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ABSTRACT 
In the study reported on here, 65 prospective computer or 
information science majors (47 male, 18 female) worked 
through a tutorial on the basics of Perl.  All actions were 
recorded and time-stamped, allowing us to investigate the 
relationship between six factors that we believed would predict 
performance in an introductory computer science (CS) course 
(as measured by course grade) and how much students would 
learn from the tutorial (as measured by gain score from pre-test 
to post-test).  These factors are: preparation (SAT score, 
number of previous CS courses taken, and pre-test score), time 
spent on the tutorial as a whole and on individual sections, 
amount and type of experimentation, programming accuracy 
and/or proficiency, approach to materials that involve 
mathematical formalisms, and approach to learning highly 
unfamiliar material (string manipulation procedures).  Gender 
differences with respect to these factors were also investigated.   

Predictors of grade and gain score included SAT score, pre-test 
score (negatively correlated with gain), time (negatively 
correlated with gain and grade), and various measures of 
programming accuracy and/or proficiency�for example, the 
total number of program runs that contained errors (negatively 
correlated with grade and gain).  Several measures of 
experimentation predicted gain score.  Experimentation also 

predicted grade, but only as applied to the least familiar tutorial 
material.  Although experimentation was practiced throughout 
the tutorial by both sexes, male and female students differed 
with respect to the types of tutorial topics and tasks they 
experimented with and the degree of experimentation�for 
example, male students were more likely to write programs not 
suggested by the tutorial.  These findings suggest that a tutorial 
such as the one used in this study could serve as an instrument 
to identify students who are likely to succeed (or not) in an 
introductory CS course, and that instructional interventions to 
promote achievement should encourage experimentation, 
reflection on the results of experiments, care and accuracy. 
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1. INTRODUCTION 
Since satisfactory performance is a requirement for retention in 
undergraduate computer science programs, many studies have 
been conducted to identify factors that predict achievement in CS 
courses.  A complex array of experiential, affective, personality, 
socio-cultural, and cognitive factors have been shown to predict 
achievement�for example, simply owning a computer (e.g., [8], 
[12]); using a computer in pre-college computing classes (e.g., 
[5]); prior programming experience (e.g., [6]); confidence, 
intrinsic motivation, and having clear career goals (e.g., [2], [4], 
[9], [11], [13]); and various aptitudes, such as math ability, spatial 
reasoning ability, verbal reasoning ability, and Piagetian formal 
operations (e.g., [1], [3], [4],  [7], [14]).   

The research discussed in this paper investigates a piece of the 
�achievement and retention puzzle� that has received very little 
attention to date: how learning strategies and behaviors affect 
performance in undergraduate computer science programs.  Since 
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programming is one of the first skills that computer science 
students learn, and a stumbling block for many, we focus on 
students� strategies for learning how to program.  Research by 
Recker and Pirolli [10] suggests that learning strategies can have 
a strong impact on programming skill. In particular, students who 
approached learning materials in a reflective manner�e.g., by 
elaborating on example programs�outperformed less reflective 
students on laboratory programming tasks. 

To get a firsthand look at students' approach to learning a new 
programming language, we developed a laboratory study in which 
students work through a tutorial on the basics of Perl.19  By 
logging all actions taken by each student, we were able to 
investigate correlations between six learning factors and two 
dependent variables representative of achievement�course 
performance (as measured by final grade), and how much students 
learned from the tutorial (as measured by gain score from pre-test 
to post-test). These factors are: preparation (SAT score, number 
of previous CS courses taken, and pre-test score), time spent on 
the tutorial as a whole and on individual sections, amount and 
type of experimentation, programming accuracy and/or 
proficiency, approach to programming tasks that involve 
mathematical formalisms, and approach to learning new material 
(pattern matching).  (See Table 1.)  Gender differences with 
respect to these factors were also investigated. 

2. METHODS 

2.1 Materials 
Five topics are covered in the Perl programming tutorial, with one 
brief chapter per topic: input/output basics, arithmetic 
expressions, conditional execution, while loops, and pattern 
matching (regular expressions).  Each chapter consists of 
explanatory text, sample programs, and recommended practice 
exercises.  

2.2 Subjects 
65 students (47 males, 18 females) participated in the study.  56 
students (43 males, 13 females) were prospective computer 
science students at the University of Pittsburgh, enrolled in an 
introductory CS course.  CS students were recruited from eight 
sections of the course, spanning three academic semesters.  All 
eight sections were taught by the same instructor.  Nine students 
(4 males, 5 females) were prospective information science (IS) 
majors, recruited from one section of an introductory IS course at 
the same university.  Eighteen of the 65 students were Black (14 
males, 4 females); 47 were White or Asian (33 males, 14 
females).
participation.   

Five to ten students participated in each experimental session, 
which took approximately four hours. In each session, we first 
administered a pre-test to measure students' ability to program in 
                                                                

20  Students were paid a nominal amount for their 

2.3 Procedure 

 
19 We eliminated students who said that they had prior experience 

with Perl or who scored high on the pre-test. 
20 Analyses based on race are in progress and will not be 

presented in this paper. 

Perl.  After the pre-test, students were told that they would 
receive a bonus payment if they met a criterion score on the post-
test; this was done to motivate students to work hard on the 
tutorial.  Students then went through a step-by-step lesson on how 
to use the programming interface.  This lesson was done as a 
group.  Students then worked through the tutorial individually, at 
their own pace, so that we could track the time that they spent on 
each chapter, example and exercise.  Finally, students took the 
post-test, which was identical to the pre-test.   

2.4 Data Analysis 
The two dependent variables for achievement in this study are 
pre-test to post-test gain score and course grade. Representative 
measures for the six factors we considered as possible predictors 
of achievement are shown in Table 1.  Additional measures 
include sub-categories and aggregations of those shown in Table 
1�for example, number of runs of practice exercises involving 
pattern matching (examples excluded), number of runs of 
correctly modified examples and practice exercises, respectively. 

3. RESULTS AND DISCUSSION 
We predicted that students who would do well in the course and 
earn high pre-test to post-test gain scores would have the 
following characteristics, relative to less successful students: 

• Be better prepared, with respect to previous programming 
courses taken and aptitude (SAT scores) 

• Spend less time on the tutorial as a whole and on individual 
chapters 

• Write more experimental (modified) programs, and run 
tutorial-provided and self-generated programs on various 
inputs 

• Exhibit better coding accuracy and/or proficiency�that is, 
have higher correct run/total run ratios 

• Experiment more with relatively challenging tutorial 
material involving mathematical functions and pattern 
matching, and do so more accurately 

 
Findings for gender comparisons and achievement are reported 
below.  All findings are significant at the .05 level or less, except 
where otherwise noted.   

3.1 Gender Comparisons 
Male students had more prior programming experience than 
female students (t (59) = 232).  Both men and women showed 
evidence of experimenting, though on different types of material.  
Men spent more time working on self-designed practice exercises 
(�free form� experimentation; t (46) = 1.97, p = .06).  Whereas 
men had more correct runs of modified examples (t (62) = 2.94), 
women had more correct runs of modified practice exercise 
programs (t 63) = 2.18). Whereas men had more correct runs of 
modified pattern-matching examples (t (61) = 2.49), women had 
more correct runs of modified examples and exercises involving 
mathematical functions (t (63) = 2.04).  Thus, both male and 
female students experimented on the more challenging tutorial 
material, though on different types of challenging material.  
Further research is needed to determine whether a tendency to 
experiment with certain types of material is indicative of interest, 
difficulty (i.e., an attempt to gain proficiency on topics one is 
weak on), or other factors.  
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Table 1: Representative Measures of  Factors Considered as Possible Predictors of Achievement (Course Grade and Gain Score) 

Preparation 

Time 

Experimentation�
type and degree 
(shown in increasing 
order) 

Experimenting with Tutorial-provided Examples 

• 

• 

Number of runs of sample code on various inputs21 

• Number of attempted modifications of sample programs�series of runs that worked towards a single, 
functional change�whether or not the program ultimately compiled and was free of logical errors 

Experimenting with Recommended Practice Exercises 

Free-form Experimentation 

Accuracy and/or 
coding proficiency22 

Approach to 
examples and 
exercises involving 
mathematical 
functions (ease with 
formalism)23 

Experimentation with Mathematical Material 

Accuracy with Mathematical Material 

• Number of previous programming courses taken 

• SAT score (math, verbal, and total) 

• Pre-test score 

• Total time spent on the tutorial (5 chapters) 

• Time spent writing code in all 5 chapters (excludes reading time, short breaks between chapters, etc.) 

• Time spent on each tutorial chapter 

• Time spent only on writing code in each chapter 

Number of runs of correctly modified examples 

• Number of runs attempting recommended practice exercises�whether or not they compiled and were 
free of logical errors 

• Number of runs of correct practice exercise programs 

• Number of attempted modifications of practice programs�series of runs that worked towards a single, 
functional change�whether or not they ultimately compiled and were free of logical errors 

Number of runs of correctly modified practice programs • 

• Number of student-designed practice exercises�programs not tied to any tutorial example or exercise 

• Number of correct runs�that is, runs free of syntactic and logical errors 

• Number of runs with errors 

• Percent of correct runs (correct runs/total runs) 

• Number of runs of examples and practice exercises involving mathematical functions�whether or not 
they ultimately compiled and were free of logical errors 

• Number of runs of correct programs involving mathematical functions 

• Number of runs of modified programs involving mathematical functions�whether or not they ultimately 
compiled and were free of logical errors 

                                                                 
21 Our logs do not reveal the inputs that students used to run programs.  We assume that if students ran the same, functioning program more 

than once, they used different inputs. 
22 The ratio of correct runs to total runs (correct plus incorrect runs) is an ambiguous measure.  It might indicate how much the student had 

to struggle to get programs to work (coding proficiency).  Alternatively or simultaneously, it might indicate how careful or accurate the 
student is. 

23 Three tutorial tasks involved mathematical functions�quadratic equations, geometric series, and harmonic series�one exercise and two 
examples.  
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• Percent of correct program runs involving mathematical functions 

Approach to new 
material (pattern 
matching)24 

• Same measures of experimentation and accuracy as for ease with formalism 

 

                                                                 
24 The final chapter covered pattern matching.  Because most students in the experiment had taken at least one prior programming course, 

we expected them to have been exposed to the other tutorial topics, though in a different language than Perl.  The pattern-matching 
chapter contained three examples and two practice exercises. 

Pre-test score correlated negatively with gain (r = -.46), whereas 
post-test score correlated positively with gain (r = .76).  Thus, 
students who were initially the least proficient programmers, at 
least in Perl, seemed to benefit the most from the tutorial.  
Aptitude, according to all three SAT scores, also predicted gain 
scores (math, r = .33; verbal, r = .38; total, r = .25). Various 
measures of time were negatively correlated with gain (e.g., total 
time spent on the tutorial, r = -.28), suggesting that students who 
took longer to work through the tutorial as a whole and individual 
chapters were having difficulty grasping the material. 

 

3.2 Predictors of Gain Score 

Accuracy, as measured by the total number of runs with errors, 
correlated negatively with gain (r = -.29).  This finding was 
supported by analyses of students� approach to the least familiar 
material (on pattern matching).  The percent of correct 
unmodified runs of pattern-matching examples and exercises 
predicted gain score (r  = .25).  When coupled with the negative 
correlation between pre-test score and gain, these findings suggest 
that accuracy was indicative of care rather than coding 
proficiency.  It seems as though less skilled coders (in Perl) who 
were careful and strove for accuracy learned more than less 
careful students.  Further research is needed to test this 
interpretation. 

Students who experimented more, and to a higher degree, also got 
more out of the tutorial.  Measures of experimentation that 
predicted gain include: the total number of runs on modified 
examples, whether or not correct (r = .28); the number of runs of 
correctly modified examples (r = .27); and the number of runs of 
�free form� experiments (r = .25).   

3.3 Predictors of Course Grade 
The nine IS students were excluded from the analysis of grade, 
since comparisons across the two disciplines would not have been 
meaningful.  Gain score was uncorrelated with grade.  This 
suggests that the overlap between the content of the tutorial and 
the course was relatively small.  As with gain score, predictors of 
course grade included pre-test score (r = .28), post-test score (r = 
.37), aptitude (SAT total, r = .40), and various measures of time 
(negatively correlated; e.g., total time, r = -.30). 

The same measure of accuracy that predicted gain score also 
predicted grade�the total number of runs with errors (r = -.38).  
This finding was supported by several other correlations between 

accuracy measures and grade: the percent of correct compilations, 
overall (r = .46); the percent of correct unmodified runs of 
examples and practice exercises (r = .42); and the percent of 
correct modified runs of examples and exercises (r = .31).  
Analyses of students� approach to new material are consistent 
with these findings for the tutorial as a whole.  For example, the 
percent of correct modified and unmodified runs of pattern-
matching exercises and examples correlated with grade (r  = .35).   
As with gain score, these correlations between accuracy and grade 
are difficult to interpret and warrant further investigation.  Which 
way does the relation point: Does accuracy indicate an acquired 
level of proficiency with coding that is reflected in final course 
grade, or do students earn high grades in this course partly 
because they are careful and accurate? 

Experimentation also predicted grade, but only with respect to 
learning the least familiar material (as opposed to the tutorial as a 
whole).  For example, the number of correct runs of pattern-
matching examples and exercises correlated with grade (r = .30).     

3.4 Regression Analysis of Achievement 
We tested a regression model that included predictors related to 
the factors we thought would matter.  Predictors and associated 
factors (shown in parentheses) include the following:  

Preparation 
• Pre-test score  

 

• Overall SAT score  
• Number of prior CS courses taken  

Time 
• Overall time spent on programming tasks�examples, 

exercises, and modifications of the same  
 
Experimentation 
• Number of functional modifications made to programs�

examples and practice exercises  
• Number of free-form experiments  

 
Accuracy 
• Overall number of runs with errors  
• Percent of correct compilations  
 
Ease with Formalism 
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• Number of correct runs of programs involving 
mathematical functions (experimentation) 
 

Approach to New Material 
• Number of correct runs of pattern-matching examples and 

exercises (experimentation) 

 

• Percent of correct runs of pattern-matching examples and 
exercises (accuracy) 

These predictors were entered into step-wise regression analyses 
(probability required to enter = .075, probability to exclude = 
.10), with course grade and gain score as dependent variables.  In 
the regression for course grade, only computer science students 
were included.  The overall model predicted a significant 
proportion of the variance in grades: adjusted R2 = .36, F (3, 46) = 
10.23, p < .001.  The only predictors retained in the model were 
SAT overall score (Beta = .31, t = 2.67, p < .01), pre-test score 
(Beta = .27, t = 2.37, p < .05), and the percent of compilations 
that were correct (Beta = .44, t = 3.79, p < .001).  Thus the main 
finding was that coding accuracy and/or proficiency predicted 
course grades.  The overall model also predicted a significant 
proportion of the variance in gains: adjusted R2 = .39, F (4, 55) = 
10.37, p < .001.  The only predictors retained in the model were 
pre-test score (Beta = -.50, t = -4.79, p < .001), SAT score (Beta = 
.31, t = 2.99, p < .01), number of compilation errors (Beta = -.25, t 
= -2.46, p < .05), and number of free-form experimental runs 
(Beta = .20, t = 1.99, p = .052), partially supporting the finding 
from the grades analysis that accuracy predicts learning, and 
suggesting that experimentation predicts learning as well.   

4. CONCLUSION 
A tutorial such as the one used in this study could serve as an 
instrument to identify students early on who are likely to succeed 
(or not) in introductory courses that focus on programming 
concepts and skills.  This information could be used by instructors 
to determine which students are likely to need extra help.  In 
conjunction with prior research, this study also suggests what 
types of interventions are likely to be effective: exercises that 
promote coding accuracy and proficiency, and encourage 
experimentation and reflection on the results of experiments  [10].  
In future studies, we will develop and assess interventions that 
have these features, and attempt to specify more precisely what 
types of experimentation promote achievement in undergraduate 
programming courses. 

5. ACKNOWLEDGMENTS 
This research was supported by a grant from the National Science 
Foundation (grant number EIA 0089963).  The data presented and 
views expressed are not necessarily endorsed by this agency.  We 
thank the anonymous reviewers for helpful comments on a 
previous version of this paper.    

6. REFERENCES 
[1] Cafolla, R. Piagetian formal operations and other cognitive 

correlates of achievement in computer programming.  

Journal of Educational Technology Systems, 16(1), 1987, 
45-55. 

[2] Charlton, J.P., and Birkett, P.E. Psychological characteristics 
of students taking programming-oriented and applications-
oriented computing courses. Journal of Educational 
Computing Research, 18(2), 1998, 163-182.   

[3] Clement, C.A., Kurland, D.M., Mawby, R., and Pea, R.D. 
Analogical reasoning and computer programming.  Journal 
of Educational Computing Research, 2(4), 1986, 473-86. 

[4] Jagacinski, C.M., LeBold, W.K., and Salvendy, G.  Gender 
differences in persistence in computer-related fields.  Journal 
of Educational Computing Research, 4(2), 1988, 185-202. 

[5] Kagan, D.  Learning how to program or use computers: A 
review of six applied studies.  Educational Technology, 
28(3), March 1988, 49-51. 

[6] Koohang, A.A., and Byrd, D.M.  A study of selected 
variables and future study.  Library and Information Science 
Research, 9(1), 1987, 214-288. 

[7] Lai, S., and Repman, J.  The effects of analogies and 
mathematics ability on students� programming learning using 
computer-based learning.  International Journal of 
Instructional Media, 23(4), 1996, 355-364. 

[8] Levin, T., and Gordon, C.  Effect of gender and computer 
experience on attitudes towards computers.  Journal of 
Educational Computing Research, 5(1), 1989, 69-88. 

[9] Marcoulides, G.A. The relationship between computer 
anxiety and computer achievement.  Journal of Educational 
Computing Research, 4(2), 1988, 151-158. 

[10] Recker, M.M., and Pirolli, P.  Student strategies for learning 
from a computational environment.  In C. Frasson, G. 
Gauthier, and G.I. McCalla (Eds.), Intelligent tutoring 
systems (pp. 382-394).  Berlin: Springer-Verlag, 1992. 

[11] Reed, W.M., and Overbaugh, R.  The effects of prior 
experience and instructional format on teacher education 
students� computer anxiety and performance.  Computers in 
the schools, 9(2/3), 1993, 75-89. 

[12] Taylor, H.G., and Mounfield, L.C. Exploring the relationship 
between prior computing experience and gender on success 
in college computer science.  Journal of educational 
computing research, 11(4), 1994, 291-306. 

[13] Volet, S.E., and Styles, I.M. Predictors of study management 
and performance on a first-year computer course: The 
significance of students� study goals and perceptions.  
Journal of Educational Computing Research, 8(4), 1992, 
423-449.   

[14] Webb, N.M.   Microcomputer learning in small groups: 
Cognitive requirements and group processes.  Journal of 
Educational Psychology, 76, 1984, 1076-1088.

 


