
Test Suite Reduction and Prioritization with Call Trees

Adam Smith, Joshua Geiger, and
Gregory M. Kapfhammer

Department of Computer Science
Allegheny College

gkapfham@allegheny.edu

Mary Lou Soffa
Department of Computer Science

University of Virginia
soffa@cs.virginia.edu

ABSTRACT
This paper presents a tool that (i) constructs tree-based
models of a program’s behavior during testing and (ii) em-
ploys these trees while reordering and reducing a test suite.
Using either a dynamic call tree or a calling context tree, the
test reduction component identifies a subset of the original
tests that covers the same call tree paths. The prioritiza-
tion technique reorders a test suite so that it covers the call
tree paths more rapidly than the initial test ordering. In
support of program and test suite understanding, the tool
also visualizes the call trees and the coverage relationships.
For a chosen case study application, the experimental re-
sults show that call tree construction only increases testing
time by 13%. In comparison to the original test suite, the
experiments show that (i) a prioritized suite achieves cover-
age much faster and (ii) a reduced test suite contains 45%
fewer tests and consumes 82% less time.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Experimentation, Languages, Verification

Keywords
regression testing, call trees

1. INTRODUCTION
Modern object-oriented programs exhibit complex pat-

terns of behavior during testing and execution. A call tree
contains nodes and edges that represent a program’s method
invocations. A dynamic call tree (DCT) includes a node for
each method call, preserving full execution context at the
expense of having unbounded depth and breadth. Alterna-
tively, a calling context tree (CCT) has bounded depth and
breadth because it coalesces nodes and uses back edges when
methods are recursively or iteratively invoked [1]. Even
though the DCT and CCT are normally used for program
profiling, recent approaches to regression testing use call
trees to reduce a test suite as well [4, 5].

This paper describes a comprehensive framework that
builds and analyzes call trees in order to perform both test

Copyright is held by the author/owner(s).
ASE’07, November 5–9, 2007, Atlanta, Georgia, USA.
ACM 978-1-59593-882-4/07/0011.

suite reduction and prioritization. The collection of testing
components includes a call tree constructor that instruments
the program under test with probes to create a DCT or a
CCT. In an effort to control both the size and execution
time of a test suite, the reduction technique identifies a sub-
set of the original tests that covers the same call tree paths.
The prioritization tool reorders a test suite so that it covers
the tree paths more effectively than the initial test order-
ing. The tool also visualizes the call trees and the coverage
relationships so that it is easier to understand the run-time
behavior of the program and the tests.

We distinguish our tool from prior testing techniques that
use call trees (e.g., [4, 5]) because our regression tester per-
forms reduction and prioritization for object-oriented pro-
grams. In contrast, McMaster and Memon focus on reduc-
ing the test suites for procedural and graphical user interface
(GUI) applications. The current implementation contains
five algorithms that perform both reduction and prioritiza-
tion: Harrold, Gupta, Soffa (HGS) [2], overlap-aware greedy
[9], non-overlap-aware greedy [7], delayed greedy [8], and
k-way greedy [3]. Our testing framework enhances these
previously developed schemes by considering each test’s ex-
ecution time. A reduced test suite is characterized by how
well it decreases both testing time and the total number of
tests. The framework evaluates a prioritization according to
a metric called coverage effectiveness.

2. REGRESSION TESTING TOOL
Figure 1 illustrates the use of call trees to reduce and pri-

oritize a test suite (a grey background highlights the mod-
ules that are important contributions). Currently, the tool
analyzes JUnit 3.8.1 test suites and programs written in the
Java 1.5 programming language. The call tree constructor
uses either static or dynamic instrumentation techniques to
insert probes into the program under test. These probes exe-
cute before and after all of the methods and tests in order to
build the call tree. We implemented the call tree constructor
with the Java 1.5 and AspectJ 1.5 programming languages.
The call tree construction procedure uses aspect-oriented
pointcuts and before and after advice in order to construct
either a DCT or a CCT. The tree constructor also employs
aspects to (i) initialize the call tree before the first test case
runs, (ii) store the tree prior to the conclusion of testing,
and (iii) measure the execution time of each test.

The tool builds a call tree that contains a node for every
test case invocation that occurs during testing. Each path
under a test case node is a unique test requirement because
it represents a series of method calls that took place during
testing. After the creation of the call tree, a reduction algo-

539

Test Suite
 and Program

Call Tree
 Construction

Call Tree

Reduction or
 Prioritization

Test
 Results

Modified Test Suite
 and Program

Test Suite
 Execution Repeat

Start Testing

End Testing

 Repeat

Figure 1: Reduction and Prioritization Tool.

rithm analyzes this tree in order to produced a modified test
suite that is guaranteed to cover all tree paths with (hope-
fully) fewer test cases. The HGS reducer analyzes the test
coverage information and initially selects all of the tests that
cover a single requirement [2]. In the next iteration, HGS
examines all of the requirements that are covered by two
tests and it selects the test case with the greatest coverage.
HGS continues to select tests until it obtains a minimized
suite that covers all of the tree paths.

The overlap-aware greedy reducer uses the approximation
algorithm for the minimal set cover problem [9]. Greedy re-
duction with overlap awareness iteratively selects the most
cost effective test case for inclusion in the reduced test suite
(i.e., evaluating each test according to the ratio of time to
coverage means that low values indicate good cost effective-
ness). During every successive iteration, the overlap-aware
greedy algorithm re-calculates the cost effectiveness for each
leftover test according to how well it covers the remain-
ing test requirements. This reduction technique terminates
when the reduced test suite covers all of the call tree paths
that the initial tests cover. The k-way greedy algorithm op-
erates in an analogous manner except that it considers every
possible group of k tests during each iteration [3].

The delayed greedy approach proceeds in a similar fash-
ion while also exploiting information concerning both the
requirements that a test case covers and the tests that cover
a specific call tree path [8]. Since each of these reduction
methods leaves the excess tests in the initial test suite, the
prioritization scheme identifies a test reordering by repeat-
edly reducing the residual tests. The prioritizer’s invoca-
tion of the overlap-aware reducer continues until the original
suite of tests is empty. The non-overlap-aware prioritizer
sorts the tests by cost, coverage, or cost effectiveness [7].
When provided with a target size for the reduced test suite,
the non-overlap-aware reducer selects from the sorted tests
until the modified test suite reaches the size limit (unlike
the other approaches to reduction, this method does not
guarantee the coverage of every call tree path).

The testing tool supports repetition at two distinct lo-
cations, as evidenced in Figure 1. The same modified test
suite can be leveraged whenever either the execution envi-
ronment is different or the changes to the program under
test are minimal. If the program modifications are likely

0 2000 4000 6000 8000
Time H ms L

0

20

40

60

80

C
o
v
e
r
e
d

P
a
t
h
s

Hcou
n
t

L GradeBook - Original

0 2000 4000 6000 8000
Time H ms L

0

20

40

60

80

C
o
v
e
r
e
d

P
a
t
h
s

Hcou
n
t

L GradeBook - Original

0 2000 4000 6000 8000
Time H ms L

0

20

40

60

80

GradeBook - Prioritized

0 2000 4000 6000 8000
Time H ms L

0

20

40

60

80

GradeBook - Prioritized

Figure 2: Coverage Functions.

to result in execution behavior that is significantly dissimi-
lar from past behavior, then the entire testing process can
be repeated. When evaluating the quality of the original
and prioritized test suites, the framework uses a coverage
function that shows how the tests cover the tree paths over
time. As shown in Figure 2, a point on a coverage function
curve corresponds to the number of tree paths covered at
that time. A test suite’s coverage effectiveness (CE) is the
ratio between the area under its coverage function and the
coverage area of an ideal test suite that immediately covers
all of the paths. The value of CE falls inclusively between 0
and 1, with a high value indicating a high quality test suite.

Due to space constraints, we focus on the reduction and
prioritization of the test suite for a GradeBook application
containing 1455 non-commented source statements (NCSS),
147 methods, and 10 classes. The experiments reveal that
the call tree construction probes increase test suite execu-
tion time by 12.3%. When using the overlap-aware greedy
algorithm, reduction decreases test suite size by 45% and
testing time by 82%. The results also demonstrate that
the coverage effectiveness of the original test suite was .38
while the prioritized test suite achieves a CE value of .96.
The coverage function plots in Figure 2 reveal that the pri-
oritized tests cover the ninety unique call tree paths much
more rapidly than the original suite. In summary, the exper-
iments suggest that this tool supports efficient and effective
regression testing. In future work, we intend to incorpo-
rate additional reduction and prioritization algorithms and
include new evaluation metrics such as the average percent-
age of faults detected (APFD) [6]. Evaluation of the tool
will continue as we test additional case study applications.

3. REFERENCES
[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware

performance counters with flow and context sensitive
profiling. In Proc of PLDI, pages 85–96, 1997.

[2] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology
for controlling the size of a test suite. ACM Transactions on
Software Engineering and Methodology, 2(3):270–285, 1993.

[3] Z. Li, M. Harman, and R. Hierons. Search algorithms for
regression test case prioritization. IEEE Transactions on
Software Engineering, 33(4):225–237, 2007.

[4] S. McMaster and A. Memon. Call stack coverage for test
suite reduction. In Proc of 21st ICSM, pages 539–548, 2005.

[5] S. McMaster and A. Memon. Call stack coverage for GUI
test-suite reduction. In Proc of 17th ISSRE, pages 33–44,
2006.

[6] G. Rothermel, R. J. Untch, and C. Chu. Prioritizing test
cases for regression testing. IEEE Transactions on Software
Engineering, 27(10):929–948, 2001.

[7] M. Rummel, G. M. Kapfhammer, and A. Thall. Towards the
prioritization of regression test suites with data flow
information. In Proc of 20th SAC, pages 1499–1504, 2005.

[8] S. Tallam and N. Gupta. A concept analysis inspired greedy
algorithm for test suite minimization. In Proc of 6th
PASTE, pages 35–42, 2005.

[9] V. V. Vazirani. Approximation Algorithms. Springer-Verlag
New York, Inc., New York, NY, USA, 2001.

540

