
Abstract

Debugging programs at the source level is essential in the software
development cycle. With the growing importance of dynamic opti-
mization, there is a clear need for debugging support in the pres-
ence of runtime code transformation. This paper presents a
framework, called DeDoc, and lightweight techniques that allow
debugging at the source level for programs that have been trans-
formed by a trace-based binary dynamic optimizer. Our techniques
provide full transparency and hide from the user the effect of
dynamic optimizations on code statements and data values. We
describe and evaluate an implementation of DeDoc and its tech-
niques that interface a dynamic optimizer with a native debugger.
Our experimental results indicate that DeDoc is able to report over
96% of values, that are otherwise not reportable due to code trans-
formations, and incurs less than 1% performance overhead. 

1 Introduction 

Source-level debugging is the technique of identifying and
eliminating program errors, or bugs, using source-level con-
structs. With the growing complexity of software systems,
the importance of debugging continues to be vital to success-
ful software development. Today, support for debugging is
expected in any software system including those where code
is generated at runtime, e.g., dynamic optimizers.

A dynamic optimizer applies code transformations dur-
ing program execution based on runtime properties.
Dynamic optimization is nearly ubiquitous in JIT-based sys-
tems such as Java [2,12] and .NET [4]. Dynamic optimiza-
tion is also quite popular in the research community, where
several prototype systems have been described, including
Dynamo [3], Mojo [6], Dynamo-RIO [5], and others
[2,16,17]. In each of these systems, dynamic optimization
aims to improve program performance. There is another
class of software system that imposes instrumentation over-
heads and uses dynamic optimization to mitigate those over-
heads. An example of such a system is Pin, where dynamic
optimization significantly reduces Pin’s dynamic instrumen-
tation overhead [18]. 

Static and dynamic optimizers perform code transforma-
tions, e.g., re-ordering and deletion of statements, that cause
the control-flow and data-flow in the optimized code to be
inconsistent with the source code. A debugger must relate
optimized code with the source code to permit source-level
debugging. When optimizations are applied dynamically, the
job of a debugger is more difficult than in a static setting.
The increased difficulty occurs despite the fact that optimi-
zations performed by dynamic optimizers are often similar to
those performed by static optimizers. From a debugging
standpoint, what makes dynamic optimization different from

static optimization is not the optimizations themselves, but
rather the manner in which they are applied. There are sev-
eral artifacts of dynamic optimization that make source-level
debugging more complex, making existing debugging tech-
niques for statically optimized code insufficient: 

•    Interleaved execution: Dynamic optimizers interleave
the execution of the optimized code with optimiza-
tion passes. A debugger must discern between the
optimized program and the optimizer and perform its
actions on the program (not on the optimizer). 

•    Re-optimization: Dynamically optimized code is exe-
cuted and can later be re-optimized. A debugger must
be able to relate the re-optimized code with the
source code. 

•    Dynamic code granularity: Dynamic optimizers often
operate at code granularities determined at runtime.
For example, a code region that is found to be fre-
quently executed can be a candidate for optimization.
A debugger must handle optimizations at any granu-
larity, e.g., individual instructions and data values. 

•    Unrelated code: Dynamic optimizers often mix addi-
tional code with the optimized application binary
code. This additional code is unrelated to the unopti-
mized program and includes instrumentation and
control code (to transfer control between the opti-
mizer and optimized code). A debugger must hide the
presence of this additional code. 

Due to the above complexities, a debugger’s job in a
dynamic setting is more difficult than simply relating opti-
mized code with unoptimized code. Indeed, few attempts at
debugging dynamically optimized code have been made.
Systems such as Self obviate the need for debugging opti-
mized code by de-optimizing it when debugging [10]. Java’s
HotSpot compiler avoids the problem with debugging
dynamically optimized by interpreting the unoptimized code
during a debug session [12]. 

Eliminating the need for debugging dynamically opti-
mized code, either using Self’s or Java HotSpot’s method, or
by not debugging dynamically optimized code at all, is not
ideal due to three reasons. First, there may be software sys-
tems where it is simply not possible to turn off dynamic opti-
mization. A dynamic optimizer in the operating system, or
below the operating system, is an example of such a system
[5]. Second, optimizations (static or dynamic) are known to
expose latent bugs in programs [9]. Therefore, a program
may not be fully debugged until debugging is performed
with dynamic optimization enabled. Finally, debugging a
program in the deployment environment is simply good soft-
ware engineering practice. In the context of debugging stati-
cally optimized code, Hennessy noted in a seminal paper that
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“The ability to debug optimized code symbolically and reli-
ably is an important asset that should not be relinquished”
[9]. Today, Hennessy’s quote is equally relevant to dynami-
cally optimized programs. 

Currently, there is need for a debugging solution that can
address the complexities associated with dynamically opti-
mized code to permit source-level debugging. The debug-
ging solution must meet several requirements for it to be
widely used. First, the solution should be transparent. A user
debugging a program should not have to know that the pro-
gram is dynamically optimized. Second, the solution should
be efficient. In a dynamic environment, where a program is
modified throughout its execution lifetime, any effort spent
in computing information for debugging purposes adds to
the overall runtime. The solution must not cause perceptible
slowdown. Finally, the solution should be portable. Writing a
debugger is a significant investment of time and skills. A
solution is desired that can be easily adapted to new architec-
tures and operating systems, as well as new optimizers. 

In this paper, we present a debug framework, called
DeDoc, applicable to trace-based binary dynamic optimiz-
ers1. DeDoc is a framework that permits the integration of a
dynamic optimizer with a native debugger. A native debug-
ger is an existing source-level debugger for binary programs
(e.g., gdb). DeDoc enables a debug environment that meets
all the challenges and requirements posed by dynamic opti-
mization. This research makes several contributions, includ-
ing:

•    The DeDoc framework: DeDoc consists of techniques
to monitor code modifications performed by a
dynamic optimizer and generate appropriate informa-
tion for use by a native debugger. DeDoc’s compo-
nents incorporate these techniques and enhance the
capability of native debuggers by adding support for
dynamically optimized code.

•    Transformation Descriptor: DeDoc introduces the
notion of a transformation descriptor, which is a
property of an instruction or a data value that
describes how it was modified during optimization.
The transformation descriptors are fine grained to
permit DeDoc’s techniques to be independent of the
granularity at which optimization is applied. 

•    Debug Engine: A central component of DeDoc, the
debug engine, uses the descriptors to generate addi-
tional information. The debug engine also integrates
with the native debugger to use this information. 

•    Implementation and Experimental Evaluation: An
implementation of the framework that illustrates
DeDoc can be used to debug dynamically optimized
code at the source level and that its techniques are
transparent and efficient. 

The rest of this paper is organized as follows. Section 2
gives background necessary to understand our work. Section
3 describes the DeDoc framework. Section 4 details the
experimental evaluation. Section 5 presents previous work
related to this research. Finally, Section 6 concludes. 

2 Background 

Source-level debugging involves relating source constructs
with their binary counterparts. With program modifications
(e.g., optimization), the binary code is not directly related
with the source code and data values may be computed ear-
lier or later in the binary code than in the source code. Alter-
natively, the values may not be computed at all. A debugger
must address two problems to permit source-level debugging
of optimized code: (1) locating a source statement in opti-
mized code, called the code location problem, and (2)
extracting the “expected” value of a source variable that is
not available because of code modifications, called the data-
value problem [11]. Debuggers for statically optimized code
have solved the code location and data value problems by
performing static and dynamic analysis of optimized code to
generate debug information [1,7,9,11,24]. Debug informa-
tion, generated during compilation, is used by a debugger to
relate optimized code with unoptimized code and answer
user queries from the perspective of the source program.
When a program is optimized dynamically, the static debug
information is inconsistent with the executing program. Fur-
thermore, from the point of view of a debugger, dynamic
optimizers perform optimizations in a manner much differ-
ent than static optimizers, which makes existing techniques
for generating static debug information insufficient for
dynamic optimizers. 

Figure 1 shows the structure and functionality of a (trace-
based) dynamic optimizer. A dynamic optimizer is a virtual
execution environment that intercepts execution of a pro-
gram to execute it from a software-managed code cache. The
dynamic translator intercepts the executing program to fetch
code blocks one at a time, insert counters and emit the trans-
lated blocks into the code cache from where they execute.
After a block of code has executed, the dynamic translator
regains control and fetches the next block that executes.
When a counter in a code block reaches a threshold, the
dynamic optimizer is invoked. The dynamic optimizer con-
structs instruction traces starting at the frequently executed
code block and optimizes them. Traces are single-entry and
multiple exit entities. A trace exit is an “exit stub” that trans-
fers control to either the dynamic translator or other traces. 

Figure 2 illustrates the aspects of dynamic optimization
that impact source-level debugging. Figure 2(a) shows an
example trace with three exit stubs, e1, e2 and e3. Execu-

1. A trace is a straightline sequence of instructions that can be 
used as the granularity of dynamic optimization. Most 
dynamic optimizers operating on binary code are trace-based 
optimizers [3,5,6,16].

Figure 1: A virtual execution environment for dynamic
optimization
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tion can reach a trace only at its entry point, i.e., s1. Exit
stubs transfer control to the dynamic translator for further
translation/optimization. Execution of traces is thus inter-
leaved with the execution of the dynamic optimizer. A
debugger should allow inspection/modification of program
state while traces are executing. It should not allow state
inspection/modification when the optimizer executes. Once
traces materialize in the code cache, they are linked together,
and thereafter, the exit stubs transfer control to other traces. 

Figure 2(b) illustrates the effect of an optimization on the
trace. The statement s3 is removed by dead code elimina-
tion. Since the optimizer has only a trace view, it must
assume that s3 is live on the path through e1 and e2. There-
fore, the optimizer inserts “compensation code” that undoes
the effect of dead code elimination in e1 and e2. If a break-
point is inserted at s4 in Figure 2(b), the value of x will not
be the expected one. This data value problem must be
addressed by a debugger. 

The above data value problem is exacerbated with re-
optimization of the trace. Consider the example in Figure
2(c) in which optimizations are applied on the code shown in
Figure 2(b). Assume that debug techniques are available
such that the expected value of x when stopped at s4 is cor-
rectly reported. During re-optimization, s4 is moved. Debug
information generated during re-optimization would relate
the code in Figure 2(c) to the code in Figure 2(b). If execu-
tion is stopped at s4, then the debugger will assume that x’s
value is reportable (computed by s1) because the debug
information was not generated relative to the original code in
Figure 2(a). In fact, the original code is deleted after the first
level of optimization. The challenge in generating debug

information during re-optimization is to relate re-optimized
code to original code that is no longer available at runtime. 

Yet another challenge to debugging is that dynamic opti-
mizers may combine previously optimized traces to perform
additional code transformations on the combined trace (a
new optimization granularity). Statements from one trace
can be moved into another. Figure 2(d) shows an example in
which s3 from trace T1 is moved to T2. Irrespective of the
optimization granularity, the debugger must be able to
uniquely identify each instruction and data value, that may
be queried for, and relate them all the way back to the source
code. 

Finally, not only the debug information needs to be gen-
erated during program execution, it must be communicated
for use in debug actions. Furthermore, as traces are deleted
and reconstructed, appropriate debug information must be
deleted and updated. There needs to be an efficient online
mechanism to communicate debug information to the debug-
ger. These challenges are addressed by the DeDoc frame-
work. 

3 Debug Framework DeDoc

The primary goal of this research is to keep the dynamic
optimizer and its effects transparent from a debug user
debugging at the source level. This goal is accomplished by
the DeDoc framework. DeDoc, shown in Figure 3(a), has
three components: a trace-based dynamic optimizer (TDO),
a debug engine, and a native debugger. In DeDoc, the
dynamic optimizer is modified to include a Program Tracker
component, which determines programmatic modifications
made during optimization. The native debugger is modified

Figure 2: Challenges to debugging optimized instruction traces
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Table 1: The Transformation Descriptors

Transformation Descriptor Description

Identity <ID, Binary Location, Code Cache Location> Indicates code relocation
CInsert <CI, NULL, Code Cache Location> Instruction was not present in unoptimized code

CDelete <CD, Binary Location, NULL> Instruction is deleted during optimization
CMove <CM, Binary Location, Code Cache Location> Instruction was moved from its original location

CFlush <CF, NULL, Code Cache Location> Instruction has been eliminated from code cache
DMove <DM, Code Cache Loc, OldLoc, NewLoc> Storage location of data value has changed
DDelete <DD, Code Cache Location, VarLocation> Data value is not available at program location



to integrate with the debug engine. In essence, DeDoc serves
as the “go between” that links the dynamic optimizer and the
native debugger. It provides all capabilities to enable source-
level debugging of dynamically optimized programs. 

With DeDoc, the debug process happens in three steps.
Figure 3(b) illustrates the steps. In the first step, the program
tracker generates information about the code modifications
in the form of transformation descriptors. In the second step,
the transformation descriptors are used by the debug engine
to generate debug information. Debug information is used by
the debug engine to hide the effect of program transforma-
tions. For example, if a transformation descriptor specifies
that a certain data value has been eliminated during dynamic
optimization, the corresponding debug information will
specify how to determine the deleted value in a debug ses-
sion. The final step of DeDoc is the use of debug informa-
tion. DeDoc requires modifications to the native debugger so
that its actions on a program are targeted to the debug
engine. The debug engine in turn performs the same actions
on the dynamically optimized program. 

In DeDoc, the first two steps are performed continuously
during a program’s execution as new code is generated or
existing code is modified by the optimizer. The third step is
performed on-demand in response to commands and queries
of a debug user. 

3.1 Tracking Program Transformations 

A transformation descriptor is an attribute of an instruction
or a data value that describes the modifications to an instruc-
tion (or data value) from the point of view of the native
debugger. Transformation descriptors represent a summary
of all modifications to an instruction (or a data value). For
example, if a dynamic optimizer applies a set of optimization
passes that result in an instruction being moved from its orig-
inal neighbors, exactly one transformation descriptor is gen-
erated to capture the overall code movement. 

The motivation for developing and using transformation
descriptors is that despite all the differences in what optimi-
zations are performed by a given dynamic optimizer, its
transformations can be viewed as a set of basic code edits,
including insertion, deletion and movement of code and data
values [19]. Transformation descriptors capture these code

edits. As a result, DeDoc’s use of transformation descriptors
eliminates the differences between dynamic optimizers (for
expressing transformations) and provides portability across
different optimizers. In addition, since the transformation
descriptors capture modifications to each instruction and
data value in a program, every program transformation can
be expressed using descriptors. Transformation descriptors,
therefore, are a powerful and sufficient technique to describe
program transformations performed by dynamic optimizers
for the debug operations supported in DeDoc. 

There are five transformation descriptors that are appli-
cable to instructions and two for data values. Table 1 sum-
marizes the transformation descriptors. The descriptors for
instructions describe insertion (CInsert), deletion (CDelete)
and movement (CMove) of an instruction. In addition, there
are two special descriptors: Identity and CFlush. Identity is
associated with each instruction that is translated but not
modified by the dynamic optimizer. CFlush signifies elimi-
nation of an existing instruction from the code cache. There
are two descriptors applicable to data values: DMove and
DDelete. DMove represents a change to the storage location
of a data value. The DDelete descriptor signifies that a data
value is no longer live at a program location. 

3.1.1 Generating Transformation Descriptors

DeDoc uses an algorithm, transprim, to automatically
infer transformation descriptors. Transprim is shown in
Table 2. Transprim deduces the transformation descriptors
by comparing the unoptimized trace with its optimized coun-
terpart. Since traces are straightline code sequences, it is pos-
sible to detect instructions that have been eliminated or re-
ordered during optimization. Transprim requires two pre-
processing steps: (1) live ranges of variables are computed
before and after register allocation and are available for use;
(2) each instruction in the unoptimized trace is assigned a
statement-id and its untranslated location is recorded. A
statement-id is a unique number associated with an instruc-
tion. It is assigned in a linear fashion and remains associated
with an instruction even if the instruction is moved. If an
instruction is duplicated, all duplicate copies of the instruc-
tion have the same statement-id. 

Figure 3:  Debugging with the DeDoc framework
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Transprim is invoked after all optimizations have been
applied. When transprim is invoked, it first scans instruc-
tions in the optimized trace and marks those that have been
re-ordered as moved (lines 4−7). Note that transprim does
not accurately detect whether the instruction marked as
moved was indeed moved—instead, it identifies instructions
that are moved with respect to its neighbors, which is suffi-
cient for debugging purposes. 

Transprim assigns an actual position to each instruc-
tion in the trace (in a fashion similar to statement-ids), as
shown on lines 8−11. An original position is subsequently
assigned to each instruction, as shown on lines 12−20. Origi-
nal positions are the same as actual positions for all instruc-

tions that have not moved. For instructions that move during
optimization, the original position is assigned to be the
actual position of the first “unmoved” instruction with a
higher statement-id. An original position, intuitively, is the
position in the optimized trace where the instruction would
have been, had no code movement taken place. Thereafter,
transformation descriptors are generated according to Algo-
rithm 1(b) − Algorithm 1(g). 

Identity is generated for all “un-moved” instructions, i.e.,
instructions whose original and actual positions are the
same, CInsert for instructions with NULL original positions,
CDelete for instructions with NULL actual positions,
CMove for instructions whose actual and original positions

Table 2: Algorithm to generate transformation descriptors for an optimized trace

1
2
3

4
5
6
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// 1. Determine all live ranges in trace (a) before optimizations 
// are applied; (b) before register allocation is performed; and 
// (c) after register allocation if performed. LiveRanges is defined as:
// LiveRanges : {firstInstruction, AllInstructions, storageLocation}

// 2. Assign stmt-id to instructions; record their unoptimized locations

// Algorithm 1(a): Compute Original and Actual positions for each stmt
Input: Trace, LiveRangesBeforeOpt, LiveRangesBeforeRA, LiveRangesAfterRA
Output: ID, CI, CD, CM, DD, DM // Transformationdescriptors

∀s : s ∈ Trace ∧ s.moved = FALSE // update moved attribute of insns
∀id : (id > s.stmtId) ∧ (id < s.next.stmtId)

if ∃s’∈ Trace : s’.stmtId = id then
s’.moved ← TRUE

actualPosition ← 0
∀s : s ∈ Trace // update actual position for all stmts

actualPosition ← actualPosition + 1
s.actualPosition ← actualPosition 

∀s : s ∈ Trace // update original positions for all stmts
if (s.moved = TRUE) then 

// find the first instruction on trace with a higher statement-id
if ∃s’∈ Trace : (s’.stmtId > s.stmtId) ∧ (s’.moved=FALSE) then

s.originalPosition ← s’.actualPosition 
else 

s.originalPosition ← ∞
else 

s.originalPosition ← s.actualPosition 

// Algorithm 1(b): Compute Identity descriptors
∀s : s ∈ Trace // find all instructions on trace that did not move

if s.originalPosition = s.actualPosition then
ID ← ID ∪ {s}

// Algorithm 1(c): Compute CInsert descriptors
∀s : s ∈ Trace // find all instructions on trace with stmtId not set

if s.stmtId = ∅ then
CI ← CI ∪ {s}

// Algorithm 1(d): Compute CDelete descriptors
"id in [1,lastStmtId] // find all unopt instructions absent in Trace

∀s ∈ Trace : s.stmtId ≠ id then 
CD ← CD ∪ {(id, untranslatedLocation[id])}

// Algorithm 1(e): Compute CMove descriptors
∀s : s ∈ Trace // find all instructions that moved 

if s.originalPosition ≠ s.actualPosition then
CM ← CM ∪ {s}

// Algorithm 1(f): Compute DDelete descriptors
∀s ∈ Trace : s.actualPosition > s.originalPosition

∀s’∈ {ReachingDefinition (s’, Trace) = s} 
DD ← DD ∪ {(s, s’)}

// Algorithm 1(g): Compute DMove descriptors
∀lb : lb ∈ LiveRangesBeforeRA

if ∃la ∈ LiveRangesAfterRA : (la = lb) then 
∀s : s ∈ Trace ∩ l.AllInstructions

DM ← DM ∪ {(s.untransLoc, lb.storageLocation, la.storageLocation)}



are different and are not NULL, DDelete for each instruction
where a data value is not available because a computation
(instruction) was moved or deleted, and DMove is generated
for instructions where storage locations of data values are
different (e.g., due to register allocation). DDelete’s genera-
tion uses reaching definitions. The generation of DMove
involves comparing the live ranges of the unoptimized and
optimized traces. 

3.1.2 Example

Figure 4 uses an example SPARC code snippet to illustrate
how transprim generates transformation descriptors. The
code snippet is shown in Figure 4(a). The first column of
Figure 4(a) shows several application binary locations in the
text segment of a program. Column 2 in the figure shows
binary instructions at each of the application binary loca-
tions. Before optimizations are applied, each instruction in

Figure 4: Algorithm in Table 2 is used to generate code transformation descriptors for dynamically optimized code. The
instruction at untranslated location 0x1bd4 (see (a) above) is moved during optimization. DMove descriptors are not
shown in the example above. 

Id    Moved    Actual    Orig      Insn
1.   ld..
2.    clr..
3.    sll..
4.    ld..
5.    inc..
6.    cmp..
7.    ble..
8.    add..

(a) Application binary instructions

App Loc     Application Instructions
0x1bc8   ld  [%o2+408],%o4
0x1bcc   clr  %o3
0x1bd0   sll  %o3, 2, %g1
0x1bd4   ld  [%o2+%g1],%o5
0x1bd8   inc  %o3
0x1bdc   cmp  %o3, 0xff
0x1be0   ble  0x1bd0
0x1be4   add  %o4,%o5,%o4
...

Untranslated Code

(b) Statement-id’s assigned to instructions 
during dynamic translation

Code During Translation

Code After Optimization

(c) Optimization moves insn with id 4; 
Statement marked Moved

Id    Moved    Actual    Orig      Insn
1.   ld..
2.    clr..
3.    sll..

5.    inc..
6.    cmp..
4.   ld..
7.    ble..
8.    add..

(d) Actual positions assigned to all 
insns; original to unmoved insns

Id    Moved      Actual      Orig    Insn
1.    1.   1. ld..
2.     2.   2. clr..
3.     3.   3. sll..

5.  4.   4. inc..
6.  5.   5. cmp..
4. 6.   ld..
7.  7.   7. ble..
8.  8.   8. add..

Code After Optimization

(e) Original position of moved insn is 
the same as actual position of first 

insn with a higher statement-id

Id    Moved    Actual    Orig     Insn
1.    1.   1. ld..
2.     2.   2. clr..
3.     3.   3. sll..

5.  4.   4. inc..
6.  5.   5. cmp..
4. 6.   4. ld..
7.  7.   7. ble..
8.  8.   8. add..

Code After Optimization  Dynamically Optimized Code                T.D.

(f) After code generation in fragment cache, Original 
and Actual positions are replaced by fragment cache 
locations and Transformation primitives computed

Frag Loc     Id      Actual         Orig        Insn   
0x100c8  1. 0x100c8 0x100c8 ld..  ID
0x100cc  2. 0x100cc 0x100cc clr.. ID
0x100d0  3. 0x100d0 0x100d0 sll.. ID

0x100d4  5. 0x100d4 0x100d4 inc..ID,DD
0x100d8  6. 0x100d8 0x100d8 cmp..ID,DD
0x100dc  4. 0x100dc 0x100d4 ld.. CM,DD
0x100e0  7. 0x100e4 0x100e4 ble.. ID
0x100e4  8. 0x100e8 0x100e8 add.. ID



the trace is assigned a unique statement-id. The statement-
id’s are shown in Figure 4(b). In the example, dynamic opti-
mization of the code snippet leads to exactly one code move-
ment, resulting in Identity, CMove and DDelete descriptors.
The code movement is depicted by the arrow in Figure 4(c). 

Transprim marks the instruction with id 4 as moved
(Algorithm 1(a)). Transprim then assigns actual positions
to each instruction. The original position of “unmoved”
instructions are set to be the same as their actual positions
(see Figure 4(d)). The original position of the moved instruc-
tion is set to 4 because it is the actual position of the first
“unmoved” instruction with a higher statement-id, i.e.,
instruction with statement-id 5. The assignment of this origi-
nal position is shown by the arrow in Figure 4(e). 

Once the original and actual positions of all instructions
are known, the code transformation descriptors are deter-
mined. Identity (ID) and CMove (CM) are straightforward.
DDelete (DD) is assigned to instructions with id 5 and 6
because code movement renders the value in %o5 unavail-
able at these instructions. 

3.2 Generation of Debug Information 

Transformation descriptors are used by the debug engine
(see Figure 5) to generate debug information. Debug infor-
mation consists of debug mappings and debug plans. A
debug mapping relates code or data value locations in opti-
mized code with those in the unoptimized code. A debug
plan relates a code location with a data value storage location
and other code locations. Debug plans guide the extraction
of runtime variable values that are not reportable due to opti-
mization.

3.2.1 Generation of Debug Mappings 

Debug mappings consist of code location mappings and data
location mappings. Code location mappings relates an
untranslated or a translated location to another location and
helps solve the code location problem. A code location map-
ping is a triple shown in the first row of Table 3, consisting
of type information (type), a location (headLocation) and
a set of locations (TailLocations). The mapping relates
an untranslated instruction (headLocation) with all dupli-
cate copies of the instruction (TailLocations) in the code
cache. 

A data location mapping is also a triple, as shown in the
second row of Table 3. A data location mapping relates the
location of a data value (locationBefore) at a given
instruction (instructionLocation) with another loca-
tion (locationAfter). 

Table 4 shows how the code location and data location
mappings are generated for the different descriptors. A code
location mapping can be one of three types: REGULAR,
DELETE and INSERT. As shown in the first row of Table 4,
REGULAR mappings are generated by taking the union of all

Identity and CMove descriptors for a given binary location.
These mappings are used in a debug session to insert/remove
breakpoints in the code cache corresponding to those in
unoptimized code. 

DELETE and INSERT are constructed by relating the
location in CDelete and CInsert descriptors with their corre-
sponding postdominators (next instruction) in the code
cache. When the native debugger inserts a breakpoint at an
instruction with a DELETE mapping, the debug engine inserts
a breakpoint at the target(s) of the mapping. If such a break-
point is hit in the code cache during execution, the debug
engine reports to the native debugger, the headLocation
from the DELETE mapping as breakpoint location. 

INSERT mappings are used to hide instructions unrelated
to unoptimized code. Execution can pause at an instruction
with an INSERT mapping, while single-stepping through
code. The debug engine’s execution manager hides the unre-
lated instruction by single-stepping until the target of the
mapping is reached. Control is returned to the native debug-
ger when the current code cache location does not have an
INSERT mapping. 

For each CFlush descriptor, the mapping generator
removes all the associated code location and data location
mappings. In addition, the debug engine’s planner is invoked
so that it can remove the associated debug plans.

DMove is essentially a data location mapping and can be
used to relate the storage location of a data value in unopti-
mized code with that in the optimized code. Each DMove
descriptor contains an instruction location, the location of a
data value before register allocation and the location after
register allocation. 

3.2.2 Generation of Debug Plans

The debug engine’s planner guides the extraction of runtime
data values. While the planner is invoked during dynamic
optimization, data value extraction is performed during exe-

Table 3: Representation of code location mapping and data location mapping
Code Location Mapping <type, headLocation, TailLocations>

Data Location Mapping <instructionLocation, locationBefore, locationAfter>

Figure 5: The Debug Engine 
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cution by the runtime information generator (see RIG in Fig-
ure 5). The planner’s job is to ascertain when and what
values need to be extracted. 

Consider the example in Figure 4 again. In the figure, a
ld instruction is moved during dynamic optimization. Sup-
pose, the native debugger needs to report the value in regis-
ter %o5 when execution is paused at location 0x100d4 in the
dynamically optimized code (see Figure 4(f)). Since the
value in register %o5 is not available until execution reaches
0x100dc (the new location of the ld instruction), a debug
plan is generated. The debug plan specifies that when execu-
tion reaches 0x100d4, the debug engine should record all
values computed until the instruction at 0x100dc is exe-
cuted where the expected value in register %o5 is known.
Thereafter, execution is paused and the debug engine indi-
cates that the unoptimized location corresponding to
0x100d4 has been reached. It reports expected variable val-
ues when queried. When execution is continued, instructions
are replayed in the expected order. The debug plan for this
scenario is:

Debug Plan: <0x100d4, %o5, {0x100dc}>
A debug plan includes a late point, a data value storage

location, and a set of stop points. A late point is the same
location as the original location of the corresponding moved
instruction (e.g., 0x100d4 in Figure 4). Stop points are loca-
tions where variables defined by the moved instruction are
reachable from the late point (e.g., 0x100dc in Figure 4).
When execution reaches a late point, the debug engine rolls
ahead (continues and records) the execution until a stop
point is reached. The notion of late and stop points and the
technique of rolling ahead execution are borrowed from the
Fulldoc debugger [11]. In Fulldoc, the technique of roll-
ahead was used in the context of static optimizations. 

3.3 Use of Debug Information 

Debug information is used by components of the debug
engine when the native debugger takes an action on the
binary program. These actions include the insertion and
removal of breakpoints and a read or write of variable val-
ues. The debug engine’s components, the execution man-
ager, the breakpoint manager and the RIG, use debug
information to take the same action on optimized code in the
code cache. In this way, the debug engine hides the dynamic
optimizer and its effects (transformations) on a program
from the native debugger. As far as the native debugger is
concerned, the program being debugged is the unmodified
static binary program. 

3.3.1 Intercepting the Native Debugger 

The Execution Manager is the debug engine’s interface to
the native debugger. The execution manager is invoked
whenever the native debugger performs an action on the pro-
gram. An action can either be a read/write into the program’s
address space or insertion/removal of a breakpoint. When
the native debugger would otherwise write values into the
program’s address space (or insert/remove breakpoints), the
execution manager is invoked to perform the same opera-
tions at alternative locations in the code cache. Similarly,
when the native debugger reads values from a program’s
address space, the execution manager is invoked to return
alternative values to the native debugger. 

The execution manager’s actions are illustrated in Figure
6. When the native debugger inserts or removes a break-
point, the execution manager invokes the breakpoint man-
ager. Note that the debug engine may insert its own

Table 4: Algorithms to generate code location and data location mappings

Transformation 
descriptor Algorithm: GenerateMappings <descriptor_type>

Identity / CMove

∀s ∈ ID ∪ CM //instructions with Identity or CMove
clm ← New(CLM)
clm.type ← REGULAR
clm.headLocation ← s.untransLoc
clm.TailLocations ← {s.cCacheLocation}

CInsert

∀s ∈ CI // instructions with CInsert descriptor
clm ← New(CLM)
clm.type ← INSERT
clm.headLocation ← s.cCacheLocation
clm.TailLocations ← {s.postDominator}

CDelete

∀s ∈ CD //instructions with CDelete descriptor
clm ← New(CLM)
clm.type ← DELETE
clm.headLocation ← s.untransLoc
clm.TailLocations ← {s.postDominator}

CFLush

∀clm ∈ CLMappings : s.cCacheLocation ∈ clm.headLocation
CLMappings ← CLMappings − clm // update Code location mappings

∀clm ∈ CLMappings : s.cCacheLocation ∈ clm.TailLocations
clm.TailLocations ← clm.TailLocations − s.cCacheLocation

∀ dlm ∈ DLMappings : s.cCacheLocation ∈ dlm.instructionLoc
DLMappings ← DLMappings − dlm // update data location mappings

Planner(s.cCacheLocation) // invoke debug engine’s planner 
DMove DLMappings ← DM



breakpoints, called invisible breakpoints, for maintaining
control of the code in the code cache. Examples of invisible
breakpoints are breakpoints at late and stop points. Break-
points that corresponding to native debugger’s breakpoints
are called visible breakpoints. 

When the native debugger queries for variable values or
the current program counter value (stopped location), the
execution manager looks up the DIR and finds alternative
locations, if any, to report. When a breakpoint is hit in the
program, the execution manager checks with the breakpoint
manager to see if it is a visible or an invisible breakpoint. If
the breakpoint is visible, the execution manager transfers
control to the native debugger for further user queries. If the
breakpoint, on the other hand, is a late point, the execution
manager invokes the RIG. The RIG records execution of
instructions one-by-one until a stop point is reached and then
replays the recorded execution in a user-expected manner. 

If the native debugger queries the program counter value
while single-stepping execution and the current instruction
has an INSERT mapping, the execution manager invokes the
breakpoint manager to insert an invisible breakpoint at the
target of the mapping. Execution is subsequently continued
until the target is reached. Thereafter, single-stepping is
resumed. In this way, the execution manager hides the instru-
mentation code and exit stubs. 

To exemplify the operation of the execution manager,
consider Figure 4 again. If the native debugger inserts a
breakpoint at location 0x1bd8 in the application binary, the
execution manager intercepts this action and consults the
breakpoint manager. The breakpoint manager finds that the
corresponding code cache location (from a REGULAR map-
ping) is 0x100d4 and inserts a breakpoint at that location.
The breakpoint manager also inserts a late point at 0x100d4
and a stop point at 0x100dc. When execution reaches
0x100d4, the execution manager invokes the RIG to record
execution until 0x100dc is reached. Once the original ld
instruction at the stop point is executed, control is returned to
the execution manager which is ready to accept further que-
ries from the native debugger. 

3.3.2 Breakpoint Handling

The breakpoint manager is a debug engine component that is
invoked by the execution manager to insert and remove
breakpoints. When the native debugger initiates breakpoint
insertion or removal in the application code, the breakpoint
manager does the same actions in the code cache. The break-
point manager uses the REGULAR code location mapping of
the breakpoint location to determine the corresponding code
cache location. When a breakpoint is inserted at a code cache
location with a debug plan, the breakpoint manager deter-
mines the associated late point and stop points. Invisible
breakpoints are inserted at each of these late and stop points. 

3.3.3 Record-Replay

Record-replay is a technique to save the program state dur-
ing execution and to subsequently replay the same execution
in a controlled manner. The RIG is the debug engine compo-
nent that uses record-replay to extract variable values whose

computation have been moved during code transformation.
RIG is shown in Figure 5. When a late point is reached, the
execution manager invokes the RIG and starts the record
phase. 

In the record phase, information about the current
instruction is saved, including the code cache location of the
instruction, values computed by the instruction and the
breakpoints encountered. Late points encountered during the
record phase are also recorded. The record phase continues
and when a stop point is hit, the corresponding late point is
removed from the list of recorded late points. The replay
phase starts when no more late points are left. In replay
phase, breakpoints are reported in the order they were
encountered and saved values are reported when queried. 

3.3.4 Debug Information Repository

The Debug Information Repository (DIR) is where each
debug engine component stores information intended for use
by other components. The information stored in the DIR
includes mappings, debug plans, values extracted by the RIG
and a list of live breakpoints. 

4 Implementation and Experiments 

We implemented our debug framework and interfaced it with
the Strata software dynamic translation system [20] and the
widely used Gdb debugger [21]. A dynamic optimizer client,
called Strata-DO was implemented. Strata-DO performs the
optimizations: constant propagation, copy propagation,
redundant load removal, redundancy elimination, partial
redundancy elimination, dead code elimination, partial dead
code elimination, and loop invariant code motion. It also re-
optimizes and combines traces during execution. The imple-
mentation is targeted to the SPARC v9 instruction set. 

The modifications to gdb include insertion of hooks at
different points where gdb performs an action on the pro-
gram being debugged. Insertion of the hooks required modi-
fication to less than ten lines of code in gdb. An alternative
to using the hooks is to intercept Gdb’s calls into the system
libraries. Previous work intercepted Linux operating system
ptrace calls in this way [14]. DeDoc and Strata-DO share
some common services, such as intermediate representation
construction and manipulation (RTL), which simplified the
integration of Strata-DO. By using the common services,
less than ten lines in Strata-DO had to be modified to call the
Program Tracker. 

Figure 6: Execution manager intercepts actions of the
native debugger and provides transparency
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The debug engine is in the address spaces of both the
optimizer and Gdb. The components in Strata-DO’s address
space are: the mapping generator, the planner, the breakpoint
manager and the DIR. The execution manager and the
record-replay manager are in the address space of Gdb. Calls
are made between the components in different address
spaces using existing facilities in Gdb. 

To determine the effectiveness, in terms of the reportabil-
ity of values, and efficiency of our debugger, we ran two sets
of experiments. The first experiments determined how opti-
mizations affect the reportability of values. The second
experiments measured runtime characteristics to determine
the performance and memory overheads of DeDoc. For our
experiments, we used Strata-DO with a default 4 MB code
cache. A Sun Blade 100 system with 256 MB of RAM, run-
ning Solaris 9 was used. We used the reference input sets of
the SPEC2000 benchmark suite. 

To compute the effects of dynamic optimization on
reportability of values, we counted the number of instruc-
tions that were moved due to optimization and the variables
that were not reportable due to these code movements. We
show the results in Table 5. Column 2 gives the total number
of traces that were generated during optimization. Re-opti-
mization in Strata-DO always leads to combining traces. The
number of traces varied from 165 to 6333 across the bench-
marks. Column 3 shows the percentage of duplicate instruc-
tions in the code cache. This number varied from 58% to
69% with an average of 62%. Column 4 shows the number
of debug plans generated by the planner, which ranges from
110 to 2439, with an average of 552. The debug plans
depend on the number of instructions moved and deleted
from paths. Columns 5 and 6 show the percentage of opti-
mized instructions that were moved or deleted. The average

percentage of moved and deleted instructions was 2% and
0.5%. The last column shows the number of variable values
that would be not reportable in the absence of DeDoc. The
number of not reportable values range from 0.8 to 18 per
trace, with an average of 7 non-reportable values per trace.
The next set of experiments show how almost all of these
values can be reported with DeDoc. 

The next experiments gathered the debug-time statistics.
For these experiments, breakpoints were inserted at source-
level statements that were moved during dynamic optimiza-
tion. To get these breakpoint locations, Strata-DO was modi-
fied to output the instructions that were moved during a
training run, so that the locations from the training run could
be used to place breakpoints in the actual run. The inputs to
the benchmarks in the training run and the actual run were
the same. We selected 50 breakpoints per benchmark. Scripts
were used to insert breakpoints and to continue execution
until 10,000 breakpoint hits. 

The results from the debug-time experiments are shown
in Table 6. Column 2 in the table shows the average number
of invisible breakpoints inserted per user-visible breakpoint.
These breakpoints were inserted due to debug plans and
duplicate instructions. The third column shows the percent-
age of breakpoints hit that had a non-reportable variable due
to optimization, without our framework. The percentage
ranges from 5.5% to 97%, with an average of 62%. Although
we set breakpoints at instructions where some variables were
not reportable, the numbers in this column are less than
100% because instructions duplicated in different traces are
often optimized differently. Column 4 shows the percentage
of variables at the breakpoints that were not reportable in our
framework. The only values not reportable with DeDoc are
the ones that are not computed in optimized code. This

Table 5: Effect of dynamic optimization on reportability of values

Benchmark traces duplicate debug plans moved deleted non-reportable

mcf 165 64 % 134 2.2 % 0.6 % 2,948

gcc 6,333 60 % 2439 3 % 0.4 % 60,975

gzip 317 65 % 125 1.6 % 1 % 2,250

bzip 356 69 % 241 3 % 0.6 % 2,169

vortex 1,232 58 % 577 0.7 % 0.5 % 8,655

twolf 1,040 61 % 110 2 % 0.15 % 1,210

gap 1,468 58 % 239 2.6 % 0.004 % 1,195

Table 6: Debug-time statistics

Benchmark #invisible % breakpoints hit and 
not reportable 

% values not reportable 
in DeDoc roll-ahead length

mcf 14 67 8.4 22

gcc 1.51 5.5 3.17 25

gzip 1.38 97 3.22 18

bzip 2.3 96 1.98 9

vortex 1.9 85 3.44 15

twolf 1.6 65 2.32 11

gap 1.22 24.5 3.22 5



ranges from 1.98% to 8.4%, with an average of 3.7%. The
last column in Table 6 shows the average of roll-ahead in
every benchmark due to debug plans. The roll-ahead length
ranges from 5 to 25 instructions with an average of 15
instructions. The results demonstrate that even with break-
points at instructions that have non-reportable variables,
DeDoc is able to report 96% of the variables in an expected
manner. 

We measured the performance and memory impact of
generating DeDoc’s mappings and debug plans. Figure 7(a)
shows the slowdowns in DeDoc for the experimental setup
in Table 6. Programs were run with and without generating
debug information and the runtimes compared. The slow-
down ranges from 0% in mcf to 2.6% in gcc with an average
of less than 1%. The overheads are higher for programs that
undergo a lot of code translation and code cache flushes.
DeDoc’s low overhead makes it feasible to generate debug
information even when a program is not being debugged.
This is useful in analyzing core dumps (post-mortem debug-
ging). 

The time taken to hit a breakpoint was also measured and
was a constant 0.08 seconds when roll-ahead was not
involved. The time taken to roll-ahead one instruction was
0.05 seconds. The actual performance overhead in the debug
session varies depending on how often roll-ahead occurs. 

Figure 7(b) shows the memory overheads of DeDoc. The
memory overhead ranges from 69KB to 2.7 MB, with an
average of 685 KB. These overheads include the debug
information for traces that are later deleted (e.g., due to code
cache flushes). These overheads are comparable to over-
heads in debuggers for statically optimized code [1,11,24]. 

From the experiments in this section, we conclude that
DeDoc provides complete transparency to native debuggers
in the presence of dynamic optimizations. With minimal
modifications required to native debuggers and dynamic
optimizers, DeDoc hides the effects of optimizations and can
accurately respond to user queries even when computations
have been re-ordered or eliminated. DeDoc imposes almost
no overhead for computing debug information ⎯ debug
information can be generated for post-mortem debugging
even outside of debug sessions. Further, DeDoc’s overheads
are not perceptible in interactive debug sessions. 

5 Related Work

While there is a large body of research work on source-level
debugging in general, and source-level debugging of stati-
cally optimized code in particular, there has not been any
work targeted to dynamic optimization. As mentioned in
Section 2, Self and Java’s HotSpot compiler have side-
stepped the issue of debugging dynamically optimized code
by obviating the need for it via dynamic deoptimization and
interpretation [10,12]. 

Most of the previous work related to this research has
been in the context of static optimization. The first work was
done by Hennessy [9]. Hennessy determined variables
whose values are not reportable due to optimizations and the
debugger recovered some values to report. In later work,
Coutant et al. refined existing techniques to report more vari-
ables than done previously. Copperman and Wismuller pro-
posed data-flow analyses to determine which variables are
current at a statement in statically optimized code [7, 23]. 

Adl-Tabatabai et al. classify variables by reconstructing
the original assignment of variables and report some of those
variables [1]. They do not have the code location problem,
and the data-value problem is partially handled. Wu et al.
base their techniques on Adl-Tabatabai’s and Coutant’s work
and proposed a technique to selectively emulate statements
and recover values that could not be reported due to code
transformations [24]. Wu used the notions of interception
points and anchor points, which are similar to our original
and actual positions. Wu’s work could report even more val-
ues than Adl-Tabatabai’s, but had some shortcomings. 

The Optview debugger uses an interesting approach to
debugging where the effects of optimization on code are
exposed, rather than hidden [22].

The latest work in debugging optimized code was done
by Jaramillo et al. in the debugger Fulldoc. Jaramillo
described mappings that could relate every instance of a
statement in optimized code with the unoptimized counter-
part. Our research uses the late and stop points developed in
Fulldoc. 

There has been work on debugging dynamically trans-
lated programs. Kumar et al. proposed a debugger Tdb, that
provided source-level debugging of dynamically translated
code [13]. Tdb does not handle code location and data-value
problems posed by code transformations. Tdb uses the tech-
nique of inserting hooks into a debugger to hide code loca-
tion problem from a debugger. DeDoc builds upon Tdb’s

(a) Slowdown in generating debug information (b) Memory overhead
Figure 7: Performance and memory overheads
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techniques and hides code location as well as data-value
problems from the native debugger. 

6 Conclusion

In this paper, we provide a framework, DeDoc, for Debug-
ging Dynamically Optimized Code. DeDoc’s approach to
debugging is unique: it strives to hide the presence of the
dynamic optimizer and its effects on a program’s code and
data values from the native debugger. DeDoc tracks the
effects of dynamic optimizations in terms of transformation
descriptors. The transformation descriptors are used to gen-
erate debug information. A component of DeDoc, the debug
engine, intercepts actions performed by an existing native
debugger on a program and uses the debug information to
provide a transparent view of the program to the debugger. 

DeDoc’s techniques are efficient as well as portable. A
useful outcome of DeDoc’s approach is that it integrates
seamlessly with an existing native debugger so that users do
not need to learn new commands to debug dynamically opti-
mized programs. We provide an implementation of DeDoc
using a dynamic optimizer and a widely used debugger gdb.
We also show the performance and memory impacts of our
techniques. From our experiments, we notice that DeDoc’s
techniques can report over 96% variable values that were
otherwise non-reportable and incurs under 1% of overhead
for computing the required debug information. Our experi-
ments demonstrate that not only dynamically optimized pro-
grams can be debugged at source level, but they can be
debugged very efficiently. 
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