et al [2, 3, 10], we designed rules for propagating queries
interprocedurally, incorporating feasibility, and handling loops.

We only propagate queries interprocedurally when we are con-
fident that this call will update the query. To determine if a pro-
cedure impacts a query, we first check if any unknown variables
in the query constraint defined by a global, a return or reference
parameters of the call. If so, we perform a simple linear scanto de-
termine if a statement in the procedure can possibly update aquery.
Our analysis is context sensitive. Therefore the query willbe prop-
agated back to the call site after it propagates out of the procedure.
Only a newly raised query will be propagated to all call sitesof its
raised procedure.

In order to make sure a query is not propagated along an infea-
sible path, we first detect infeasible paths using branch correlation
and mark infeasible path segments on the edges of an Interproce-
dural Control Flow Graph (ICFG) [3, 14]. During buffer overflow
analysis, the query terminates when it encounters an infeasible path
segment.

We also developed propagation rules for loops. In our analysis,
users can specify the number of iterations they would like tocom-
pute for the loop. We track the query precisely when the iteration
of the loop has not reached the threshold. Sometimes, the query can
only be updated during the first iteration of the loop or even cannot
be updated in the loop. In this case, queries from different iterations
are merged. Sometimes, loop iteration is bounded by some constant
integer, e.g., the loopfor (int i = 0; i < 100; i++) will it-
erate 100 times. When this type of loop is detected, we compute
the final query with the upper limit of loop iteration. There are also
loops whose iterations are not regular and might be determined by
the user input. We represent the query after these loops as unknown
in terms of loop iterations, and continuously propagate thequery to
see if any user input can control this loop to overflow the buffer.

Resolving the Query.For buffer overflow detection, the general
property we aim to check is: after a write to the buffer, the declared
buffer size must be no less than the size of the string stored in the
buffer. It should be noted that we only specify the upper limit of the
buffer and for the buffer write overflow. But the technique can be
easily extended to also include the lower bound and read overflow.
Based on the general property, we further expand the overflow
properties to be vulnerable, overflow-user-independent, safe and
don’t-know, each of which corresponds to a path type defined in
Section 3. During the analysis, if the information collected in the
query is enough to be evaluated as one of the above properties, the
query is solved.

4.2 The Framework

Figure 3 presents the framework for the buffer overflow analyzer.
Our goal is to compute types of paths we defined in Section 3. The
demand-driven model in the previous section guides the analysis to

65

Code Constraints Assertions
strcpy(a,b) BSize(a) > TPos(b) TPos′(a) = TPos(b)
strcat(a,b) BSize(a) > TPos(a) + TPos(b) TPos′(a) = TPos(b) + TPos(a)

strncpy(a,b,n) BSize(a) > Min(TPos(b), n)
(TPos′(a) = ∞&&TPos(b) >= n) ‖
(TPos′(a) = TPos(b)&&TPos(b) < n)

a[i] = ’t’ BSize(a) > i TPos′(a) = ∞
char a[x] N/A L(a) = x
char *a = (char*)malloc(x) N/A L(a) = x/8

Table 1. Examples of Buffer Overflow Constraints and Assertions for C(TPos(x): index of the null terminator in buffer x; TPos′(x): index of the null
terminator after the buffer definition; Min(x,y): minimum value among x and y; BSize(x): buffer size of x)

Figure 3. Framework for Buffer Overflow Analysis

identify a PVS, raise and solve the query with the proper informa-
tion abstracted from source code. As the first step, the analysis de-
tects infeasible paths and mark them on the ICFG. Second, a PVS
is identified and a query is raised at this PVS. Then the query is
propagated backwards under a set of propagation rules, and when
it reaches a node, the information is collected to update thequery.
Every time a query is updated, the analysis judges if the query is
solved to be one of the overflow properties. If not, the query will
be continuously propagated. This process continues iteratively un-
til the query is solved. After all queries are solved, the results are
propagated from solved nodes to all previously visited nodes, and
the path types are labeled on the edge. We can then identify the path
based on the edge markings.

5. Experimentation
To investigate the existence of the five types of paths in the real
programs, we implemented our demand-driven algorithm using Mi-
crosoft Phoenix APIs [17]. We measured the cost of the analysis on
a set of benchmark programs selected from the BugBench [15] and
the Buffer Overflow Benchmark [25]. The set consists of 9 pro-
grams, each of which contains known buffer overflow. Our exper-
iments compute buffer overflow paths for these known vulnerabil-
ities, identify the type of path, and determine the performance and
space usage of analysis.

In our experiments, we compute buffer overflow paths for one
PVS in each program. We would check every PVS of the program
to make sure the software is secure. Our experiments consistof two
steps. In the first step, we compute paths for a PVS in a benchmark
program without considering infeasibility of paths. We then inte-
grate our infeasibility detection module to check the impact of the
infeasible paths on the query. In Tables 2, 3 and 4, we use a prime
(′) symbol for results after integrating infeasible paths.

We summarize the generated paths for benchmarks including
path types and path segment lengths in Table 2. The path segment
consists of all nodes between when the query was raised and when
it was resolved. Under thePath Types column, there are vulner-
able (Vul), overflow-user-independent (CNST), don’t-know (UnK)
and safe (Safe) subcolumns. Each subcolumn lists the number of
the path generated for the specified type. The results show that

all five types of paths do exist in real programs. Six of nine pro-
grams are detected to have vulnerable paths, and two programs
have don’t-know paths due to an external library. One program
contains overflow-user-independent paths. Seven out of nine pro-
grams have safe paths. Without our path detection, the code de-
buggers might explore safe paths which will not be successful in
finding the vulnerability. For the program bc-1.06, the total num-
ber of overflow-user-independent paths is very large and we ran
out of memory when we traversed the marked ICFG to print paths.
Actually, the number of paths is not important because it is not nec-
essary for a code reviewer to inspect every path for diagnosis. With
our framework, users can specify the number of paths to be output.
After fixing them, the framework would be used again to determine
if this fix corrects all vulnerable paths of the PVS.

The column,Inf, underPath Types shows whether infeasible
paths are detected in the programs [3]. We identify that six out of
nine programs have infeasible paths. Using the infeasible informa-
tion, the number of safe paths in three programs and the number of
unknown paths in one program are able to be reduced. The length
of the path segments is given by the number of different procedures
(not including library calls) and number of basic blocks that are tra-
versed by the path. These numbers are shown in theAverage Path
Size column.

In Table 3, we present data to evaluate the demand-driven ap-
proach. Under theBasic Blocks column, subcolumnAll Blocks re-
ports the total number of basic blocks in the program. The column
labeledV Blocks reports the number of visited blocks during the
analysis. Similarly, theAll Procs column lists the total number of
non-library procedures.V Procs lists the number of procedure vis-
ited. There are two worklists which are representative to report the
memory usage of the analysis.Max S shows the maximum num-
ber of elements in the worklist during the solve-query step while
Max P gives the maximum number of elements in the worklist dur-
ing the propagate-results step. With the infeasible paths integration,
the number of visited blocks and procedures is usually reduced be-
cause blocks that are on the infeasible paths are no longer visited.
The total number of elements in the worklist of the solve-query step
often increases because, in the presence of infeasible information,
queries are less likely merged.

Table 4 shows the time of our analysis. Performance is reported
by Phoenix’s time report functionality [17]. For the nine programs,
the performance varies from .24 to 102.6 seconds for detecting
infeasible paths and resolving a buffer overflow query alongall
paths. The memory usage ranges from 9 to 65MB and the average is
18MB. We also report the memory usage by the size of the worklist
queue (see Table 3 columnWork List).

The above results demonstrate that the path types we defined
all exist in the real code. For the vulnerable paths we generated,
many cross procedural boundaries, involve global buffers,or are
located in loops. Without the identification of the actual paths,
these features will make manual inspection very difficult and time-
consuming.

66

Benchmark Lines Path Types Average Path Size
of Code Inf Vul/Vul ′ CNST/CNST′ UnK/UnK′ Safe/Safe′ # P/#P′ # B/#B′

polymorph-0.4.0 0.7K yes 966/966 0/0 0/0 434/0 2.6/2.5 26.1/25.9
ncompress-4.2.4 1.9K yes 288/288 0/0 0/0 2016/0 2.0/2.0 29.3/27.8
man-1.5h1 4.7K yes 16/16 0/0 0/0 24/24 1.8/1.8 14.3/14.3
gzip-1.2.4 8.2K no 1/1 0/0 0/0 0/0 3/3 5/5
bc-1.06 17.0K yes 0/0 >50,000/>50,000 0/0 >30,000/>30,000 - -
squid-2.3 93.5K yes 0/0 0/0 8/4 4/2 1/1 6.7/6.8
wu-ftp: mapping-chdir 0.4K yes 4320/4320 0/0 0/0 18624/18624 3.8/3.8 33.6/33.6
sendmail: ge-bad 0.7K no 48/48 0/0 0/0 648/648 2.0/2.0 35.5/35.5
BIND: nxt-bad 1.3K no 0/0 0/0 2/2 0/0 2.0/2.0 23.5/23.5

Table 2. Experiment Results: Computed Paths for Benchmarks

Benchmark Basic Blocks Procedures Work List
All Blocks V Blocks/V Blocks′ All Procs V Procs/V Procs′ Max S/Max S′ Max P/Max P′

polymorph-0.4.0 740 34/34 22 3/3 10/9 13/13
ncompress-4.2.4 654 48/47 14 2/2 12/12 16/15
man-1.5h1 2593 100/100 78 8/8 23/23 25/25
gzip-1.2.4 3436 5/5 102 3/3 2/2 2/2
bc-1.06 3090 228/226 102 12/11 102/115 54/50
squid-2.3 35189 10/10 1423 1/1 5/4 3/3
wu-ftp:mapping chdir 129 40/39 6 4/3 46/46 10/10
sendmail: ge-bad 187 34/34 8 3/3 6/7 5/5
BIND: nxt-bad 423 31/31 14 2/2 8/8 6/6

Table 3. Evaluating Demand-Driven Analysis

Benchmark Time(s) Time′(s)

polymorph-0.4.0 12.19 12.40
ncompress-4.2.4 0.69 0.24
man-1.5h1 2.05 2.16
gzip-1.2.4 0.24 0.24
bc-1.06 98.3 102.6
squid-2.3 1.14 1.32
wu-ftp:mapping chdir 13.51 13.36
sendmail: ge-bad 1.64 1.70
BIND: nxt-bad 2.40 2.65

Table 4. Performance of Analysis

6. Related Work
Many approaches for detecting buffer overflow have been pro-
posed, including compilers, languages, dynamic detectorsand
static analysis. Static analysis has the advantage that theoverflow
can be detected and fixed before software release. The drawbacks
include high false positive rates and required human efforts for
confirmation, prioritization and diagnoses of the bug. General static
approaches include mapping of buffer bounds checking to integer
range analysis, abstract interpretation, symbolic execution or type
inference [11, 13, 22, 24]. Most of the existing static toolsreport
high false positives, require annotations, or do not reportor char-
acterize paths.

Path-sensitive analysis aims to check if the property holdsfor
every path. It reduces false positives by excluding infeasible paths.
ARCHER [24] is path-sensitive, but it does not compute faulty
paths, and only reports statements where the access of the buffer
is violated. ESP [8] generates a set of paths where typestatevio-
lation can occur. MOPS [6] adapts model checking technologyfor
computing a set of traces that violate security properties.

Demand-driven analysis aims to reduce time and space over-
head by only collecting information that is needed, and thusim-
proving scalability [10]. Duesterwald et al. designed a general
framework for interprocedural dataflow analysis [10], which has

been used to infeasible path detection and dataflow testing [3, 9].
Demand-driven analysis has also been applied to reproduce traces
to explain program failure caused by typestate errors and todetect
memory leaks [16, 20].

7. Conclusions and Future Work
This paper presents a demand-driven path-sensitive analysis frame-
work for detecting and categorizing paths along which a buffer
overflow may occur. The analysis is flexible, scalable and fully au-
tomatic. Its major contributions are:

• Reducing false positives by eliminating infeasible and safe
paths that go through a vulnerable statement.

• Providing information on paths with overflow for directing
manual diagnosis.

• Categorizing paths based on their chance of being exploited.

In the future, we plan to more fully explore the usage of the
information provided by our technique in finding and correcting
bugs. We also plan to use more sophisticated constraint solvers and
alias detectors to provide more precise categorization.

8. Acknowledgment
We thank the Microsoft External Research & Programs group for
supporting this project, especially Yan Xu and John Lefor. We also
thank Andy Ayers and Chris McKinsey from the Phoenix group for
their help in using Phoenix.

References
[1] T. Ball and J. R. Larus. Programs follow paths. MicrosoftTechnical

Report MSR-TR-99-01, 1999.

[2] R. Bodik, R. Gupta, and M. L. Soffa. Interprocedural conditional
branch elimination. InProceedings of the ACM SIGPLAN 1997
conference on Programming language design and implementation,
1997.

67

[3] R. Bodik, R. Gupta, and M. L. Soffa. Refining data flow information
using infeasible paths. InProceedings of the 5th ACM SIGSOFT
international symposium on Foundations of software engineering,
1997.

[4] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer
for finding dynamic programming errors.Software: Practice and
Experience, 2000.

[5] CERT. http://www.cert.org.

[6] H. Chen and D. Wagner. Mops: an infrastructure for examining
security properties of software. InProceedings of the 9th ACM
conference on Computer and communications security, 2002.

[7] S. Chen, J. Xu, E. Sezer, P. Gauriar, and R. Iyer. Non-control-data
attacks are realistic threats. InProceedings of the 14th USENIX
Security Symposium, 2005.

[8] M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive program
verification in polynomial time. InProceedings of the ACM
SIGPLAN 2002 conference on Programming language design and
implementation, 2002.

[9] E. Duesterwald, R. Gupta, and M. L. Soffa. A demand-driven analyzer
for data flow testing at the integration level. InProceedings of the
18th international conference on Software engineering, 1996.

[10] E. Duesterwald, R. Gupta, and M. L. Soffa. A practical framework for
demand-driven interprocedural data flow analysis.ACM Transactions
on Programming Languages and Systems, 1997.

[11] D. Evans. Static detection of dynamic memory errors. InProceedings
of the ACM SIGPLAN 1996 conference on Programming language
design and implementation, 1996.

[12] Fortify. http://www.fortifysoftware.com.

[13] B. Hackett, M. Das, D. Wang, and Z. Yang. Modular checking for
buffer overflows in the large. InProceedings of the 28th international
conference on Software engineering, 2006.

[14] M. J. Harrold and M. L. Soffa. Efficient computation of interpro-
cedural definition-use chains.ACM Transactions on Programming
Languages and Systems, 1994.

[15] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. Bugbench:
Benchmarks for evaluating bug detection tools. InProceedings of
Workshop on the Evaluation of Software Defect Detection Tools,
2005.

[16] R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. Yang.PSE:
explaining program failures via postmortem static analysis. In
Proceedings of the 12th ACM SIGSOFT international symposium
on Foundations of software engineering, 2004.

[17] Microsoft. Phoenix: A software optimization and analysis framework.
http://research.microsoft.com/phoenix/.

[18] Microsoft. Prefast. http://www.microsoft.com/whdc/
devtools/tools/prefast.mspx.

[19] A. One. Smashing the stack for fun and profit.http://www.
phrack.org/archives/49/P49-14.

[20] M. Orlovich and R. Rugina. Memory leak analysis by contradiction.
In Proceedings of the 13th International Static Analysis Symposium,
2006.

[21] SecuriTeam.http://www.securiteam.com/.

[22] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A firststep
towards automated detection of buffer overrun vulnerabilities. In
Proceedings of Network and Distributed System Security Symposium,
2000.

[23] R. Wojtczuk. The advanced return-into-lib(c) exploits. http:
//www.phrack.org, 2001.

[24] Y. Xie, A. Chou, and D. Engler. ARCHER: Using symbolic, path-
sensitive analysis to detect memory access errors. InProceedings of
the 11th ACM SIGSOFT international symposium on Foundations of
software engineering, 2003.

[25] M. Zitser, R. Lippmann, and T. Leek. Testing static analysis tools
using exploitable buffer overflows from open source code. In
Proceedings of the 12th ACM SIGSOFT international symposium
on Foundations of software engineering, 2004.

68

