
Testing in Resource
Constrained Execution Environments

Gregory M. Kapfhammer
Dept. of Computer Science

Allegheny College

gkapfham@allegheny.edu

Mary Lou Soffa
Dept. of Computer Science

University of Virginia

soffa@cs.virginia.edu

Daniel Mosse
Dept. of Computer Science

University of Pittsburgh

mosse@cs.pitt.edu

ABSTRACT
Software for resource constrained embedded devices is often
implemented in the Java programming language because the
Java compiler and virtual machine provide enhanced safety,
portability, and the potential for run-time optimization. It is
important to verify that a software application executes cor-
rectly in the environment in which it will normally execute,
even if this environment is an embedded one that severely
constrains memory resources. Testing can be used to isolate
defects within and establish a confidence in the correctness
of a Java application that executes in a resource constrained
environment. However, executing test suites with a Java
virtual machine (JVM) that uses dynamic compilation to
create native code bodies can introduce significant testing
time overheads if memory resources are highly constrained.
This paper describes an approach that uses adaptive code
unloading to ensure that it is feasible to perform testing
in the actual memory constrained execution environment.
The experiments demonstrate that code unloading can re-
duce both the test suite execution time by 34% and the code
size of the test suite and application under test by 78% while
maintaining the overall size of the JVM.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging-Testing tools; D.3.4
[Programming Languages]: Processors-code generation,
compilers, memory management, run-time environments

General Terms: Experimentation, Verification

Keywords: test suite execution, code unloading

1. INTRODUCTION
The Java compiler and virtual machine provide enhanced

safety, portability, and the opportunity to perform dynamic
optimization. The Java programming language is now a
popular choice for implementing the software applications
that execute on resource constrained mobile and embedded
devices like hand-helds and cell phones [12, 15, 18]. In fact,
Java is currently being used in resource constrained embed-
ded environments to implement ad hoc and sensor networks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE ’05,November 7–11, 2005, Long Beach, California.
Copyright 2005 ACM 1-58113-993-4/05/0011 ...$5.00.

[1, 13], XML processors [2], HTTP servers [3] and numeric
expression evaluation and function graphing applications [4].
Since resource constrained devices can operate in a variety of
complex execution environments that are often difficult and
costly to simulate correctly, it is important to test a program
in the setting(s) in which it will really execute. Yet, Java
virtual machines (JVMs) that use dynamic compilation can
create significant testing time overheads when the tests are
executed in a memory constrained environment.

Many recent embedded JVMs (e.g., [2, 9, 16]) use a “just
it time” (JIT) compiler to compile Java bytecode into na-
tive code in an attempt to reduce overall execution time [6].
While virtual machines that use a JIT can reduce the execu-
tion time of programs by avoiding bytecode interpretation
and exploiting the potential for run-time optimization, dy-
namic compilation also increases space overhead because the
native code representation is larger than the corresponding
bytecodes [18]. If the Java virtual machine’s heap cannot
continuously store a significant part of the native code and
data associated with the test executor, the test cases, and
the application under test, frequent garbage collector (GC)
invocations will increase the time overhead of testing. If the
execution of all or a portion of the tests is omitted in or-
der to reduce the time required to test, the quality of the
application could be compromised. Alternatively, if the test
suite is not executed in the intended execution setting(s),
the tests are less likely to reveal defects related to the pro-
gram’s interaction with the embedded environment.

In light of these concerns, this paper describes a testing
technique that uses a JVM that performs adaptive code un-
loading [18]. The proposed approach monitors the execution
of a Java program and its test suite and produces either a
sample-based or exhaustive profile of program behavior. Us-
ing this behavior model, the JVM can identify which native
code bodies were used the least during the current execu-
tion of the test suite and are thus unlikely to be used dur-
ing the remainder of testing. Code unloading can remove
these infrequently used native code bodies from the JVM’s
heap, which often reduces the amount of time spent per-
forming memory management and subsequently decreases
the time overhead associated with testing. This approach
ensures that testing can be efficiently performed in the re-
source constrained environment in which the program will
actually execute. In summary, the important contributions
of this paper are as follows:

1. The application of code unloading to support efficient
testing in resource constrained environments (Section 2
through Section 4).

418

2. Detailed experiments that use real world applications
to measure time and space reductions and identify:

(a) The code unloading techniques that demonstrate
the greatest reductions in the execution time and
code size of an application and its test suite (Sec-
tion 5.1).

(b) The characteristics of software applications and
their test suites that prohibit the use of code un-
loading techniques to make testing in memory
constrained environments more efficient (Section
5.2).

(c) The strengths and weaknesses associated with the
use of both sample-based and exhaustive profiles
of program testing behavior (Section 5.3).

2. TESTING CHALLENGES
A test suite is a collection of test cases that invoke pro-

gram operations and inspect the results to determine if the
methods of program P operate correctly [11]. Definition 1
defines a test suite T that contains ∆0, an initial test state
that describes the preliminary configuration of P and is in-
put to the first test that is chosen for execution. The test
suite also contains {T1, . . . , Tn}, the set of tests that are used
during testing. Before the execution of each test case Tk the
test setup operation Sk performs any necessary initializa-
tions (e.g., establishing a database connection or writing to
a file or a network socket). A test dependency Di ∈ D of the
form Di = (Tj → Tk) indicates that test case Tj depends
upon Tk and must be executed after Tk.

Definition 1. A test suite T is a quadruple
(∆0, {T1, . . . , Tn}, {S1, . . . , Sn}, D), consisting of an initial
test state ∆0, a test case set {T1, . . . , Tn}, a set of test setup
operations {S1, . . . , Sn}, and a set of test dependencies D.

Since Definition 1 does not specify a pre-defined order of
execution for the tests within T , Definition 2 defines a valid
test execution sequence E that contains a possible ordering
of the tests within T that satisfies the dependencies inside
of D. The test state ∆k produced by a Tk could contain the
output of the test oracle and/or a portion of the application’s
state that will be inspected by the tester. The sequence E
can contain zero or more executions of the tests within T ’s
test set (e.g., the execution of a test set {T1, . . . T10} could
be configured so that if T2 fails, tests T3 through T5 are
skipped, tests T6 through T10 are executed, and then test
T2 is re-executed). The test suite T could be executed at
regular intervals or when either the program under test or
the execution environment changes.

Definition 2. A valid test execution sequence E for test
suite T is a pair (〈T1, . . . , Tr〉, 〈∆1, . . . , ∆r〉) such that ∀Tk ∈
〈T1, . . . , Tr〉 ∃Tk ∈ {T1, . . . , Tn}, ∆k = Tk(∆k−1) and ∀Di ∈
D, satisfy(〈T1, . . . , Tr〉, Di) = true.

This paper assumes that all of the ∆k ∈ 〈∆1, . . . , ∆r〉
and the native code bodies for each Tk ∈ 〈T1, . . . , Tn〉 will
be stored in the GC-managed JVM heap. It is challeng-
ing to perform testing in an environment where (i) mem-
ory is constrained, (ii) the test suites adhere to Definition 1
and Definition 2, (iii) re-testing frequently occurs because
of changes in P or the execution environment, and (iv) the
tests and the test states are stored in the heap. For exam-
ple, it is often not possible to avoid an increase in testing

inv ct: 15

size: 50 KB
exec time: 2%

m tm s

. . .T1 Tn

exec time: 1%
size: 100 KB

inv ct: 8 inv ct: 1200
exec time: 15%
size: 64 KB

inv ct: 50

size: 75 KB
exec time: 22%

inv ct: 1
exec time: 1%

inv ct: 2
exec time: 2%

size: 10 MBVirtual Machine

Operating System size: 32 MB

TE u
. . . TE

. . .

Test Suite T

PProgram

Test Executor

All Tests size: 128 KB

Heap StackJIT Compiler

Available memory: 64 MB

v

Figure 1: Memory Constrained Testing.

time by executing each test individually because of the test
dependencies contained within D. Even if D = ∅, the time
overheads associated with the execution of each test in iso-
lation could be high because of the need to load the virtual
machine and the test executor for each test. It is also not
possible to simply monitor T ’s testing of P and use this of-
fline behavior profile to determine when native code bodies
can be unloaded. This is due to the fact that both T and P
can change frequently during testing and the old behavior
profile will not be applicable to the new program and tests.

Since the JVM’s garbage collector already unloads the
data that is stored within the heap, this paper focuses on
unloading the native code bodies kept in the heap. It is
challenging to use online profiles of the test suite’s behavior
to adaptively unload code during test suite execution. For
example, the recurrent use of the setup operations S1, . . . , Sn

and the repeated execution of the tests within T is very
different than the execution of programs that only run their
startup routines once and exhibit phased behavior. While
Zhang and Krintz observe that for approximately 70% of
their case study applications, 72% or more of the native
code bodies are dead after the program’s startup phase [18],
this trend does not always appear during testing. It is also
not possible to simply unload the native code bodies of the
tests that have already executed because E can contain the
repeated use of a test within T .

The testing technique described by this paper identifies
code unloading candidates by using a sample-based or ex-
haustive online behavior profile to determine which native
code bodies are the least frequently used. When native code
is removed from the heap, the extra heap space can be used
to ensure that the garbage collector is invoked less frequently
or the heap can be compressed in order to further reduce the
memory footprint of the JVM [8]. Since the tests must exe-
cute quickly in a memory constrained environment, the pro-
posed testing technique runs a test suite in a code unloading

419

JVM that allocates the smallest heap size that ensures the
completion of testing and uses any free heap space to guard
against GC invocation.

Figure 1 provides an example of a program P that will be
tested by a test suite T on a memory constrained device that
contains a total of 64 MB of physical memory and devotes
32 MB of the total memory to the operating system. In
Figure 1, each of the boxes within the program P , the test
executor, and the test suite T represent a native code body
that was produced by the JVM’s JIT compiler and then
stored in the heap. Suppose that the JVM is allocated a
total of 10 MB of main memory, the JVM’s heap can claim
no more than 6 of the 10 MB, and the code bodies from
the program (i.e., ms, . . . , mt) and the test executor (i.e.,
TEu, . . . , TEv) currently consume 2 MB of heap space. If
the garbage collector is triggered when the heap is 75% full,
then only 24 tests can be executed before memory manage-
ment occurs. When heap resources are severely constrained,
the additional time overhead incurred by frequent garbage
collection causes an over 600% average increase in testing
time for all of the applications described in Section 4.

Figure 1 shows that the virtual machine creates a behav-
ior profile that is stored within the native code body and
tracks the invocation count (“inv ct”), the percentage of ex-
ecution time over the life of the program (“exec time”), and
the size of individual method bodies (“size”). For exam-
ple, since method ms has only been invoked eight times and
its execution represents 1% of the entire execution of P , it
could be unloaded so that its 100 KB of memory can be
used to efficiently execute the remaining tests. Even though
it is clearly challenging to perform testing in a resource con-
strained execution environment, the empirical results in Sec-
tion 5 indicate that the combination of code unloading and
simple program behavior profiles based upon execution fre-
quency can reduce testing time by 34% and space overhead
by 78% when JVM heap resources are very limited.

3. CODE UNLOADING
Any memory constrained testing technique that uses code

unloading must address the questions what code must be un-
loaded? and when should code be unloaded? [18]. This paper
uses a JVM that creates either sample-based (denoted S)
or exhaustive (denoted X) profiles of application behavior
during program testing so that the least frequently used na-
tive code bodies that can be unloaded. This paper also uses
JVMs that determine when to invoke an unloading technique
by using timers (denoted TM), garbage collection triggers
(denoted GC), or code cache size triggers (denoted CS) [18],
as described in Figure 2. This paper evaluates the potential
of the following code unloading techniques to make testing
more efficient: S-GC, X-GC, S-CS, X-CS, S-TM, and X-TM.

For example, 〈4, 1, 2, 0.0〉 would configure S-GC or X-GC
so that the first four GC cycles are assumed to occur dur-
ing program startup and code unloading occurs every cycle
regardless of the residency of the JVM heap. After four cy-
cles of garbage collection, code unloading will initially occur
every two cycles. The S-TM and X-TM code unloading tech-
niques could be described in an analogous fashion. Thus, the
tuple 〈2, 1, 5, 0.2〉 indicates that the first two seconds of pro-
gram testing are considered part of the initialization phase
during which code will be unloaded every second if the heap
residency is greater than 20%. After the first two seconds of
execution, the JVM will perform code unloading every five

{S, X} − {GC, TM} = 〈C, UC, U, H〉
Parameter Meaning

C init GC period (GC cycles, secs)
UC init unload freq (GC cycles, secs)
U non-init unload freq (GC cycles, secs)
H heap residency threshold (%)

{S, X} − CS = 〈Zinit, Zincr, UCS〉

Parameter Meaning
Zinit init code cache size (bytes)
Zincr code cache increment size (bytes)
UCS unload session resize trigger (count)

Figure 2: Code Unloading Configurations.

seconds. Finally, the tuple 〈49370, 512, 5〉 describes a code
unloading strategy where the initial size of the code cache
is 49, 370 bytes. When space in the code cache is exhausted
and code unloading occurs five times, this JVM will increase
the size of the entire cache by 512 bytes.

4. EXPERIMENT GOALS AND DESIGN
It is important to discern if and how code unloading re-

duces the time and space overheads that are associated with
the execution of the tests that verify the software executing
on an embedded device. Equation (1) defines the reduction
in space required by native code bodies, denoted SR(P, T).
The space reduction is the difference between the size of
the code bodies before adaptive code unloading is used,
SB(P, T), and the size of the code bodies after unloading
is employed, SA(P, T). The percent reduction of space over-

head, denoted S%
R (P, T) and defined in Equation (2), is the

ratio between the space reduction and the space overhead
that was incurred before the use of code unloading. The time
overhead reduction, TR(P, T), and the percent reduction of

time overhead, T %
R (P, T) could be similarly defined.

SR(P, T) = SB(P, T)− SA(P, T) (1)

S%
R (P, T) =

SR(P, T)

SB(P, T)
× 100 (2)

Any testing technique that uses code unloading will incur
an additional space overhead to store the program behavior
profiles. Furthermore, code unloading could introduce addi-
tional time overheads that are associated with (i) creation
and maintenance of the profile, (ii) consultation of the be-
havior profile to determine what, if any, code bodies should
be unloaded, (iii) unloading of the code bodies, and (iv)
potential reloading of the code bodies that were previously
unloaded. To this end, the experiments described in this
paper focus on identifying the tradeoffs that different un-
loading techniques make between the time and space over-
head associated with testing. In general, we are interested in
answering the question: can adaptive code unloading reduce
the time and space overheads required to perform program
testing in a memory constrained execution environment?

In our experiments, we use a Jikes Research Virtual Ma-
chine (Jikes RVM) x86 version 2.2.1 [5] that includes the
adaptive code unloading extensions developed by Zhang and
Krintz [18]. The RVM was configured to unload all native
code bodies that the behavior profile indicated were not in
use since the previous invocation of the code unloader and
the RVM always re-initialized the profile at the end of an
unloading session. We configured the Jikes RVM to oper-
ate in two separate memory configurations called Min and

420

Name Min Size (MB) # Tests NCSS
UniqueBoundedStack (UBS) [10] 8 24 362

Library (L) [17] 8 53 551
ShoppingCart (SC) [17] 8 20 229

Stack (S) [17] 8 58 624
JDepend (JD) 10 53 2124

IDTable (ID) [14] 11 24 315

Figure 3: Case Study Applications.

Name GC CS TM
UBS 〈4, 1, 1, 0.0〉 〈49370, 512, 5〉 〈3, .5, 1, 0.0〉
L 〈5, 1, 3, 0.0〉 〈49370, 512, 5〉 〈3, .5, 1, 0.0〉
SC 〈3, 1, 1, 0.0〉 〈49370, 512, 5〉 〈2, .5, 1, 0.0〉
S 〈4, 1, 1, 0.0〉 〈49370, 512, 5〉 〈3, .5, 1, 0.0〉
JD 〈8, 1, 4, 0.0〉 〈49370, 512, 5〉 〈3, .5, 1, 0.0〉
ID 〈1, 1, 3, 0.0〉 〈65536, 8192, 5〉 〈2, .5, 1, 0.0〉

Figure 4: Unloading Configurations for the Jikes RVM.

Full. The Min configuration was empirically identified to be
the smallest heap size that would allow the program’s tests
to execute without producing out of memory errors and the
Full configuration was fixed at a 32 MB maximum heap size.
The Min RVM is meaningful because it represents the type
of resource constrained environment that is common when
testing occurs on an embedded device.

All of the experiments were conducted on a workstation
with dual Intel Xeon Pentium III processors and 512 MB
of main memory. The workstation was running GNU/Linux
with a 2.4.18-14smp kernel. In an attempt to increase the
realism of the experiment, the Jikes RVM was configured to
only use one of the two available CPUs. Figure 3 reviews
the most important characteristics of the case study appli-
cations and their test suites. The Min size attribute is the
empirically identified minimum heap size and NCSS is the
number of non-commented source statements, as calculated
by JavaNCSS 21.41. For our experiments, we selected Java
programs that contained test suites that could be executed
in the JUnit 3.8.1 test execution framework by a Jikes RVM.

Figure 4 describes the different Jikes RVM configurations
that were selected to execute the test suites because they
demonstrated the best performance in terms of time and
space overhead reductions. Each of these virtual machine
configurations was produced by ten minutes (or less) of ex-
ploratory experiments that systematically modified the C,
UC, and U parameters for the GC and TM techniques and
the Zinit, Zincr, and UCS parameters for the CS approach.
To ensure that code unloading is performed regardless of
heap residency, we set H = 0.0 for the GC and TM tech-
niques and we did not modify this parameter. Since our
preliminary exploration of the space of all possible config-
uration tuples was not exhaustive, it is possible that the
RVM configurations listed in Figure 4 are not optimal for
the application. In order to ensure a fair comparison, the
sample-based and exhaustive profile RVMs used the same
configuration tuple. We executed each test suite on every
application five times in order to compute arithmetic means
and standard deviations. The experiment results show uni-
formly small standard deviations. Due to space constraints
this measure of dispersion is omitted in Section 5.

5. EXPERIMENT RESULTS
5.1 Time and Space Reductions. The average execu-

tion time of a test suite, across all case study applications,
was 1.049 sec in the Full JVM and 8.047 sec in the Min
JVM. This 667% increase in testing time overhead indicates
that there is a clear need for code unloading to make test-

ing more efficient. Figure 5 summarizes the time and space
reduction percentages when all of the code unloading strate-
gies and all of the case study applications are executed on
the Min RVM (these average values are computed using the
arithmetic mean from the five experiment trials). The check
marks (i.e., “X”) indicate that the code unloading technique
that produces the most noticeable space reduction does not
always produce the best time reduction.

In the UBS, L, and S applications, S-GC yields the largest
S%

R (P, T) value while S-CS or S-TM creates the greatest

value for T %
R (P, T). This is due to the fact that the S-GC

technique often unloads code too aggressively and reduces
space overhead at the cost of incurring additional time over-
head to reload previously unloaded code bodies. For exam-
ple, S-GC quickly reduces the code size of UBS from 25, 214
KB to 7, 653 KB only to require an immediate increase in
code size to 32, 043 KB (this problem could potentially be
resolved by increasing H, the heap residency parameter).
Since S-GC triggers code unloads more than S-CS on aver-
age (total number of unloads: 11.4 - S-GC vs. 2.0 - S-CS),
it does not reduce test execution time any more than S-CS
(24.3% - S-GC vs. 24.7% - S-CS) even though it creates a
larger space reduction (79% - S-GC vs. 61% - S-CS).

The experiment results in Figure 5 also indicate that S-
CS, S-TM, and X-TM normally produce the most significant
time reduction. However, it is important to observe that all
of the techniques create very similar time overhead reduc-
tions. This trend is demonstrated by fact that the time
reductions for L range from a minimum of 31.5% (X-TM) to
a maximum of 34.3% (S-CS). Figure 6 presents the average
time and space percent reductions across all of the chosen
case study applications. These results demonstrate that S-
GC most effectively reduces space overhead and S-CS is the
most effective reducer of time overhead. Finally, these re-
sults clearly indicate that, for the selected applications, it
is beneficial (on average) to employ code unloading in an
attempt to reduce the time and space overhead of executing
tests when memory is constrained.

5.2 Limitations. Code unloading does not always sig-
nificantly reduce the time overhead associated with the exe-
cution of a test suite in a memory constrained environment.
For example, even though S-GC reduces SC’s native code
size by 55% on average, the time overhead is only reduced
by 8.6%. More importantly, Figure 5 shows that the time
overhead associated with testing for ID is always increased
by a small factor (e.g., S%

R (P, T) ranges from −.29 to −1.4).
While no unloading technique causes ID to perform more
than four unloads, S-CS and S-TM both require the un-
loading of more than 635 native code bodies. When ID’s
number of unloaded bodies are compared with the corre-
sponding value for the similarly sized L application (272.4 -
S-CS, 533 - S-TM, 542 - S-GC), it is clear that ID must be
unloading the native code of an external library. In fact, ID
uses the Apache log4j logging utility throughout testing and
thus these code bodies can only be briefly unloaded before
they must be subsequently reloaded. Since the working set
of ID is very large, the code unloading technique does not
improve the efficiency of testing. Since all of the unloading
techniques still reduced the space overhead of ID, this in-
dicates that the testing of applications with large working
sets can still benefit from code unloading because it enables
the use of heap compression if the RVM footprint must be
reduced [8].

421

Name T %
R (P, T) S%

R (P, T)
S-GC 12.1 78.5 X
X-GC 11.1 61.4
S-TM 12.5 62.9
X-TM 12.3 44.9
S-CS 16.8 X 56.4
X-CS 11.6 52.4

(a)

Name T %
R (P, T) S%

R (P, T)
S-GC 32.7 78.8 X
X-GC 32.1 65.0
S-TM 32.0 72.8
X-TM 31.5 62.3
S-CS 34.3 X 61.4
X-CS 33.4 59.8

(b)

Name T %
R (P, T) S%

R (P, T)
S-GC 8.6 55.0 X
X-GC 8.5 39.2
S-TM 14.7 X 56.3
X-TM 8.6 30.5
S-CS 9.4 45.0
X-CS 6.3 35.2

(c)

Name T %
R (P, T) S%

R (P, T)
S-GC 24.3 79.0 X
X-GC 25.4 63.4
S-TM 25.0 X 64.9
X-TM 24.6 47.8
S-CS 24.7 61.6
X-CS 20.9 46.9

(d)

Name T %
R (P, T) S%

R (P, T)
S-GC 20.3 76.6
X-GC 21.1 60.8
S-TM 20.0 74.0
X-TM 21.5 X 60.9
S-CS 21.0 76.7 X
X-CS 20.8 73.0

(e)

Name T %
R (P, T) S%

R (P, T)
S-GC -1.1 42.5
X-GC -1.1 26.7
S-TM -1.2 44.5
X-TM -.29 X 28.8
S-CS -.77 51.4
X-CS -1.4 61.4 X

(f)

Figure 5: Reductions for (a) UBS (b) L, (c) SC, (d) S, (e) JD, and (f) ID.

Name T %
R (P, T) S%

R (P, T)
S-GC 16.1 68.4 X
X-GC 16.4 52.8
S-TM 17.1 62.6
X-TM 16.4 45.9
S-CS 17.6 X 58.8
X-CS 15.3 54.8

Figure 6: Reductions Across All Applications.

5.3 Profile Types. The results provided by Figure 5 also
show that the exhaustive program behavior profile does not
normally enable the reduction of time overhead noticeably
more than the sampled profile. Since the exhaustive pro-
file is embedded within the code bodies [18], it frequently
creates an average code size that is greater than the cor-
responding code size for the sample-based technique. This
greater code size does limit the potential of code unloading
if the test suite contains either a greater number of tests or
tests with larger code bodies. Interestingly, for four out of
the six case study applications (UBS, L, SC, and ID) the X-CS
technique creates a smaller Jikes RVM process size than the
S-CS strategy. This can be attributed to the fact that the
exhaustive profile ensures that the RVM does not inappro-
priately unload native code bodies and subsequently trigger
the growth of the code cache that is stored in the virtual
machine heap [18].

6. CONCLUSIONS AND FUTURE WORK
This paper explains a testing technique that uses an adap-

tive code unloading Java virtual machine to ensure that test-
ing is feasible when JVM heap resources are limited. The
proposed testing technique makes it possible to more effec-
tively isolate defects and establish a confidence in the cor-
rectness of programs by improving the efficiency of resource
constrained testing. The experiments described in this pa-
per use the Jikes RVM to execute the JUnit test suites of
small and moderate scale Java programs in order to measure
the time overhead and the average size of native code bod-
ies. The results reveal that it is possible to reduce both the
time overhead of testing by 34.3% and the space overhead
of the native code bodies by 78.8%. Future research will
investigate the impact that garbage collection [7] and heap
compression [8] algorithms for memory constrained environ-
ments could have upon the performance of testing. We will
also develop new approaches to test prioritization that re-
order the execution of a time suite in an attempt to minimize
time and/or space overhead while maximizing metrics such
as structural test coverage [14]. Finally, we will conduct

further experiments that incorporate additional case study
applications, test suites, and real embedded execution envi-
ronments (e.g., [13]).

7. REFERENCES
[1] http://www.ajile.com/.

[2] http://www.embedded-web.com/.

[3] http://tynamo.qindesign.com/.

[4] https://micromatica.dev.java.net/.

[5] Bowen Alpern, C. R. Attanasio, Anthony Cocchi, Derek Lieber,
Stephen Smith, Ton Ngo, John J. Barton, Susan Flynn
Hummel, Janice C. Sheperd, and Mark Mergen. Implementing
Jalapeno in Java. In Proc. of the 14th OOPSLA, pages
314–324, 1999.

[6] Matthew Arnold, Stephen J. Fink, David Grove, Michael Hind,
and Peter F. Sweeney. A survey of adaptive optimization in
virtual machines. Proceedings of the IEEE, 93:449 – 466,
February 2005.

[7] David F. Bacon, Perry Cheng, and David Grove. Garbage
collection for embedded systems. In Proceedings of the 4th
EMSOFT, pages 125–136, 2004.

[8] G. Chen, M. Kandemir, N. Vijaykrishnan, M. J. Irwin,
B. Mathiske, and M. Wolczko. Heap compression for
memory-constrained Java environments. In Proc. of the 18th
OOPSLA, pages 282–301, 2003.

[9] Michael Chen and Kunle Olukotun. Targeting dynamic
compilation for embedded environments. In Proc. of the 2nd
JVM, pages 151–164, 2002.

[10] Christoph Csallner and Yannis Smaragdakis. JCrasher: An
automatic robustness tester for Java. Software—Practice &
Experience, 34(11):1025–1050, September 2004.

[11] Gregory M. Kapfhammer. The Computer Science Handbook,
chapter 105: Software Testing. CRC Press, Boca Raton, FL,
second edition, 2004.

[12] Rick Lehrbaum. Focus on embedded systems: Embedded Linux
and Java—wave of the future? Linux Journal, 2002(94):13,
2002.

[13] Hongzhou Liu, Tom Roeder, Kevin Walsh, Rimon Barr, and
Emin Gun Sirer. Design and implementation of a single system
image operating system for ad hoc networks. In Proc. of the
3rd MobiSys, June 2005.

[14] Matthew Rummel, Gregory M. Kapfhammer, and Andrew
Thall. Towards the prioritization of regression test suites with
data flow information. In Proc. of the 20th SAC, Santa Fe,
New Mexico, March 2005.

[15] Tom Sanders. Java sets sail for the final frontier. May 2005.
http://www.vnunet.com/.

[16] Nik Shaylor. A just-in-time compiler for memory-constrained
low-power devices. In Proc. of the 2nd JVM, pages 119–126,
2002.

[17] P. David Stotts, Mark Lindsey, and Angus Antley. An informal
formal method for systematic JUnit test case generation. In
Proc. of the 2nd XP/Agile Universe, pages 131–143, 2002.

[18] Lingli Zhang and Chandra Krintz. Adaptive code unloading for
resource-constrained JVMs. In Proc. of LCTES, pages
155–164, 2004.

422

