Refining Buffer Overflow Detection via Demand-Driven
Path-Sensitive Analysis

Wei Le and Mary Lou Soffa
Department of Computer Science
University of Virginia
Charlottesville, VA 22904, USA
{weile, soffa}@cs.virginia.edu

Abstract

Although static analysis is an important technique for cléng
buffer overflow before software deployment, current stédials
rely on considerable human effort for annotating code tp hehl-
ysis, or for diagnosing warnings, many of which are falsatpes.
This paper presents an analysis technique that refinesriafam
about the paths that involve a potential buffer overflow tip rethe
diagnosis and debugging of vulnerabilities. Instead of eeport-
ing a vulnerable buffer or statement in the program, whictstmo
tools do, our analysis categorizes paths of a possibly vaie
statement into five types: Vulnerable, Overflow-User-Irategent,
Safe, Infeasible and Don't-Know. Thus, safe and infeagialths
can be excluded from being inspected, providing focus ot-pro
lematic paths. For scalability, we designed and implentotg
analysis as an interprocedural, demand-driven pathisenanal-
ysis. Our experiments demonstrate that various path typesod
through a possibly vulnerable buffer statement. The resido in-
dicate that our technique is efficient and practical.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5ftware Engineer-
ing]: Testing and Debugging

General Terms Algorithms, Reliability, Security, Verification

Keywords Path-Sensitive, Demand-Driven, Infeasible Paths

1. Introduction

Although much effort has been expended to detect and avdfierbu
overflow in software, we are still plagued with exploits tlzae
costly to fix, disruptive, and promote a general loss of timsbft-
ware. Since many applications are written in unsafe langsiagd
it is difficult for programmers to correctly write applicatis that
use buffers, buffer overflow is still being introduced intiftavare
and is the most commonly exploited vulnerability [5, 21]2006,
SecuriTeam reported 134 vulnerable overflows, a quartdreofa-
tal security warnings [21], and many of them have causedreeve
impact such as unauthorized access and denial of servicet&ot
vulnerabilities, dynamic detectors are used but they slowrdthe

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesatrmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PASTE’'07 June 13-14, 2007, San Diego, California, USA.
Copyright(© 2007 ACM 978-1-59593-595-3/07/0006. . . $5.00

63

execution by a factor of 2 to 30 due to the increase of code size
branch mispredictions and data cache misses [24]. Therefpr
namic buffer overflow detection is difficult to apply for tineen-
strained software. In addition, patches to fix the vulnditgare
expensive due to the number of computers typically effedted
these reasons, a number of software companies rely on atetic
ysis to detect buffer overflow before software release [B2, 1

However, current static tools require considerable hunfan e
fort, either for diagnosing warnings or for annotating peogs to
help analysis [4, 11, 13, 18, 22, 24]. Many tools report waggi
about potentially vulnerable program points, such as istaigs or
buffers, for example, Splint, BOON and ARCHER [11, 22, 24].
The code reviewer has no knowledge about the paths throggh th
program point that actually produce the vulnerability. [Edbat re-
port vulnerable paths instead of statements include Pre®BEX
and Prefast [4, 13, 18]. The analysis is performed exhaalgtiv
along all program paths. The challenge for these tools ialsitity,
in particular when the vulnerability may cross procedurerub
aries. As a result, the tools sometime have to give up affdogrg
a certain number of paths [18]. Although heuristics can h@ieg
to select and merge paths, excessive warnings are proddted [
Some tools address scalability by introducing annotattorspec-
ify the buffer contract between procedures and thus turmtifier
overflow detection intraprocedural [13]. But both writingdaver-
ification of annotations are costly, and thus, correctnéssoota-
tions is not guaranteed.

This paper presents an interprocedural demand-driven- path
sensitive analysis with the goal of reducing the effort iezglito
identify program paths that are vulnerable and providingenpe-
cise information about the vulnerability to help users find toot
cause. Our analysis classifies paths as infeasible, sdfeerable
with potential for exploits, overflow with little chance telex-
ploited, and don’t-know. Our analysis is driven by stateta¢hat
have a definition or redefinition of a buffer. By using a demand
driven algorithm, our analysis is directed to those patlag tan
be executed and maybe vulnerable, and the analysis teesainat
soon as the vulnerability decision is discovered. Throughamal-
ysis, we exclude paths that are infeasible and safe, andtaéo
paths that can overflow based on their chance of being ezgloit

In summary, the contributions of the paper include:

1. A categorization and identification of five types of patbs f
buffer overflow.

2. Aninterprocedural demand-driven path-sensitive diaggtool
for identifying the types of paths through a potential owenfl
buffer.

3. Experimental results that demonstrate the path typssimxiin
real programs and the time and space costs of the analysis.

woid foo {int v, int v, char™ str)

1 void ftpBuildTitleUrl(FtpStateDataxftpState){
2 requestt xrequest = ftpState>request;
3 size.t len;
] 4 char =t;
5 len = 64
6 + strlen(ftpState>user)
3 7 + strlen (ftpState=>password)
8 + strlen(request>host)
9 + strlen(request>urlpath);
4 10
. 11 t = xcalloc (len, 1);
_______________ 1|ntbar (VO\d) 12 strcat(t, "ftp://");
13 if (strcmp(ftpState>user, "anonymous”)){
3 14 strcat(t, rfcl738escapepart(
15 ftpState>user));
16 if (ftpState=>passwordurl) {
call site [17 strcat(t, ":");
v = har 18 18 strcat(t, rfcl738escapepart(
19 ftpState=>password));
20 }
19 21 strcat(t, '@");
22 1
23 strcat(t, requestshost);
24
25 }

Figure 2. Code Snippet from Squid-2.3 ftp.c.

10 y=w+1 y==5)
strepy(b, 4) | 1z strepylast) | 14 is updated taBSize(b) > 3. Meanwhile, a flag is set in the query
to indicate the buffer content currently is constant. Treppgation
13 continues and the information at node 3 indicaB$ize(b) = 2.

Thus the query is resolved % > 3 as false. The constant flag
shows the buffer is overflowed by some constant string andtis n
dependent on input. Note that propagation halts as sooe gsiéry

16 scanf("%d",&w)| | i | 17 is resolved. We propagate this answer to the nodes we hatedvis

to determine the path.

Figure 1. A Simple Example
3. Path Types
In this section, we describe the types of paths that we ifjenti
Section 2 gives an overview of our approach using a simple We consider both feasibility and buffer overflow in the clfiss
example. Section 3 defines five path types. Section 4 describe cation. Our goals for categorizing paths include: 1) dgtishing

the demand-driven model and framework. Experimental tesué faulty paths from safe and infeasible paths, 2) prioritziulner-
given in Section 5, followed by the related work in Sectioad a able paths based on their possible exploitation consegseand
summary in Section 7. 3) identifying what paths should be further explored to datee

its vulnerability. We now classify paths that go through septially
. vulnerable statemenVS.

2. Overview and an Example Infeasible: Infeasible paths can never be executed. Therefore,
We present an overview of our technique through an example in the overflow property of buffers on those paths is meanisdgies
Figure 1 that is based on the work of Bodik et al [3]. In the judging whether or not a buffer overflow exists. Infeasib&hs
discussion of the example, we assume that a demand-driten pa occur when there exist branch correlations along a pathntla&e
sensitive infeasibility analysis has already been done [3] a branch unexecutable. Previous work shows that there d@989—

In Figure 1, nodes 3, 4, 8, 12 and 14 write strings to a buffer. statically detectable branch correlations [2], which dadés that
Overflow might occur at any of these five nodes. The nodes 3 andit is necessary to try to identify them. However, identifyiall
4 are identified to be safe buffer definitions since both thigebu infeasible paths is not computable [1].

size and the content of the buffer can be determined lodadiythe Safe Given a PVS, some paths that execute the PVS are safe
nodes 8, 12 and 14, we need more context to make a judgment aither because the bounds checking is properly done alomg th
to their vulnerability. path or the overflow will not happen under any input that le@ds

Consider the buffer at node 12, which is a string copy. We first traversal of these paths. For example, in Figure 2, code 8quid-
construct and raise the queBiSize(b) > T Pos(a) at node 12, 2.3 ftp.c shows that the path — 13, 23) is always safe regardless
which means after thetrcpy, if the size of bufferb, BSize(b), of a possibly vulnerabletrcat at the line 23.
is larger than the index of the null string terminator in thefér, Vulnerable: Many attacks through buffer overflow are con-
T Pos(a), the buffer access is safe (we assume the index starts at 0).ducted through external inputs, e.g., command line, filéyork
The query is then propagated backwards to the nodes 11 amfl.the packets or environment variables. Attack incidents shaat im-
No information is collected at these two nodes to update tieeyg portant attack data such as control transfer code in theraent
as they have no impact on the query. At each step of propagatio data attack and data used to corrupt program variables indhe
we cache the query at the node for reuse. At node 9, we prapagat control-data attack [7] are usually injected through thertiowed
the query along three paths to its predecessors, namelyg A6J& buffer [5, 21]. The data such as malicious payload for stacash-
and 5. At node 16, the query enters a loop, which does not epdat ing [19] or parameters for system calls to launch returp-iiii at-
the query. Thus the query is merged at node 9 and not promhgate tack [23] are also often located in the overflowed buffer [B]. 2
further. The query from node 8 reaches an infeasible patimaeg Therefore we consider a buffer that can overflow with useuttinp
(8,9, 11, 12), and terminates. From node 5, the query is propagated as a likely exploitable buffer. If feasible paths reach éhégpes
to node 4. Here, it is discovered tHEPos(a) = 3, and the query of buffer, we call them vulnerable paths. In Figure 1, thehpat

(1-6,18,19,7,8) is considered vulnerable Ktr gets a string
from the user input.

Overflow-User-Independent Not all buffer overflows are ex-
ploitable by unknown users, e.g., when the buffer can overdioly
with constants in the program, the chance of exploitatiolois
compared to a buffer overflowed through external input. Aslera
or corruption of the data could still be possible. Paths aioing
these buffers are placed in a lower priority than vulnergialghs.
This prioritization is useful when the message volume igdaand
there is a time limitimposed for correcting the code. In géacode
base, it is impossible to fix every bug before releasing tlftevaoe.

(1 -5,9,11,12) in Figure 1 is an overflow-user-independent path.
It can overflow the buffeb with the C string"y" (the charactery’
followed by the null terminator\0’).

Don’t-Know : We identify paths as don’t-know when their de-
tection is beyond the power of static analysis, e.g., theatip
source will not be known until link time. Instead of merging-i
precise dataflow facts with precise facts and generatingezen
vative results, we identify those don’t-know paths and tha-r
son that makes them don’t-know so that a code reviewer iseawar
of them and other detection facilities such as testing caagbze
plied. In Figure 2, paths entering theé statement at line 13, such
as (1 — 23), encounter the library caltfc1738_escape_part
at line 14 or line 18, which may definetpState->user and
ftpState->password. Thus the content written to the buffer
cannot be judged by the static analyzer.

4. Buffer Overflow Analysis

A demand-driven analysis has a number of advantages tlthtdea
scalability. Firstly, each query of a PVS is independent tng

all queries can be performed in parallel. The intermediaterigs
generated for solving a query can be cached and reused fodk-che
ing queries from other buffers. Also, the analysis only tgishe
nodes reachable from the PVS, collects information relaiaeder
queries, and terminates as soon as the query is resolveeriExp
ments on a demand-driven copy constant propagation frarkewo
reported the speedup of a factor of 1.4-44.3 for a set of bench
marks [10]. A demand-driven approach also provides a usér wi
flexibility for diagnosing and debugging errors with regardvhich
buffer should be checked.

Our analysis for buffer overflows instantiates and extends a
general demand-driven framework based on Duesterwald'st al
work [10]. The demand-driven approach has showed scdiabili
for solving dataflow problems such as reaching definition cord
stant propagation [10]. However, according to our knowéedg
has not been investigated for detecting software errorsubrey-
abilities. According to Duesterwald et al [10], in order taild a
concrete demand-driven analyzer, we should answer thmanfioity
questions: 1) What is the query and where is it raised? 2) How
should the query be propagated? 3) What information is used f
updating queries? 4) With the information, what are the tipda
rules for queries? 5) When is the search terminated?

4.1 The Demand-Driven Model

For designing a buffer overflow demand-driven analyzer, we d
velop a demand-driven model using the above questions d@de. gu
Some descriptions below are language dependent and we usk C a
C++ for explanation.

Query. We define a set of program points of interest as PVSs
where queries are raised. Conservatively, we assume teay ev
definition to a buffer (write to a buffer) is dangerous, thsia PVS.

A buffer overflow query is regarding whether a buffer access a
the PVS would be safe and whether the user input could write to
the buffer. These two parts are represented as a constfainffer

of query templates for PVSs. The second column of Table 1 show
some example constraints for the selected PVSs.

Information for Updating Queries. There is a set of program
points where information could be extracted to update eseri
They include buffer definitions, buffer allocations, inddgfini-
tions, alias operations and pointer arithmetic. Bufferrdgéfins are
PVSs, as we explained above. Buffer allocations often §péue
size of a buffer. For example, stack buffer can be declaretias
a[10], and the heap buffer is usually allocated bythagloc fam-
ily of library calls. The information also can come from ctarg
assignment, branch conditions and the declared type. Thectad
information is formatted as assertions so that the anatysisuse
substitution or inequality rules to update queries. Thedtbolumn
of Table 1 showed some assertions formatted from the nodeeof t
buffer definition and allocation.

Propagation Rules.Based on the work of Bodik and Duester-
wald et al [2, 3, 10], we designed rules for propagating apgeri
interprocedurally, incorporating feasibility, and handlloops.

We only propagate queries interprocedurally when we are con
fident that this call will update the query. To determine ifra-p
cedure impacts a query, we first check if any unknown vargable
in the query constraint defined by a global, a return or refeze
parameters of the call. If so, we perform a simple linear soafe-
termine if a statement in the procedure can possibly updatesy.
Our analysis is context sensitive. Therefore the querybeilprop-
agated back to the call site after it propagates out of theguhare.
Only a newly raised query will be propagated to all call sitiégs
raised procedure.

In order to make sure a query is not propagated along an infea-
sible path, we first detect infeasible paths using brancretaiion
and mark infeasible path segments on the edges of an Interpro
dural Control Flow Graph (ICFG) [3, 14]. During buffer ovexfl
analysis, the query terminates when it encounters an iiblegsath
segment.

We also developed propagation rules for loops. In our aiglys
users can specify the number of iterations they would likectm-
pute for the loop. We track the query precisely when the fitena
of the loop has not reached the threshold. Sometimes, thig qae
only be updated during the first iteration of the loop or evannot
be updated in the loop. In this case, queries from diffetendiions
are merged. Sometimes, loop iteration is bounded by sonstan
integer, e.g., the loopor (int i = 0; i < 100; i++) willit-
erate 100 times. When this type of loop is detected, we coenput
the final query with the upper limit of loop iteration. There also
loops whose iterations are not regular and might be detexaitiy
the user input. We represent the query after these loopskaswn
in terms of loop iterations, and continuously propagateginery to
see if any user input can control this loop to overflow the duff

Resolving the Query.For buffer overflow detection, the general
property we aim to check is: after a write to the buffer, thelae=d
buffer size must be no less than the size of the string storéioei
buffer. It should be noted that we only specify the uppertimhithe
buffer and for the buffer write overflow. But the techniquen dze
easily extended to also include the lower bound and readlower
Based on the general property, we further expand the overflow
properties to be vulnerable, overflow-user-independeafe and
don’'t-know, each of which corresponds to a path type defined i
Section 3. During the analysis, if the information collette the
query is enough to be evaluated as one of the above propéhiges
query is solved.

4.2 The Framework

Figure 3 presents the framework for the buffer overflow aredy
Our goal is to compute types of paths we defined in Section 8. Th

size and string length, and a flag in the query. We designed a se demand-driven model in the previous section guides theysisetb

65

Code Constraints Assertions
strcpy(a,b) BSize(a) > TPos(b) TPos’(a) = TPos(b)
strcat(a,b) BSize(a) > TPos(a) + TPos(b) | TPos'(a) = TPos(b) + T Pos(a)

. TPos’ = TP b =
strncpy(a,b,n) BSize(a) >]\/Izn(TPos(b) n) ETPZi'EZ; _ ;Oﬁlo&sé(b)&ogc(ﬂ")})is(b?)!‘n)
ali] = ’t’ BSize(a) > TPos'(a) = co
char a[x] N/A L(a) =z
char *a = (char*)malloc(x) | N/A L(a) = /8

Table 1. Examples of Buffer Overflow Constraints and Assertions fofT@os(x): index of the null terminator in buffer x; TP@¢): index of the null

terminator after the buffer definition; Min(x,y): minimunale among x and y;

Overﬂow
Propenies
L1
Update Yes| Propa gate
Results

Query
Figure 3. Framework for Buffer Overflow Analysis

Ralse
Query

Label
Paths

Resolve
Query

Propagate
Query

i

identify a PVS, raise and solve the query with the properrimto
tion abstracted from source code. As the first step, the sisadie-
tects infeasible paths and mark them on the ICFG. Second 3 PV
is identified and a query is raised at this PVS. Then the gueery i
propagated backwards under a set of propagation rules, had w
it reaches a node, the information is collected to updatejtizey.
Every time a query is updated, the analysis judges if theygiser
solved to be one of the overflow properties. If not, the queity w
be continuously propagated. This process continuesiitehatin-

til the query is solved. After all queries are solved, thailtssare
propagated from solved nodes to all previously visited spded
the path types are labeled on the edge. We can then idereifyatth
based on the edge markings.

5. Experimentation

To investigate the existence of the five types of paths in &a r
programs, we implemented our demand-driven algorithmgugiia
crosoft Phoenix APIs [17]. We measured the cost of the aisatys

a set of benchmark programs selected from the BugBench fith] a
the Buffer Overflow Benchmark [25]. The set consists of 9 pro-
grams, each of which contains known buffer overflow. Our expe
iments compute buffer overflow paths for these known vuloiéra
ities, identify the type of path, and determine the perfarogaand
space usage of analysis.

In our experiments, we compute buffer overflow paths for one
PVS in each program. We would check every PVS of the program
to make sure the software is secure. Our experiments cafisisd
steps. In the first step, we compute paths for a PVS in a berrghma
program without considering infeasibility of paths. Werhate-
grate our infeasibility detection module to check the impHche
infeasible paths on the query. In Tables 2, 3 and 4, we useveepri
(") symbol for results after integrating infeasible paths.

We summarize the generated paths for benchmarks including
path types and path segment lengths in Table 2. The path ségme
consists of all nodes between when the query was raised aad wh
it was resolved. Under thBath Types column, there are vulner-
able (ul), overflow-user-independentlST), don’t-know UnK)
and safe $afe) subcolumns. Each subcolumn lists the number of
the path generated for the specified type. The results shatv th

66

BSize(x): buffer size of x)

all five types of paths do exist in real programs. Six of nine-pr
grams are detected to have vulnerable paths, and two pregram
have don't-know paths due to an external library. One progra
contains overflow-user-independent paths. Seven out &f pio-
grams have safe paths. Without our path detection, the cede d
buggers might explore safe paths which will not be succégsfu
finding the vulnerability. For the program bc-1.06, the kaotam-

ber of overflow-user-independent paths is very large andame r
out of memory when we traversed the marked ICFG to print paths
Actually, the number of paths is not important because ibtswec-
essary for a code reviewer to inspect every path for diagn@dith

our framework, users can specify the number of paths to faubut
After fixing them, the framework would be used again to deteem

if this fix corrects all vulnerable paths of the PVS.

The column,Inf, underPath Types shows whether infeasible
paths are detected in the programs [3]. We identify that sixod
nine programs have infeasible paths. Using the infeasilfterna-
tion, the number of safe paths in three programs and the nuofibe
unknown paths in one program are able to be reduced. Thehlengt
of the path segments is given by the number of different hoees
(not including library calls) and number of basic blockstduz tra-
versed by the path. These numbers are shown idheage Path
Sze column.

In Table 3, we present data to evaluate the demand-driven ap-
proach. Under th®asic Blocks column, subcolummll Blocks re-
ports the total number of basic blocks in the program. Theroal
labeledV Blocks reports the number of visited blocks during the
analysis. Similarly, théll Procs column lists the total number of
non-library procedured/ Procs lists the number of procedure vis-
ited. There are two worklists which are representative porethe
memory usage of the analysidlax S shows the maximum num-
ber of elements in the worklist during the solve-query stéilev
Max P gives the maximum number of elements in the worklist dur-
ing the propagate-results step. With the infeasible patiegiation,
the number of visited blocks and procedures is usually redibe-
cause blocks that are on the infeasible paths are no longiéedi
The total number of elements in the worklist of the solvergstep
often increases because, in the presence of infeasibleviafmn,
queries are less likely merged.

Table 4 shows the time of our analysis. Performance is regort
by Phoenix’s time report functionality [17]. For the ninegrams,
the performance varies from .24 to 102.6 seconds for datgcti
infeasible paths and resolving a buffer overflow query alatig
paths. The memory usage ranges from 9 to 65MB and the average i
18MB. We also report the memory usage by the size of the vatrkli
queue (see Table 3 colunvkbrk List).

The above results demonstrate that the path types we defined
all exist in the real code. For the vulnerable paths we géedra
many cross procedural boundaries, involve global buffersre
located in loops. Without the identification of the actuathsa
these features will make manual inspection very difficutt ime-
consuming.

Benchmark Lines Path Types Average Path Size
of Code |[Inf T WVulMul” T CNST/CNST [UnK/UnK" | Safe/Safe #PHP | #BHE
polymorph-0.4.0 0.7K yes | 966/966 0/0 0/0 434/0 2.6/25] 26.1/25.9
ncompress-4.2.4 1.9K yes | 288/288 0/0 0/0 2016/0 2.0/2.0 | 29.3/27.8
man-1.5h1 4.7K yes 16/16 0/0 0/0 24[24 1.8/1.8 | 14.3/14.3
gzip-1.2.4 8.2K no 171 0/0 0/0 0/0 3/3 5/5
bc-1.06 17.0K yes 0/0 >50,000£50,000 0/0 >30,000£30,000 - -
squid-2.3 93.5K yes 0/0 0/0 8/4 412 171 6.7/6.8
wu-ftp: mapping-chdir 0.4K yes | 4320/4320 0/0 0/0 18624/18624 3.8/3.8 | 33.6/33.6
sendmail: ge-bad 0.7K no 48/48 0/0 0/0 648/648 2.0/2.0 | 35.5/35.5
BIND: nxt-bad 1.3K no 0/0 0/0 22 0/0 2.02.0 | 23.5/235
Table 2. Experiment Results: Computed Paths for Benchmarks
Benchmark Basic Blocks Procedures Work List
All Blocks [V Blocks/V Blocks All Procs | V Procs/V Procs || Max S/IMax S | Max P/Max P

polymorph-0.4.0 740 34/34 22 3/3 10/9 13/13

ncompress-4.2.4 654 48/47 14 22 12/12 16/15

man-1.5h1 2593 100/100 78 8/8 23/23 25/25

gzip-1.2.4 3436 5/5 102 3/3 2/2 2/2

bc-1.06 3090 228/226 102 12/11 102/115 54/50

squid-2.3 35189 10/10 1423 1/1 5/4 3/3

wu-ftp:mapping chdir 129 40/39 6 4/3 46/46 10/10

sendmail: ge-bad 187 34/34 8 3/3 6/7 5/5

BIND: nxt-bad 423 31/31 14 22 8/8 6/6

Table 3. Evaluating Demand-Driven Analysis
[Benchmark [[Time(s) [Timé(s) | been used to infeasible path detection and dataflow tes3ingj [

polymorph-0.4.0 12.19 12.40
ncompress-4.2.4 0.69 0.24
man-1.5h1 2.05 2.16
gzip-1.2.4 0.24 0.24
bc-1.06 98.3 102.6
squid-2.3 1.14 1.32
wu-ftp:mapping chdir|| 13.51 13.36
sendmail: ge-bad 1.64 1.70
BIND: nxt-bad 2.40 2.65

Table 4. Performance of Analysis

6. Related Work

Many approaches for detecting buffer overflow have been pro-
posed, including compilers, languages, dynamic detecamcs
static analysis. Static analysis has the advantage thatvér#ow
can be detected and fixed before software release. The drksvba
include high false positive rates and required human efftot
confirmation, prioritization and diagnoses of the bug. Gehsatic
approaches include mapping of buffer bounds checking ament
range analysis, abstract interpretation, symbolic execudr type
inference [11, 13, 22, 24]. Most of the existing static to@port
high false positives, require annotations, or do not repoxthar-
acterize paths.

Path-sensitive analysis aims to check if the property hfids
every path. It reduces false positives by excluding infdagiaths.
ARCHER [24] is path-sensitive, but it does not compute fault
paths, and only reports statements where the access of ffiee bu
is violated. ESP [8] generates a set of paths where typedgtate
lation can occur. MOPS [6] adapts model checking technofogy
computing a set of traces that violate security properties.

Demand-driven analysis has also been applied to reprodacest
to explain program failure caused by typestate errors amnietect
memory leaks [16, 20].

7. Conclusions and Future Work

This paper presents a demand-driven path-sensitive asnéigse-
work for detecting and categorizing paths along which aduff
overflow may occur. The analysis is flexible, scalable anky ful-
tomatic. Its major contributions are:

e Reducing false positives by eliminating infeasible andesaf
paths that go through a vulnerable statement.

e Providing information on paths with overflow for directing
manual diagnosis.

e Categorizing paths based on their chance of being exploited

In the future, we plan to more fully explore the usage of the
information provided by our technique in finding and corirgt
bugs. We also plan to use more sophisticated constrairgrsodnd
alias detectors to provide more precise categorization.

8. Acknowledgment

We thank the Microsoft External Research & Programs group fo
supporting this project, especially Yan Xu and John Lefoe. AM¢o
thank Andy Ayers and Chris McKinsey from the Phoenix group fo
their help in using Phoenix.

References

[1] T. Ball and J. R. Larus. Programs follow paths. Microstéchnical
Report MSR-TR-99-01, 1999.

Demand-driven analysis aims to reduce time and space over- [2] R. Bodik, R. Gupta, and M. L. Soffa. Interprocedural citioshal

head by only collecting information that is needed, and tinus
proving scalability [10]. Duesterwald et al. designed aegah
framework for interprocedural dataflow analysis [10], whitas

67

branch elimination. IrProceedings of the ACM SIGPLAN 1997
conference on Programming language design and implementation,
1997.

[3] R. Bodik, R. Gupta, and M. L. Soffa. Refining data flow infoation
using infeasible paths. I|Rroceedings of the 5th ACM SIGSOFT
international symposium on Foundations of software engineering,
1997.

[4] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyz
for finding dynamic programming errorsSoftware: Practice and
Experience, 2000.

[5] CERT. http://wwu.cert.org.

[6] H. Chen and D. Wagner. Mops: an infrastructure for exangin
security properties of software. Iroceedings of the 9th ACM
conference on Computer and communications security, 2002.

S. Chen, J. Xu, E. Sezer, P. Gauriar, and R. lyer. Nonrobdata
attacks are realistic threats. Rroceedings of the 14th USENIX
Security Symposium, 2005.

M. Das, S. Lerner, and M. Seigle. ESP: path-sensitivegm
verification in polynomial time. InProceedings of the ACM
S GPLAN 2002 conference on Programming language design and
implementation, 2002.

[7

—

(8]

[9

—

E. Duesterwald, R. Gupta, and M. L. Soffa. A demand-drieealyzer
for data flow testing at the integration level. Mnoceedings of the
18th international conference on Software engineering, 1996.

[10] E. Duesterwald, R. Gupta, and M. L. Soffa. A practicalnfrework for
demand-driven interprocedural data flow analy8iSM Transactions
on Programming Languages and Systems, 1997.

[11] D. Evans. Static detection of dynamic memory errorrioceedings
of the ACM SIGPLAN 1996 conference on Programming language
design and implementation, 1996.

[12] Fortify. http://www.fortifysoftware.com.

[13] B. Hackett, M. Das, D. Wang, and Z. Yang. Modular chegkfar
buffer overflows in the large. IRroceedings of the 28th international
conference on Software engineering, 2006.

[14] M. J. Harrold and M. L. Soffa. Efficient computation oftémpro-
cedural definition-use chainsACM Transactions on Programming
Languages and Systems, 1994.

68

[15] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. Bugbench
Benchmarks for evaluating bug detection tools. Phoceedings of
Workshop on the Evaluation of Software Defect Detection Tools,
2005.

[16] R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. YaR&E:
explaining program failures via postmortem static analysin
Proceedings of the 12th ACM SIGSOFT international symposium
on Foundations of software engineering, 2004.

[17] Microsoft. Phoenix: A software optimization and arg$/framework.
http://research.microsoft.com/phoenix/.

[18] Microsoft. Prefast. http://www.microsoft.com/whdc/
devtools/tools/prefast.mspx.

[19] A. One. Smashing the stack for fun and profiittp://www.
phrack.org/archives/49/P49-14.

[20] M. Orlovich and R. Rugina. Memory leak analysis by cadiction.
In Proceedings of the 13th International Satic Analysis Symposium,
2006.

[21] SecuriTeamhttp://www.securiteam.com/.

[22] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A festp
towards automated detection of buffer overrun vulneriadsli In
Proceedings of Network and Distributed System Security Symposium,
2000.

[23] R. Wojtczuk. The advanced return-into-lib(c) expdoithttp:
//www.phrack.org, 2001.

[24] Y. Xie, A. Chou, and D. Engler. ARCHER: Using symboliath-
sensitive analysis to detect memory access error®rdoeedings of
the 11th ACM SIGSOFT international symposium on Foundations of
software engineering, 2003.

[25] M. Zitser, R. Lippmann, and T. Leek. Testing static gsal tools
using exploitable buffer overflows from open source code. In
Proceedings of the 12th ACM SIGSOFT international symposium
on Foundations of software engineering, 2004.

