
Abstract
In today’s dynamic computing environments, the available
resources and even underlying computation engine can
change during the execution of a program. Additionally,
current trends in software development favor the flexibility
and cost-effectiveness of dynamically loaded components
and libraries. Because of these trends, there has been
increased research interest in virtual execution environ-
ments (VEEs) for delivering adaptable software suitable for
today’s rapidly changing, heterogeneous computing envi-
ronments. In this project, we have been investigating tools
and techniques to support implementation of VEEs using
software dynamic translation (SDT). This paper highlights
some of our recent results. One significant result is that we
have developed novel translation techniques that reduce the
memory and runtime overhead of SDT to negligible levels.
We have also developed innovative debugging and instru-
mentation tools for SDT-based software environments.
Together, these results make SDT-based systems viable for
solving a wide range of pressing problems. The paper con-
cludes with a discussion of how SDT may offer a solution to
one such problem—inherent process variation in emerging
chip multiprocessors.

1. Introduction
Over the last decade interest in virtual execution environ-
ments (VEEs) has been growing with the increased recogni-
tion of their usefulness and power. A VEE provides a self-
contained operating environment that facilitates program-
matic modification of an executing program for diverse pur-
poses, such as architecture-portability [4, 5], performance
[2, 15, 1], instrumentation [19, 17, 16], security [11, 14, 21],
and power consumption [6]. Many VEEs execute applica-
tions using software dynamic translation (SDT), which has
the potential to produce high-quality code and utilize
resources efficiently. SDT systems virtualize aspects of the
host execution environment by interposing a layer of soft-
ware between program and CPU. This software layer medi-
ates program execution by dynamically examining and
translating a program’s instructions before they are executed
on the host CPU.

This project has been studying various aspects of SDTs and
developing techniques to improve their efficiencies in both
runtime performance and memory utilization and to develop
tools that will enable the widespread acceptance of SDTs. In
this paper, we summarize our recent contributions and dis-
cuss future work.
Section 2 briefly describes Strata and the techniques that we
developed to reduce the memory requirements and improve
performance. Section 2 describes Dimension, a tool that
provides instrumentation services for SDTs. A critical issue
for software developers is how to debug code running under
the control of an SDT system. In Section 4, we describe
DeDoc, a framework that allows debugging at the source
level for programs that have been transformed by a traced-
based dynamic binary optimizer. Section 5 discusses related
work and Section 6 presents conclusions and future research
directions.

2. Strata Overview
Our first task was to design and develop a SDT that could be
used in experimental studies of the issues in building and
using SDTs. Figure 1 shows the high-level architecture of
Strata, our SDT infrastructure. Strata provides a set of retar-
getable, extensible, SDT services. These services include
memory management, fragment cache management, appli-
cation context management, dynamic linker, and a fetch/
decode/translate engine.

2.1 Performance and Memory
Because VEEs allow programs to be modified as they are
running, the overhead of monitoring and modifying a run-
ning program’s instructions is often substantial. As a result,
SDT can be slow, especially SDT systems that are not care-
fully designed and implemented. Furthermore, SDT systems
can increase memory utilization which may be problematic
for embedded systems. We investigated several overhead
reduction techniques, including indirect branch translation
caching, fast returns, and static trace formation, that can
improve SDT performance. We also developed techniques
to reduce the memory demands of a SDT through the man-
agement of exit stubs.

Virtual Execution Environments: Support and Tools

Apala Guha†, Jason D. Hiser†, Naveen Kumar‡, Jing Yang†, Min Zhao‡, Shukang Zhou†
Bruce R. Childers‡, Jack W. Davidson†, Kim Hazelwood†, Mary Lou Soffa†

‡Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260
†Department of Computer Science, University of Virginia, Charlottesville, VA 22904

{jwd,hazelwood,soffa}@cs.virginia.edu {childers,kumar,zhao}@cs.pitt.edu

1-4244-0910-1/07/$20.00 ©2007 IEEE.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on January 28, 2010 at 11:06 from IEEE Xplore. Restrictions apply.

2.2 Performance
Reducing the overhead of software dynamic translation
(SDT) is critical for making SDT systems practical for use
in production environments. Using the SPECint2K bench-
marks, we performed detailed measurements to determine
major sources of SDT overhead. Our measurements
revealed that indirect branches were a significant source of
overhead. To reduce the number of context switches caused
by indirect branches, we used an indirect branch translation
cache. This cache maps indirect branch-target addresses to
their fragment cache location. With a small 512-entry cache,
the overall slowdown was further reduced from an average
4.1x to an average of 1.7x.
To reduce overheads further, we developed a technique to
better handle indirect branches that were generated because
of return statements. For function returns where the frag-
ment cache holds the return address, function returns can be
rewritten to return directly to the fragment cache return
address, thereby avoiding a context switch. This technique
reduced the SDT slowdown to an average of 1.3x.
Finally, we investigated the usefulness of determining
instruction traces statically and using this information to
reduce the number of context switches and improving
instruction cache locality. This technique resulted in a per-
formance improvement of up to 39% (average 15%) over
fragment linking. These results demonstrate that static infor-
mation can be successfully used to guide SDT and reduce its
overhead.
Our results indicate that by applying the techniques
described here along with some dataflow analysis of the
executable, it may be possible to eliminate SDT overhead
entirely [10, 20]. If achieved, this would make SDT a pow-
erful tool for helping software developers achieve a variety

of important goals including better security, portability, and
better performance.

2.3 Memory
SDTs introduce an extra software layer between the applica-
tion and the hardware and use machine resources, and in
particular memory. For example, DynamoRIO has been
shown to have a 500% memory overhead [9]. To address
this issue, we explored memory optimization opportunities
presented by exit stubs in code caches.
A code cache is used in most VEEs to store both application
code and exit stubs. If the next instruction to be executed is
not in the code cache, exit stubs (or trampolines) are used to
return control to the SDT to fetch the next instruction
stream. It is beneficial to reduce the space demands of a
code cache. First, a small code cache reduces the pressure
on the memory subsystem. Second, it improves instruction
cache locality because the code is confined to a smaller area
within memory, and is therefore more likely to fit within a
hardware cache. Third, it reduces the number of cache allo-
cations and evictions. Solutions for managing the size of
code caches (using eviction techniques) have been proposed
elsewhere [8, 7], yet those studies focused on code traces.
Exit stubs typically have a fairly standard functionality.
They are duplicated many times in the code cache and are
often not used after the target code region is inserted into the
code cache, providing ample opportunity for optimization.
We explored the memory overhead of stubs in a SDT and
evaluated techniques for minimizing that space. We devel-
oped three techniques that work for both single-threaded
and multi-threaded programs. The first technique deletes
stubs that are no longer needed but assume unlimited code
caches and the absence of flushing. It removes stubs in their
entirety when these stubs are guaranteed not to be needed
anymore. Although there are many such applications which
do not violate these assumptions and still have a reasonable
code cache size, it is also important to be able to handle situ-
ations where flushing occurs. The last two techniques lift
these restrictions and identify stub characteristics that can
reduce space requirements.
Our experiments showed these techniques can reduce mem-
ory consumption by the code cache by up to 43% and, in
some cases, yield performance improvements as well. Our
experiments also showed that performance improvement is
even better for limited size code caches which are used
when the constraints on memory are even more severe.

3. An Instrumentation Tool for Virtual Execu-
tion Environments
With dynamic translation, a program in a SDT has two bina-
ries: an input source binary and a dynamically generated tar-
get binary. Program analysis is important for these binaries.
However, existing instrumentation systems for use in SDTs

Figure 1: Strata high-level overview.

Application

Host CPU and OS

Target Specific Functions

Strata Virtual CPU

Context Management

Memory Management

Cache Management

St
ra

ta
 V

irt
ua

l
M

ac
hi

ne

Target Interface

Linker

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on January 28, 2010 at 11:06 from IEEE Xplore. Restrictions apply.

have two drawbacks. First, they are tightly bound with a
specific SDT and thus are difficult to reuse without exten-
sive effort. Second, most of them can not support instrumen-
tation on both the source and target binaries.
In this project, we present Dimension, a tool that provides
instrumentation services for SDTs. The objective for
Dimension is to build a flexible and efficient instrumenta-
tion tool that can be used by a variety of SDTs. Given an
instrumentation specification, Dimension can be used by a
SDT to provide customized instrumentation, enabling anal-
yses on both the source and target binaries. The design of
Dimension identifies the few components of SDTs that need
to communicate with an instrumenter and develops inter-
faces between the SDT and Dimension.
To avoid interfering with a SDT’s code generation and code
cache management mechanisms, Dimension uses the probe-
based instrumentation technique, replacing a program’s
binary instructions with jumps to invoke the instrumentation
code [13]. Therefore, a SDT needs to provide the location of
both the source and target code to Dimension, and Dimen-
sion then can analyze the instructions and make instrumen-
tation decisions according to an instrumentation
specification.
When a user wants source binary instrumentation, one
approach actually instruments source binary before transla-
tion and the instrumented code is then translated and exe-
cuted. Extra translation overhead is paid for instrumentation
code in this approach. Another scheme modifies the target
binary after translation, since the effects of source binary
instrumentation can always be achieved by instrumenting
the corresponding target binary. This method requires the
mapping from the source instructions to the target instruc-
tions, and a SDT needs to provide the source-to-target map-
ping to the instrumentation system. Compared to the first
approach, the second method avoids the extra translation
overhead, but has more communication overhead. Dimen-
sion uses the second approach for simplicity.
We performed experiments to determine the efficiency of
Dimension. Three different experiments were performed to
evaluate Dimension’s performance from different reference
points. The first experiment focuses on the instrumentation
optimization mechanisms and included inlining and partial
context switching. Each of the optimizations is evaluated to
determine its effectiveness to improve Dimension’s perfor-
mance. In the second experiment, the same instrumentation
that was manually implemented in Jazz is performed auto-
matically by interfacing with Dimension. By comparing the
two performances, Dimension is evaluated to see how its
portability feature can affect its performance. In the last
experiment, we demonstrate that the use domain of Dimen-
sion can be extended to provide efficient instrumentation.
Without any optimization, the slowdown is fairly large, up

to 16.2x in Strata (gzip) and 4.5x in Jikes RVM (mpe-
gaudio). Inlining helps, with the average slowdown improv-
ing from 8.6x to 6.4x in Strata and from 2.4x to 2.1x in Jikes
RVM. A significant performance improvement comes from
partial context switch, which reduces the average slowdown
to 2.6x in Strata and 1.4x in Jikes RVM. Probe coalescing
finally reduces it to 2.0x in Strata and 1.1x in Jikes RVM.
The optimizations applied in Dimension effectively reduce
the slowdown from instrumentation in both the source and
target binaries. Their benefits are consistent across the two
different SDTs but, as usual, depend on the number of opti-
mization opportunities.
In the second experiment, we investigate how Dimension’s
flexibility affects the efficiency, i.e., the performance differ-
ence between Dimension and instrumentation systems that
are built as instrumentors. We use Dimension to perform the
same instrumentation that has been manually implemented
on a SDT and compare their performances. Jazz [18] builds
a branch coverage tester by instrumenting each basic block
of a Java program to determining what edges are covered by
an execution. We use Dimension to build the same instru-
mentation for Jikes RVM and compare their performances.
To our knowledge, Jazz uses all the instrumentation optimi-
zation techniques that Dimension uses, so the comparison
can fairly illustrate the trade-off between efficiency and
flexibility. Our results show that Dimension achieves com-
parable performance against the systems in which instru-
mentation is manually built into a VEE. The flexibility of
Dimension introduces negligible effect on its performance.
In the third experiment, we used a standard, basic-block
counting instrumentation, to compare the performance of
Strata-Dimension against Pin, Valgrind, and DynamoRIO.
The metric used is the slowdown from instrumentation,
which is the execution time with instrumentation normal-
ized to the native execution. The data for Valgrind,
DynamoRIO and Pin were obtained from a public publica-
tion [16]. As Figure 2 illustrates, Strata-Dimension intro-
duces a reasonable slowdown from instrumentation. The
average slowdown for Strata-Dimension is 2.6x, which is
slightly worse than Pin (2.3x) but better than both Dynamo-
RIO (4.9x) and Valgrind (7.5x). Pin performs more compli-
cated optimizations on instrumentation than Dimension
does. DynamoRIO is primarily designed for dynamic opti-
mization, and does not automatically perform instrumenta-
tion optimizations (e.g., partial context-switch) like
Dimension and Pin. We believe the slowdown of Valgrind
mainly comes from its overall infrastructure, which has a
slowdown of 5.6x even when program is executed without
instrumentation. The experiment demonstrates that Dimen-
sion can be used to provide efficient dynamic instrumenta-
tion tools in traditional execution environments.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on January 28, 2010 at 11:06 from IEEE Xplore. Restrictions apply.

As the experimental results show, Dimension achieves flexi-
bility and efficiency simultaneously. The optimization tech-
niques applied by Dimension effectively reduce the
slowdown from instrumentation, leading to a comparable
performance against systems in which instrumentation is
developed for a particular VEE. The use domain of Dimen-
sion can be easily extended, e.g., building efficient regular
instrumentation systems for use in traditional execution
environment.

4. Source-level Debugging for Trace-based
Dynamic Optimization
We also developed a dynamic optimizer and a debugger for
the dynamically optimized code. Debugging programs at the
source level is essential in software development, as the user
is familiar with the source level code but not the executing
code. With the growing importance of dynamic optimiza-
tion, there is a clear need for debugging support in the pres-
ence of runtime code transformation. This work presents the
first debugging framework called DeDoc, that allows
debugging at the source level for programs that have been
transformed by a trace-based dynamic binary optimizer. Our
techniques provide full transparency and hide the effect of
dynamic optimizations on code statements and data values
from the user. We describe and evaluate an implementation
of DeDoc. Our experiments show that nearly all values can
be reported from a dynamically optimized program with
DeDoc. The results also show that our techniques are practi-
cal, with a minimal performance overhead of up to just 2.6%
when generating debug information during program execu-
tion.
The key challenge in developing a debugger for dynamic
optimization is how to provide for online communication
between the dynamic optimizer and the debugger. An active

debug environment is needed in which the debug informa-
tion reflects generation, modification and deletion of code
by a dynamic optimizer and is immediately available to the
debugger. The second challenge is the code location and
data value problems in the presence of re-optimization and
trace combination. Another challenge is that debug informa-
tion must be generated with low overhead. This challenge
emerges due to the frequent and fine-grain application of
optimizations on traces. There is also much more code
duplication as many traces may cover the same basic blocks.
Further, traces may be periodically flushed (deleted).
Our DeDoc framework provides dynamic debug mappings
that track code modifications and code duplication as opti-
mizations are applied to the executing code. These map-
pings can be generated, modified and communicated to the
debugger efficiently. DeDoc uses several techniques to gen-
erate additional lightweight debug information with “anno-
tations” that are attached to executing code through invisible
breakpoints. These annotations extract expected program
values to handle the data value problem. The debug infor-
mation consisting of the mappings and annotations is also
needed to handle re-optimizations and code granularity
changes. Lastly, DeDoc is retargetable to support existing
dynamic optimizers and existing debuggers.
DeDoc addresses code location and data value problems
posed by trace-based dynamic binary optimizers. Code loca-
tion problems are handled by debug mappings, and data
value problems are handled by placing annotations in the
code to extract variables values at runtime. The mappings
and annotations can be generated and modified during pro-
gram execution. A component of DeDoc, the debug engine,
computes the mappings and annotations using information
provided by the dynamic optimizer. The debug engine facil-
itates the communication of runtime debug information to
the debugger.
A salient feature of DeDoc is that it intercepts actions per-
formed by an existing debugger on a program and hides the
effects of dynamic optimization from the debugger. We
developed an implementation of DeDoc using a dynamic
optimizer and the Gdb debugger. We also showed that our
techniques can report most program values and have very
low overhead.

5. Related work
Software dynamic translation has been used for a number of
purposes (see Section 1), including dynamic binary transla-
tion of one machine instruction set to another [22], emula-
tion of operating systems (e.g., VMWare, Plex86) [19], and
machine simulation [3, 23]. While most of these systems
have been built for a single purpose, there has been recent
work on general infrastructures for SDT that are similar to
Strata.

Figure 2: Comparison of slowdown from instru-
mentation in traditional execution environments.

0

2

4

6

8

10

12

14

gzi
p vpr mcf

cra
fty

pa
rse

r

pe
rlbm

k ga
p

vor
tex bzi

p2 twolf

Ari
Mean

Sl
ow

do
wn

Valgrind
DynamoRIO
Pin
Strata-Dimension

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on January 28, 2010 at 11:06 from IEEE Xplore. Restrictions apply.

Walkabout is a retargetable binary translation framework
that uses a machine dependent intermediate representation
to translate and execute binary code from a source machine
on a host machine [22]. It analyzes the code of the source
machine to determine how to translate it to the host machine
or to emulate it on the host.
Another flexible framework for SDT is DynamoRIO [2],
which is a library and set of API calls for building SDTs on
the x86. One such system built with DynamoRIO addresses
code security. Unlike Strata, to the best of our knowledge,
DynamoRIO was not designed with retargetability in mind.
Another difference is that DynamoRIO is distributed as a set
of binary libraries. The source code is available for Strata,
making it possible to modify and experiment with the under-
lying infrastructure to implement new SDT systems.
Pin is a VEE that provides transparent and portable instru-
mentation [16]. It was built for four different architectures
to demonstrate how little effort is made to port to different
platforms, including IA-32, EM64T, Itanium, and ARM
architectures. Pin uses dynamic compilation to instrument
executables as they are executing.
To achieve high performance in a SDT system, it is impor-
tant to reduce the overhead of the translation step. For a
retargetable and flexible system like Strata, it can be all the
more difficult to achieve good performance across a variety
of architectures and operating systems. A number of SDT
systems have tackled the overhead problem. For example,
Shade [3] and the Embra [23] emulator use a technique
called chaining to link together cache-resident code frag-
ments to bypass translation lookups. This technique is simi-
lar to one of the overhead reduction techniques in Strata that
links a series of fragments to avoid context switches.
The most closed related work in debugging optimized code
was done by Jaramillo et al. in the Fulldoc debugger [12].
Jaramillo described mappings that can relate every instance
of a statement in optimized code with an unoptimized coun-
terpart. Fulldoc proposed late and stop annotations to
extract data values whose reportability is affected due to
optimizations. DeDoc builds on Fulldoc’s techniques, par-
ticularly its data tracking scheme.
Some VEEs have been manually extended to provide instru-
mentation. Jazz [18] is a program testing tool which builds
instrumentation functionality in Jikes RVM for structural
testing. DynamoRIO was extended from a dynamic optimi-
zation system, with the addition of a set of instrumentation
APIs for building customized program analysis tools. Both
Jazz and DynamoRIO provides customized instrumentation
by extending the original translation-based VEE. However,
designs and implementations are for one particular system,
which lacks the portability to a wide variety of different
translation-based VEEs.

6. Conclusions and Future Work
With this work, we have demonstrated that SDTs can be
made efficient. We also showed that tools that support the
use of SDTs are viable.
There are a number of challenges that we believe can be
tackled with SDTs. In our next step, we will focus on one of
them, process variation. With the emergence of chip multi-
processors (CMPs), comes the promise of high-performance
computing on a desktop. However, an inherent characteristic
of CMPs that presents a significant obstacle is process vari-
ation: Timing and power consumption will vary across
identically designed components of a CMP, producing a
negative impact on application performance and ultimately
limiting the benefit of CMPs. Process variation has been
identified as one of the key problems that could block fur-
ther scaling of circuits if not addressed.
In our next step of research, we plan to explore an approach
that combines the hardware, compiler and OS. Namely, we
propose to use an advanced execution system, called a
Robust Execution Environment (REEact), that will dynami-
cally adapt an application’s execution to the runtime
resource landscape originating from process variations.
REEact will be a type of virtual execution environment
(VEE) that mediates, controls and adapts the application’s
execution. It will employ a combination of techniques in
adapting both the hardware resources and the application
software code to overcome the impact of process variations.
At the hardware level, it will adapt the resources, such as
setting the speed/voltage of a node on the CMP. At the soft-
ware level, REEact will dynamically optimize code, taking
into account performance and power consumption due to
process variations and environmental effects. REEact will
even elicit the help of the OS in determining what resources
to use in running the application. It will also inform the OS
about information it dynamically discovers about latency,
power, and application behavior.
References
[1] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia.

Dynamo: A transparent dynamic optimization system. In
PLDI ’00: Proceedings of the ACM SIGPLAN 2000 Confer-
ence on Programming Language Design and Implementa-
tion, pages 1–12, New York, NY, USA, 2000. ACM Press.

[2] Derek Bruening, Timothy Garnett, and Saman Amarasinghe.
An infrastructure for adaptive dynamic optimization. In CGO
’03: Proceedings of the International Symposium on Code
Generation and Optimization, pages 265–275, Washington,
DC, USA, 2003. IEEE Computer Society.

[3] Bob Cmelik and David Keppel. Shade: A fast instruction-set
simulator for execution profiling. In SIGMETRICS ’94: Pro-
ceedings of the 1994 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pages
128–137, New York, NY, USA, 1994. ACM Press.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on January 28, 2010 at 11:06 from IEEE Xplore. Restrictions apply.

[4] James C. Dehnert, Brian K. Grant, John P. Banning, Richard
Johnson, Thomas Kistler, Alexander Klaiber, and Jim Matt-
son. The transmeta code morphing software: using specula-
tion, recovery, and adaptive retranslation to address real-life
challenges. In CGO ’03: Proceedings of the international
symposium on Code generation and optimization, pages 15–
24, Washington, DC, USA, 2003. IEEE Computer Society.

[5] James Gosling. The Java Language Specification. Addison-
Wesley, Reading, MA, USA, 2000.

[6] Kim Hazelwood and David Brooks. Eliminating voltage
emergencies via microarchitectural voltage control feedback
and dynamic optimization. In ISLPED ’04: Proceedings of
the 2004 International Symposium on Low Power Electronics
and Design, pages 326–331, New York, NY, USA, 2004.
ACM Press.

[7] Kim Hazelwood and James E. Smith. Exploring code cache
eviction granularities in dynamic optimization systems. In
CGO ’04: Proceedings of the International Symposium on
Code Generation and Optimization, page 89, Washington,
DC, USA, 2004. IEEE Computer Society.

[8] Kim Hazelwood and Michael D. Smith. Generational cache
management of code traces in dynamic optimization systems.
In MICRO 36: Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, page 169,
Washington, DC, USA, 2003. IEEE Computer Society.

[9] Kim Hazelwood and Michael D. Smith. Managing bounded
code caches in dynamic binary optimization systems. ACM
Transactions on Architecture and Code Optimization,
3(3):263–294, 2006.

[10] Jason D. Hiser, Daniel Williams, Adrian Filipi, Jack W.
Davidson, and Bruce R. Childers. Evaluating fragment con-
struction policies for sdt systems. In VEE ’06: Proceedings of
the 2nd International Cnference on Virtual Execution Envi-
ronments, pages 122–132, New York, NY, USA, 2006. ACM
Press.

[11] Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi, Jack W.
Davidson, David Evans, John C. Knight, Anh Nguyen-
Tuong, and Jonathan Rowanhill. Secure and practical defense
against code-injection attacks using software dynamic trans-
lation. In VEE ’06: Proceedings of the 2nd International Con-
ference on Virtual Execution Environments, pages 2–12, New
York, NY, USA, 2006. ACM Press.

[12] C. Jaramillo, R. Gupta, and M. L. Soffa. FULLDOC: A full
reporting debugger for optimized code. In Proceedings of the
Static Analysis Symposium, volume 1824, pages 240–259.
Springer, 2000.

[13] Peter B. Kessler. Fast breakpoints: Design and implementa-
tion. In PLDI ’90: Proceedings of the ACM SIGPLAN 1990
Conference on Programming Language Design and Imple-
mentation, pages 78–84, New York, NY, USA, 1990. ACM
Press.

[14] Vladimir Kiriansky, Derek Bruening, and Saman P. Amaras-
inghe. USENIX ’02: Secure execution via program shepherd-
ing. In Proceedings of the 11th USENIX Security Symposium,
pages 191–206, Berkeley, CA, USA, 2002. USENIX Associ-
ation.

[15] Chris Lattner and Vikram Adve. Llvm: A compilation frame-
work for lifelong program analysis & transformation. In CGO
’04: Proceedings of the International Symposium on Code
Generation and Optimization, pages 75–86, Washington, DC,
USA, 2004. IEEE Computer Society.

[16] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil,
Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa
Reddi, and Kim Hazelwood. Pin: Building customized pro-
gram analysis tools with dynamic instrumentation. In PLDI
’05: Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages
190–200, New York, NY, USA, 2005. ACM Press.

[17] J. Maebe, M. Ronsse, and K. De Bosschere. DIOTA:
Dynamic instrumentation, optimization and transformation of
applications. In Compendium of Workshops and Tutorials
held in conjunction with PACT 2002, 2002.

[18] Jonathan Misurda, James A. Clause, Juliya L. Reed, Bruce R.
Childers, and Mary Lou Soffa. Demand-driven structural
testing with dynamic instrumentation. In ICSE ’05: Proceed-
ings of the 27th International Conference on Software Engi-
neering, pages 156–165, 2005.

[19] Nicholas Nethercote. Dynamic Binary Analysis and Instru-
mentation or Building Tools is Easy. PhD Dissertation, Uni-
versity of Cambridge, Cambridge, UK, November 2004.

[20] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W. David-
son, and M. L. Soffa. Retargetable and reconfigurable soft-
ware dynamic translation. In CGO ’03: Proceedings of the
International Symposium on Code Generation and Optimiza-
tion, pages 36–47, Washington, DC, USA, 2003. IEEE Com-
puter Society.

[21] Kevin Scott and Jack W. Davidson. Safe virtual execution
using software dynamic translation. In Proceedings of the
18th Annual Computer Security Applications Conference,
pages 209–218, Las Vegas, NV, December 2002.

[22] David Ung and Cristina Cifuentes. Machine-adaptable
dynamic binary translation. In DYNAMO ’00: Proceedings of
the ACM SIGPLAN Workshop on Dynamic and Adaptive
Compilation and Optimization, pages 41–51, New York, NY,
USA, 2000. ACM Press.

[23] Emmett Witchel and Mendel Rosenblum. Embra: Fast and
flexible machine simulation. In SIGMETRICS ’96: Proceed-
ings of the 1996 ACM SIGMETRICS International Confer-
ence on Measurement and Modeling of Computer Systems,
pages 68–79, New York, NY, USA, 1996. ACM Press.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on January 28, 2010 at 11:06 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

