

A Study to Identify Predictors of Achievement in an
Introductory Computer Science Course

Sandra Katz
Learning Research and

Development Center, University of
Pittsburgh

3939 O�Hara Street
Pittsburgh, PA 15260

1-412-624-7054

katz+@pitt.edu

John Aronis
Computer Science Dept.,
University of Pittsburgh
6211 Sennett Square

Pittsburgh, PA 15260
1-412-624-9185

aronis@cs.pitt.edu

David Allbritton
Dept. of Psychology, DePaul

University
2219 N. Kenmore Ave.

Chicago, IL 60614
1-773-325-4799

dallbrit@depaul.edu

Christine Wilson

Learning Research and Development Center,
University of Pittsburgh

3939 O�Hara Street
Pittsburgh, PA 15260

1-412-624-9583

clwilson@pitt.edu

Mary Lou Soffa
Computer Science Dept., University of Pittsburgh

6401 Sennett Square
Pittsburgh, PA 15260

1-412-624-8425

soffa@cs.pitt.edu

ABSTRACT
In the study reported on here, 65 prospective computer or
information science majors (47 male, 18 female) worked
through a tutorial on the basics of Perl. All actions were
recorded and time-stamped, allowing us to investigate the
relationship between six factors that we believed would predict
performance in an introductory computer science (CS) course
(as measured by course grade) and how much students would
learn from the tutorial (as measured by gain score from pre-test
to post-test). These factors are: preparation (SAT score,
number of previous CS courses taken, and pre-test score), time
spent on the tutorial as a whole and on individual sections,
amount and type of experimentation, programming accuracy
and/or proficiency, approach to materials that involve
mathematical formalisms, and approach to learning highly
unfamiliar material (string manipulation procedures). Gender
differences with respect to these factors were also investigated.

Predictors of grade and gain score included SAT score, pre-test
score (negatively correlated with gain), time (negatively
correlated with gain and grade), and various measures of
programming accuracy and/or proficiency�for example, the
total number of program runs that contained errors (negatively
correlated with grade and gain). Several measures of
experimentation predicted gain score. Experimentation also

predicted grade, but only as applied to the least familiar tutorial
material. Although experimentation was practiced throughout
the tutorial by both sexes, male and female students differed
with respect to the types of tutorial topics and tasks they
experimented with and the degree of experimentation�for
example, male students were more likely to write programs not
suggested by the tutorial. These findings suggest that a tutorial
such as the one used in this study could serve as an instrument
to identify students who are likely to succeed (or not) in an
introductory CS course, and that instructional interventions to
promote achievement should encourage experimentation,
reflection on the results of experiments, care and accuracy.

Keywords
Computer science instruction, programming instruction, gender
and computer science.

1. INTRODUCTION
Since satisfactory performance is a requirement for retention in
undergraduate computer science programs, many studies have
been conducted to identify factors that predict achievement in CS
courses. A complex array of experiential, affective, personality,
socio-cultural, and cognitive factors have been shown to predict
achievement�for example, simply owning a computer (e.g., [8],
[12]); using a computer in pre-college computing classes (e.g.,
[5]); prior programming experience (e.g., [6]); confidence,
intrinsic motivation, and having clear career goals (e.g., [2], [4],
[9], [11], [13]); and various aptitudes, such as math ability, spatial
reasoning ability, verbal reasoning ability, and Piagetian formal
operations (e.g., [1], [3], [4], [7], [14]).

The research discussed in this paper investigates a piece of the
�achievement and retention puzzle� that has received very little
attention to date: how learning strategies and behaviors affect
performance in undergraduate computer science programs. Since

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMIS Conference �03, April 10-12, 2003, Philadelphia, Pennsylvania.
Copyright 2003 ACM 1-58113-666-8/03/0004� $5.00

 157

programming is one of the first skills that computer science
students learn, and a stumbling block for many, we focus on
students� strategies for learning how to program. Research by
Recker and Pirolli [10] suggests that learning strategies can have
a strong impact on programming skill. In particular, students who
approached learning materials in a reflective manner�e.g., by
elaborating on example programs�outperformed less reflective
students on laboratory programming tasks.

To get a firsthand look at students' approach to learning a new
programming language, we developed a laboratory study in which
students work through a tutorial on the basics of Perl.19 By
logging all actions taken by each student, we were able to
investigate correlations between six learning factors and two
dependent variables representative of achievement�course
performance (as measured by final grade), and how much students
learned from the tutorial (as measured by gain score from pre-test
to post-test). These factors are: preparation (SAT score, number
of previous CS courses taken, and pre-test score), time spent on
the tutorial as a whole and on individual sections, amount and
type of experimentation, programming accuracy and/or
proficiency, approach to programming tasks that involve
mathematical formalisms, and approach to learning new material
(pattern matching). (See Table 1.) Gender differences with
respect to these factors were also investigated.

2. METHODS

2.1 Materials
Five topics are covered in the Perl programming tutorial, with one
brief chapter per topic: input/output basics, arithmetic
expressions, conditional execution, while loops, and pattern
matching (regular expressions). Each chapter consists of
explanatory text, sample programs, and recommended practice
exercises.

2.2 Subjects
65 students (47 males, 18 females) participated in the study. 56
students (43 males, 13 females) were prospective computer
science students at the University of Pittsburgh, enrolled in an
introductory CS course. CS students were recruited from eight
sections of the course, spanning three academic semesters. All
eight sections were taught by the same instructor. Nine students
(4 males, 5 females) were prospective information science (IS)
majors, recruited from one section of an introductory IS course at
the same university. Eighteen of the 65 students were Black (14
males, 4 females); 47 were White or Asian (33 males, 14
females).
participation.

Five to ten students participated in each experimental session,
which took approximately four hours. In each session, we first
administered a pre-test to measure students' ability to program in

20 Students were paid a nominal amount for their

2.3 Procedure

19 We eliminated students who said that they had prior experience

with Perl or who scored high on the pre-test.
20 Analyses based on race are in progress and will not be

presented in this paper.

Perl. After the pre-test, students were told that they would
receive a bonus payment if they met a criterion score on the post-
test; this was done to motivate students to work hard on the
tutorial. Students then went through a step-by-step lesson on how
to use the programming interface. This lesson was done as a
group. Students then worked through the tutorial individually, at
their own pace, so that we could track the time that they spent on
each chapter, example and exercise. Finally, students took the
post-test, which was identical to the pre-test.

2.4 Data Analysis
The two dependent variables for achievement in this study are
pre-test to post-test gain score and course grade. Representative
measures for the six factors we considered as possible predictors
of achievement are shown in Table 1. Additional measures
include sub-categories and aggregations of those shown in Table
1�for example, number of runs of practice exercises involving
pattern matching (examples excluded), number of runs of
correctly modified examples and practice exercises, respectively.

3. RESULTS AND DISCUSSION
We predicted that students who would do well in the course and
earn high pre-test to post-test gain scores would have the
following characteristics, relative to less successful students:

• Be better prepared, with respect to previous programming
courses taken and aptitude (SAT scores)

• Spend less time on the tutorial as a whole and on individual
chapters

• Write more experimental (modified) programs, and run
tutorial-provided and self-generated programs on various
inputs

• Exhibit better coding accuracy and/or proficiency�that is,
have higher correct run/total run ratios

• Experiment more with relatively challenging tutorial
material involving mathematical functions and pattern
matching, and do so more accurately

Findings for gender comparisons and achievement are reported
below. All findings are significant at the .05 level or less, except
where otherwise noted.

3.1 Gender Comparisons
Male students had more prior programming experience than
female students (t (59) = 232). Both men and women showed
evidence of experimenting, though on different types of material.
Men spent more time working on self-designed practice exercises
(�free form� experimentation; t (46) = 1.97, p = .06). Whereas
men had more correct runs of modified examples (t (62) = 2.94),
women had more correct runs of modified practice exercise
programs (t 63) = 2.18). Whereas men had more correct runs of
modified pattern-matching examples (t (61) = 2.49), women had
more correct runs of modified examples and exercises involving
mathematical functions (t (63) = 2.04). Thus, both male and
female students experimented on the more challenging tutorial
material, though on different types of challenging material.
Further research is needed to determine whether a tendency to
experiment with certain types of material is indicative of interest,
difficulty (i.e., an attempt to gain proficiency on topics one is
weak on), or other factors.

 158

Table 1: Representative Measures of Factors Considered as Possible Predictors of Achievement (Course Grade and Gain Score)

Preparation

Time

Experimentation�
type and degree
(shown in increasing
order)

Experimenting with Tutorial-provided Examples

•

•

Number of runs of sample code on various inputs21

• Number of attempted modifications of sample programs�series of runs that worked towards a single,
functional change�whether or not the program ultimately compiled and was free of logical errors

Experimenting with Recommended Practice Exercises

Free-form Experimentation

Accuracy and/or
coding proficiency22

Approach to
examples and
exercises involving
mathematical
functions (ease with
formalism)23

Experimentation with Mathematical Material

Accuracy with Mathematical Material

• Number of previous programming courses taken

• SAT score (math, verbal, and total)

• Pre-test score

• Total time spent on the tutorial (5 chapters)

• Time spent writing code in all 5 chapters (excludes reading time, short breaks between chapters, etc.)

• Time spent on each tutorial chapter

• Time spent only on writing code in each chapter

Number of runs of correctly modified examples

• Number of runs attempting recommended practice exercises�whether or not they compiled and were
free of logical errors

• Number of runs of correct practice exercise programs

• Number of attempted modifications of practice programs�series of runs that worked towards a single,
functional change�whether or not they ultimately compiled and were free of logical errors

Number of runs of correctly modified practice programs •

• Number of student-designed practice exercises�programs not tied to any tutorial example or exercise

• Number of correct runs�that is, runs free of syntactic and logical errors

• Number of runs with errors

• Percent of correct runs (correct runs/total runs)

• Number of runs of examples and practice exercises involving mathematical functions�whether or not
they ultimately compiled and were free of logical errors

• Number of runs of correct programs involving mathematical functions

• Number of runs of modified programs involving mathematical functions�whether or not they ultimately
compiled and were free of logical errors

21 Our logs do not reveal the inputs that students used to run programs. We assume that if students ran the same, functioning program more

than once, they used different inputs.
22 The ratio of correct runs to total runs (correct plus incorrect runs) is an ambiguous measure. It might indicate how much the student had

to struggle to get programs to work (coding proficiency). Alternatively or simultaneously, it might indicate how careful or accurate the
student is.

23 Three tutorial tasks involved mathematical functions�quadratic equations, geometric series, and harmonic series�one exercise and two
examples.

 159

• Percent of correct program runs involving mathematical functions

Approach to new
material (pattern
matching)24

• Same measures of experimentation and accuracy as for ease with formalism

24 The final chapter covered pattern matching. Because most students in the experiment had taken at least one prior programming course,

we expected them to have been exposed to the other tutorial topics, though in a different language than Perl. The pattern-matching
chapter contained three examples and two practice exercises.

Pre-test score correlated negatively with gain (r = -.46), whereas
post-test score correlated positively with gain (r = .76). Thus,
students who were initially the least proficient programmers, at
least in Perl, seemed to benefit the most from the tutorial.
Aptitude, according to all three SAT scores, also predicted gain
scores (math, r = .33; verbal, r = .38; total, r = .25). Various
measures of time were negatively correlated with gain (e.g., total
time spent on the tutorial, r = -.28), suggesting that students who
took longer to work through the tutorial as a whole and individual
chapters were having difficulty grasping the material.

3.2 Predictors of Gain Score

Accuracy, as measured by the total number of runs with errors,
correlated negatively with gain (r = -.29). This finding was
supported by analyses of students� approach to the least familiar
material (on pattern matching). The percent of correct
unmodified runs of pattern-matching examples and exercises
predicted gain score (r = .25). When coupled with the negative
correlation between pre-test score and gain, these findings suggest
that accuracy was indicative of care rather than coding
proficiency. It seems as though less skilled coders (in Perl) who
were careful and strove for accuracy learned more than less
careful students. Further research is needed to test this
interpretation.

Students who experimented more, and to a higher degree, also got
more out of the tutorial. Measures of experimentation that
predicted gain include: the total number of runs on modified
examples, whether or not correct (r = .28); the number of runs of
correctly modified examples (r = .27); and the number of runs of
�free form� experiments (r = .25).

3.3 Predictors of Course Grade
The nine IS students were excluded from the analysis of grade,
since comparisons across the two disciplines would not have been
meaningful. Gain score was uncorrelated with grade. This
suggests that the overlap between the content of the tutorial and
the course was relatively small. As with gain score, predictors of
course grade included pre-test score (r = .28), post-test score (r =
.37), aptitude (SAT total, r = .40), and various measures of time
(negatively correlated; e.g., total time, r = -.30).

The same measure of accuracy that predicted gain score also
predicted grade�the total number of runs with errors (r = -.38).
This finding was supported by several other correlations between

accuracy measures and grade: the percent of correct compilations,
overall (r = .46); the percent of correct unmodified runs of
examples and practice exercises (r = .42); and the percent of
correct modified runs of examples and exercises (r = .31).
Analyses of students� approach to new material are consistent
with these findings for the tutorial as a whole. For example, the
percent of correct modified and unmodified runs of pattern-
matching exercises and examples correlated with grade (r = .35).
As with gain score, these correlations between accuracy and grade
are difficult to interpret and warrant further investigation. Which
way does the relation point: Does accuracy indicate an acquired
level of proficiency with coding that is reflected in final course
grade, or do students earn high grades in this course partly
because they are careful and accurate?

Experimentation also predicted grade, but only with respect to
learning the least familiar material (as opposed to the tutorial as a
whole). For example, the number of correct runs of pattern-
matching examples and exercises correlated with grade (r = .30).

3.4 Regression Analysis of Achievement
We tested a regression model that included predictors related to
the factors we thought would matter. Predictors and associated
factors (shown in parentheses) include the following:

Preparation
• Pre-test score

• Overall SAT score
• Number of prior CS courses taken

Time
• Overall time spent on programming tasks�examples,

exercises, and modifications of the same

Experimentation
• Number of functional modifications made to programs�

examples and practice exercises
• Number of free-form experiments

Accuracy
• Overall number of runs with errors
• Percent of correct compilations

Ease with Formalism

 160

 161

• Number of correct runs of programs involving
mathematical functions (experimentation)

Approach to New Material
• Number of correct runs of pattern-matching examples and

exercises (experimentation)

• Percent of correct runs of pattern-matching examples and
exercises (accuracy)

These predictors were entered into step-wise regression analyses
(probability required to enter = .075, probability to exclude =
.10), with course grade and gain score as dependent variables. In
the regression for course grade, only computer science students
were included. The overall model predicted a significant
proportion of the variance in grades: adjusted R2 = .36, F (3, 46) =
10.23, p < .001. The only predictors retained in the model were
SAT overall score (Beta = .31, t = 2.67, p < .01), pre-test score
(Beta = .27, t = 2.37, p < .05), and the percent of compilations
that were correct (Beta = .44, t = 3.79, p < .001). Thus the main
finding was that coding accuracy and/or proficiency predicted
course grades. The overall model also predicted a significant
proportion of the variance in gains: adjusted R2 = .39, F (4, 55) =
10.37, p < .001. The only predictors retained in the model were
pre-test score (Beta = -.50, t = -4.79, p < .001), SAT score (Beta =
.31, t = 2.99, p < .01), number of compilation errors (Beta = -.25, t
= -2.46, p < .05), and number of free-form experimental runs
(Beta = .20, t = 1.99, p = .052), partially supporting the finding
from the grades analysis that accuracy predicts learning, and
suggesting that experimentation predicts learning as well.

4. CONCLUSION
A tutorial such as the one used in this study could serve as an
instrument to identify students early on who are likely to succeed
(or not) in introductory courses that focus on programming
concepts and skills. This information could be used by instructors
to determine which students are likely to need extra help. In
conjunction with prior research, this study also suggests what
types of interventions are likely to be effective: exercises that
promote coding accuracy and proficiency, and encourage
experimentation and reflection on the results of experiments [10].
In future studies, we will develop and assess interventions that
have these features, and attempt to specify more precisely what
types of experimentation promote achievement in undergraduate
programming courses.

5. ACKNOWLEDGMENTS
This research was supported by a grant from the National Science
Foundation (grant number EIA 0089963). The data presented and
views expressed are not necessarily endorsed by this agency. We
thank the anonymous reviewers for helpful comments on a
previous version of this paper.

6. REFERENCES
[1] Cafolla, R. Piagetian formal operations and other cognitive

correlates of achievement in computer programming.

Journal of Educational Technology Systems, 16(1), 1987,
45-55.

[2] Charlton, J.P., and Birkett, P.E. Psychological characteristics
of students taking programming-oriented and applications-
oriented computing courses. Journal of Educational
Computing Research, 18(2), 1998, 163-182.

[3] Clement, C.A., Kurland, D.M., Mawby, R., and Pea, R.D.
Analogical reasoning and computer programming. Journal
of Educational Computing Research, 2(4), 1986, 473-86.

[4] Jagacinski, C.M., LeBold, W.K., and Salvendy, G. Gender
differences in persistence in computer-related fields. Journal
of Educational Computing Research, 4(2), 1988, 185-202.

[5] Kagan, D. Learning how to program or use computers: A
review of six applied studies. Educational Technology,
28(3), March 1988, 49-51.

[6] Koohang, A.A., and Byrd, D.M. A study of selected
variables and future study. Library and Information Science
Research, 9(1), 1987, 214-288.

[7] Lai, S., and Repman, J. The effects of analogies and
mathematics ability on students� programming learning using
computer-based learning. International Journal of
Instructional Media, 23(4), 1996, 355-364.

[8] Levin, T., and Gordon, C. Effect of gender and computer
experience on attitudes towards computers. Journal of
Educational Computing Research, 5(1), 1989, 69-88.

[9] Marcoulides, G.A. The relationship between computer
anxiety and computer achievement. Journal of Educational
Computing Research, 4(2), 1988, 151-158.

[10] Recker, M.M., and Pirolli, P. Student strategies for learning
from a computational environment. In C. Frasson, G.
Gauthier, and G.I. McCalla (Eds.), Intelligent tutoring
systems (pp. 382-394). Berlin: Springer-Verlag, 1992.

[11] Reed, W.M., and Overbaugh, R. The effects of prior
experience and instructional format on teacher education
students� computer anxiety and performance. Computers in
the schools, 9(2/3), 1993, 75-89.

[12] Taylor, H.G., and Mounfield, L.C. Exploring the relationship
between prior computing experience and gender on success
in college computer science. Journal of educational
computing research, 11(4), 1994, 291-306.

[13] Volet, S.E., and Styles, I.M. Predictors of study management
and performance on a first-year computer course: The
significance of students� study goals and perceptions.
Journal of Educational Computing Research, 8(4), 1992,
423-449.

[14] Webb, N.M. Microcomputer learning in small groups:
Cognitive requirements and group processes. Journal of
Educational Psychology, 76, 1984, 1076-1088.

