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Abstract

Oneof the primary challengesin intrusion detectionis
modellingtypical applicationbehavior, sothat wecanrec-
ognizeattacks by their atypical effectswithout raising too
manyfalse alarms. We showhow static analysismay be
usedto automaticallyderivea modelof applicationbehav-
ior. The result is a host-basedintrusion detectionsystem
with threeadvantages: a high degreeof automation,pro-
tectionagainsta broadclassof attacksbasedon corrupted
code, and the elimination of false alarms. We report on
our experiencewith a prototypeimplementationof thistech-
nique.

1. Intr oduction

Computersecurityhasundergoneamajorrenaissancein
thelastfiveyears.Beginningwith Sun’s introductionof the
Java languageandits supportof mobilecodein 1995,pro-
gramminglanguageshave beena major focus of security
research.Many papershave beenpublishedapplyingpro-
gramminglanguagetheoryto protectionproblems[25, 24],
especiallyinformation flow [17]. Security, however, is a
many-facetedtopic,andprotectionandinformationflow ad-
dressonly asubsetof theproblemsfacedin building andde-
ploying securesystems.As attackersanddefendersarein
anarmsrace,deploying a systemwith strictly staticbut in-
completesecuritymeasuresis doomedto failure: this gives
theattacker thelastmove,andthereforevictory.

Formalmethods,alone,areinsufficient for building and
deploying securesystems.Intrusiondetectionsystemshave
beendevelopedto provide an online auditingcapabilityto
alertthedefenderthatsomethingappearsto bewrong. Un-
fortunately, most intrusion detectionsystemssuffer from
major problemsas describedin Section 2. We take a
new approachto theproblemthateliminatesmany of these
drawbacks.

Our approachconstrainsthe systemcall traceof a pro-

gram’sexecutionto beconsistentwith theprogram’ssource
code. We assumethat the programwas written with be-
nignintent.Thisapproachdealswith attacks(suchasbuffer
overflows) that causea programto behave in a mannerin-
consistentwith its author’s intent.Thesearethemostpreva-
lent securityproblems.Of course,somesecurityproblems
aredirectly attributableto faulty applicationlogic, suchas
programsthat fail to checkauthenticationinformationbe-
fore proceeding,andonelimitation of our intrusiondetec-
tion systemis that it doesnot detectattacksthat exploit
logic errors.Application logic bugs,however, aredwarfed
in practiceby buffer overflow problemsandothervulnera-
bilities that allow for executionof arbitrarymachinecode
of the attacker’s choice[8, 35], andit is the latter type of
vulnerabilityonwhichwe focus.

Therestof this paperis organizedasfollows: Section2
discussesrelatedwork, Section3 discussesour framework,
Section4 discussesthemodelswe use,Section5 discusses
our implementation,Section6 evaluatesour results,Sec-
tion 7 discussesfuturework, andSection8 concludes.

2 RelatedWork

Early work on intrusion detectionwas due to Ander-
son[1] andDenning[9]. Sincethen,it hasbecomea very
active field. Most intrusion detectionsystems(IDS) are
basedon one of two methodologies:either they generate
a modelof a program’s or system’s behavior from observ-
ing its behavior onknown inputs(e.g.,[14]), or they require
thegenerationof a rule base(e.g.,[3]). In bothcases,these
systemsthenmonitorexecutionof thedeployedprogramor
systemandraiseanalarmif theexecutiondivergesfrom the
model. The currentmodel-basedapproachesall shareone
commonproblem:a truly robustintrusiondetectionsystem
mustsolveaspecialcaseof themachinelearningproblem,a
classicAI problem.Thatis, to preventfalsealarms,theIDS
mustbeableto infer, from statisticaldata,whetherthecur-
rentexecutionof thesystemis valid or not. Thefalsealarm
rateof presentsystemsis amajorproblemin practice[2].



Ko et al., and othershave proposeda very naturalso-
lution to this problem: every programshouldcomewith a
specificationof its intendedbehavior [21, 19, 22, 29]. This,
of course,hasbeenthedreamof the formal methodscom-
munity for 25 years,andis asyet unrealized.We believe it
is likely to remainunrealizedfor sometime to come. Al-
thoughKo et al.’s specificationlanguageis simpleandad-
mits relatively compactspecifications,we believe that the
needfor manuallywritten specificationswill dramatically
limit the impact of this work1. We philosophicallyagree
with the direction of Ko et al.’s work, but we proposeto
side-stepits main drawbackby automaticallyderiving the
specificationfrom theprogram.

3. The framework

We would like to detectthecasewhereanapplicationis
penetratedandthenexploitedto harmotherpartsof thesys-
tem. To this end,we definea specificationof expectedap-
plicationbehavior, andthenwemonitortheactualbehavior
to seeif it everdeviatesfrom thespecification.Wedescribe
first how wemonitorapplicationbehavior, andnext wepro-
posetechniquesfor automatedspecificationconstruction.

To reducethepotentiallyhugevolumeof tracedata,we
consideronly thesecurity-relevantbehavior of theapplica-
tion of interest.Themonitoringstrategy shouldthenensure
thatacompromisedapplicationcannotcompromisesystem
integrity2 while still evadingdetection. In general,it will
alwaysbe possiblefor attackers to evadedetectionin our
systemif they do not causeany harm,but if they want to
causeharm, they will needto interactwith the operating
systemin awaywhich risksdetection.

In many casesof practicalinterest,we maysafelymake
thefollowing convenientassumption[15]:

Assumption. A compromised application cannot cause
much harmunlessit interactswith theunderlyingoperating
system,andthoseinteractionsmaybereadilymonitored.

If—as is typically the case3—the only way to interact
with the operatingsystemis via systemcalls, it suffices
to monitor just the application’s systemcall trace. Since
monitoringsystemcall tracesis usuallystraightforward in

1However, onepromisingdirectionto remedytheselimitationscanbe
foundin Ko’s recentwork on blendingmanualrule baseswith automated
specificationgeneration[20]. Note that othershave usedruntime tech-
niquesto identify programinvariants[12]; however, becausetheidentified
invariantsconcerndataflow, ratherthansequencingof systemcalls, they
donot seemto bewell-suitedto intrusiondetection.

2Wedonotconsiderdenialof serviceattacksin thiswork.
3We do not claim that theassumptionis alwaystrue. Someoperating

systemsarestartingto includepartial exceptionsto this rule (e.g.,user-
level networking). However, few security-criticalapplicationsusethese
exceptionalfeatures,sowecansimplyforbid theiruse:therareapplication
whichusesthesefeaturesmayintroducefalsealarms,but at leastmalicious
codewill notbeableto exploit thespecialfeaturesin anattack.

practice,thebulk of thechallengewill be to derive a spec-
ification of the application’s expectedinteractionwith the
operatingsystem.

We derive our specificationof expectedapplicationbe-
havior from theapplicationsourcecode,alongwith a fixed
modelof the operatingsystem.We model the application
asatransitionsystemwith some(possiblyvery large)setof
statesalongwith someadmissibletransitions.If weeverde-
tectasystemcall tracethatis incompatiblewith this transi-
tion system,we mayconcludethatthemostlikely explana-
tion is thatwe areunderattack:for instance,theadversary
may have introducedmaliciouscodeof her own choosing
andcausedit to be executed,e.g.,via a buffer overrunor
formatstringattack.Therefore,to detectintrusions,ourba-
sic approachis to look for systemcall tracesthatcouldnot
have beengeneratedby theunderlyingtransitionsystem.

Onesubtletyis thattheadversarymayadaptto ourmeth-
ods. Indeed,we later introducea new type of attack,the
mimicryattack, whichappliesto all intrusiondetectionsys-
temsandin somecasesmayallow theadversaryto fool the
intrusiondetectionsystemby camouflagingthe malicious
codeso that it behaves much like the applicationwould.
Wedonothaveacompletedefenseagainstmimicry attacks,
but we make someprogresstowardsquantifyingresistance
againstthis typeof attacker tactic.SeeSection6 for details.

Our intrusion detectionsystemdoesnot detectall at-
tacks,but it doesallow us to detectoneof the mostcom-
mon effectsof a penetration:executionof corruptedcode.
We observe that, in practice,onceanattacker hascompro-
misedthetargetapplication,shewill oftendownloadsome
‘exploit code’of herchoosinginto theapplicationanduse
it to executevariousoperationswith theapplication’sprivi-
leges.Sincethisexploit codeis notoriginally presentin the
applicationsourcecode,if it is ever executedwe expectto
seebehavior that is incompatiblewith thesourcecodeand
thusto detecttheattack.

Oneproblemis that transitionsystemsderived directly
from the sourceareusuallytoo complex to be useful. We
couldnaively starta second‘slave’ copy of theapplication
runningon thesameinputsin an interpreterthatsimulates
all interactionswith the outsideworld, checkingat every
stepwhetherweobtainthesamesystemcall tracefrom both
the masterand the slave. This naive replicationstrategy
could probablybe madeto work, but it hastwo important
disadvantages.First, replicationmaybehardto implement,
becauseit is likely to beverydifficult in practiceto remove
every last shredof non-determinismfrom the application
(e.g.,randomnumbergenerators,processscheduling,tim-
ing channels,interactionwith theoutsideenvironment,etc.)
[23]. Second,andmoreimportantly, theslave is exposedto
thesamerisksasthemaster:any setof inputsthatticklesa
securityflaw in themasteris likely to triggerthesameflaw
in theslaveaswell andtherebyescapedetection.



We tackle theseproblemsby simplifying the transition
systemgreatly, abstractingaway unnecessarycomplexity.
Sincewe careonly aboutthe sequenceof systemcalls is-
sued,we pruneaway all otheraspectsof the model,even
to thepoint of disregardingthecontentsof local variables,
datastructures,andall otherdataflow. We thensimulate
the simplified transitionsystemin an interpreterwith cor-
respondinglyminimal operationalsemantics.This abstrac-
tion processhasthe potentialto fix the problemsof naive
replication: it canbe very fast, becausemostof the code
has beenprunedaway; we can afford to deal with non-
determinism,since the transitionsystemhasbeendrasti-
cally simplified (for instance,non-deterministicfinite au-
tomataarenotmuchmoreexpensive to simulatethandeter-
ministic finite automata);and the minimal operationalse-
manticsmayremove many of thepitfalls of C (e.g.,buffer
overrunattackswill notaffectamodelthatignoresthecon-
tentsof all buffers).

To summarizeour approach: We first pre-computea
model of expected application behavior, built statically
from programsourcecode;then,we monitor the program
andcheckits systemcall tracefor complianceto themodel
at runtime. The primary challengeis in automatingmodel
generation,whichwediscussnext.

4. Models

In thissection,weproposeasequenceof modelsthatwe
useto specifyexpectedapplicationbehavior: first, a trivial
modelto illustratethemainidea;then,thecallgraphmodel;
third, arefinement,theabstractstackmodel;andfinally, the
low-overheaddigraphmodel.

Eachmodelis intendedto satisfya commonsoundness
property: falsealarmsshouldnever occur. To achieve this
goal, we mustmake a numberof mild assumptionsabout
our operatingenvironment. We consideronly portableC
codethathasno implementation-definedbehavior: for ex-
ample,weassumethattherearenointentionalarraybounds
violations, NULL-pointer dereferences,or other memory
errors; we assumethereis no function pointer arithmetic
or type-castingbetweenfunction pointersandotherpoint-
ers;andwe assumethereis no application-definedruntime
codegeneration.Theseassumptionsarenot critical: viola-
tionsmay introducefalsealarmsbut will never causeusto
missattackswe otherwisewould have detected.Nonethe-
less,in our experiencethe security-criticalapplicationsin
widespreadusedoconformto theseassumptions.

Froma formal languageviewpoint,all of ourmodelsin-
volve recognizinga sentencein a regular or context-free
language. However, this viewpoint is much lessintuitive
than dealing directly with automataand will not be dis-
cussedfurther. For easeof discussion,we will refer to
terminating programsand finite or pushdown automata,

as appropriate. All of our resultsdirectly extend to non-
terminatingprograms.

4.1.A tri vial model

We illustrate these ideas by describinga minimalist
example of an intrusion detectionsystemfollowing this
framework. Let ! be the set of systemcalls that the ap-
plication canever make. The setof allowablesystemcall
traces—i.e.,our modelof expectedbehavior—will thenbe
exactly theregularlanguage!�" . If, at runtime,we ever ob-
serve theapplicationissuingsomesystemcall not in ! , we
preventthesystemcall from executing,kill theapplication,
andsoundthealarm.

Thismodelis easyto derivewith automatedsourceanal-
ysis tools. Becausein practicesystemcalls may be easily
recognizedin sourcecode,theset ! maybeinferredeasily
by simply walking the parsetreeandpattern-matchingfor
systemcall invocations.

Suchan approachis simple,easyto implement,sound,
andefficient, but it will fail to detectmany attacks.No at-
tack that operatesusingjust systemcalls from ! will ever
bedetected,andin practicewecanexpectthis failuremode
to becommonif ! is too large.Anotherproblemis thatthe
approachis too coarse-grained,sincemany commonsys-
tem calls are too dangerousto allow without any restric-
tions. For example,if the #%$%&�')(+* systemcall is included
in ! , attackerswill befreeto modify any file whatsoever at
any time without fearof detection.Furthermore,this naive
approachscalespoorly to largeapplications,which areex-
actly the onesat greatestrisk for intrusions,becauselarge
applicationsyield large sets ! . Consequently, a morepre-
cisemodelis needed.

4.2.The callgraph model

The foremostproblemwith the naive model described
above is that we have thrown away all information about
theorderingof thepossiblesystemcalls. In this sectionwe
show how to retainsomeorderinginformation.

Onecleanway to representinformationon theordering
of possiblesystemcallsis to expressourmodelasaregular
languageover , , thesetof systemcalls. For easeof model
generation,it is convenientto usean equivalent represen-
tationof themodelasa non-deterministicfinite automaton
(NDFA). We describenext how to usea NDFA to charac-
terizetheexpectedsystemcall traces.

Building the model Deriving themodelis asimpleappli-
cationof control-flow analysis.We first build the control-
flow graph -/.10�243+576 associatedwith theprogramsource
code.We assumethateachnodeof thecontrol-flow graph
executesat mostonesystemcall andthatwe canrecognize
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Figure 1. An example C program (left), and its associated callgraph model (right). Transitions to
Wrong are omitted to avoid cluttering the diagram. Dashed lines indicate interpr ocedural edges,
whic h are represented as a -transitions in the NDFA.

wheresystemcalls occur. Thenwe note that the control-
flow graphcannaturallybe viewed asa specificationof a
NDFA with statespace2cb�d Wrong e , transitionsinducedby
5 , andalphabet, . Eachedgefhgjilkm5 of thecontrol-
flow graphinducesa transitionfongpi of theautomaton,if
thereis a systemcall q at nodef , or the a -transitionflrgsi
otherwise;a -transitionsrepresenttransferof controlwhere
no systemcall is executed. Every proper state(i.e., each
statef>t. Wrong) is consideredanacceptingstate.Thespe-
cial stateWrong is non-acceptingandcontainsa self-loop
Wrong ng Wrong on every qukE, ; whena node f con-
tainsno outgoingtransitionson somesymbol qmkE, , we
addan implicit transition f ng Wrong. The resultingau-
tomatonis non-deterministicbecausein generalwe cannot
staticallypredict,for example,which branchof an if-then-
else expressionwill be takenat runtime. SeeFigure1 for
anexample.

We use this automatonas our model of expectedbe-
havior, so that an observed traceis acceptedonly if it is
acceptedby the NDFA. We call this the callgraph model.
Notethatthismodelthrowsawayalot of informationabout
the executionof the application: in particular, we ignore
all of its internal state other than the program counter.
Nonetheless,it preservesasoundnessproperty:

Claim. Therearenofalsealarmswhenusingthecallgraph
model.

The claim follows from the observation that, by con-
struction, every possiblepath of execution through the
control-flow graphcorrespondsto anacceptingpathof the
NDFA, andthuseverydynamically-possibleexecutiontrace
will beacceptedby theNDFA.

Monitoring algorithm Whenmonitoringtheapplication,
wesimulatetheoperationof theNDFA ontheobservedsys-

tem call trace,resolvingnon-determinismby exploring all
possiblepathsin breadth-firstorder. This requiresv7w�xy2zx|{
operationsper observed systemcall. Note that more ef-
ficient techniquesexist—for instance,the NDFA may be
convertedto a DFA, eitheraheadof time or on thefly, and
cachingmay be usedto speedup the simulation [18]—
but we have not explored any of thesealternatives. See
Section5 for more implementationdetails,andSection6
for measurementsof ourimplementation’sperformanceand
detectionpower.

Function calls Oneissuenot mentionedso far is how to
dealwith function calls. After we generatea control-flow
graphfor eachprocedure,we connectthem together: we
split eachcall sitef into two nodesf}3�f�~ andaddextraedges
fhg��)�������
w��
{ and �)�%�|�`w���{�g�f�~ for eachfunction � that
could be calledfrom f . Seethe dashededgesin Figure1
for an example. Here �)�%�����
w���{ and �)�����`w���{ denotethe
uniqueentry and exit nodesfor � , as might be expected.
This so-calledmonomorphic(or context-insensitive) analy-
sis producesa single large graphthat may be analyzedas
above.

Impr ecision in the model One limitation of the call-
graph model is that it includesimpossiblepaths,due to
themonomorphictreatmentof functioncalls. In particular,
considertwo call sitesf<3Wi thatbothcall thesamefunction
� ; thentheexpandedcontrol-flow graphwill containpaths
of the form f>g��^�������
wW�
{�g��+�+�4g��)�%�|�`wW�
{�g�i�~ . See
Figure1 for anillustratedexample.Suchanimpossiblepath
cannotoccur in any real execution,becausefunction calls
will alwaysreturnto thesitewherethey werecalledfrom.
Unfortunately, a NDFA is unableto expressthis constraint,
soweendupwith impossiblepathsthroughtheautomaton.

Impossiblepathsin thecallgraphmodelareaproblemin
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while (true)
caseÞ�ß�Þ ÇÀÊ ofÂÐÃ¨ÄWÅWÆÈÇ�É�Ê<à Þ¨á`âWã Ç|ÂÐÏ¨ÑyÄ+Ç�É�ÊWÊWä Þ`á¨âÀã Ç ���+�� ��+¡ ÇWÊWÊÂÐÃ¨ÄWÅWÆÈÇ�É�Ê<à Þ¨á`âWã Ç|ÂÐÏ¨ÑyÄ+Ç�É�ÊWÊWä Þ`á¨âÀã Ç ���+���¤ ��+¡ ÇWÊWÊÂÐÏ¨ÑyÄ+Ç�É�Êåà
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no-opçzè�é à
readandconsumeç from theinput

otherwise
à

entertheerrorstate,Wrong

Figure 2. The example C program again (left), with its associated conte xt-free grammar (mid dle) and
the resulting abstract stac k model (right).

practice. This imprecisioncausesour NDFA to be larger
than necessary, and attacksthat follow theseimpossible
pathswill remain undetected. As a consequence,intru-
sion detectionsystemsbasedon the callgraphmodelmay
in somecasesbemorepermissive thanwewould like.

4.3.The abstract stackmodel

We next introducethe abstract stack model, which al-
lows us to characterizemorepreciselythe setof possible
systemcall tracesby eliminating impossiblepaths. The
ideais to modelnot only theprogramcounterbut alsothe
stateof thecall stack.We extendour modelso that theset
of possiblesystemcall tracesis allowedto form a context-
freelanguage.It is thennaturalto representthisabstraction
of theprogramasanon-deterministicpushdown automaton
(NDPDA), or equivalently, acontext-freegrammar.

Building the NDPDA Thepushdown automatonwecon-
structwill provide an intuitive modelof programbehavior.
Thestateof theautomatonwill beanabstractsummaryof
the stateof the application. In particular, the automaton’s
stackwill form anabstractversionof theprogramcall stack:
eachsymbolon theautomaton’s stackwill correspondto a
singlestackframein theapplication’s call stack,whereev-
erythingbut thereturnaddresshasbeenabstractedaway.

The constructionis asfollows. We assumethat we are
givena globalcontrol-flow graph -ê.10�2Ð3�5ë6 thatincludes
interproceduralcall edges. We generatea NDPDA with
stackalphabet2cb�, , inputalphabet, , andtransitionsgiven
asfollows. Supposefirst that thereis a nodefhkm2 on the
topof thestack.If f is afunctioncall sitereferencingapro-
cedure� , we pop f off the stack,pushthe corresponding
returnsite f�~ , andfinally push�)�%�����
w���{ on to thestack.If

f is a functionexit node,we pop f . If f is a non-callnode,
we pop f , push ì if f issuesthesystemcall ì�k1, (other-
wise,we do not pushanything for nodesthatdo not make
systemcalls), non-deterministicallyselectsomesuccessor
i of f with f«gíiîku5 , andfinally pushi . On theother
hand,if ì�kh, is at thetopof thestack,weattemptto match
ì againstthecurrentinputsymbol ì¢~ : if ì�.ïì�~ , weconsume
thecurrentinputsymbolandpop ì off thestack;otherwise,
we enterthestateWrong andrejectthe input string. As in
the callgraphmodel,all properstatesareacceptingstates.
SeeFigure2 for anexample.

This constructionof the NDPDA ensuresthat every se-
quenceof operationsto theprogramcall stackduringanor-
malapplicationexecutionwill beamongthesetof pathsex-
ploredduringthesimulationof NDPDA. SincetheNDPDA
is non-deterministic,otherpathsmayalsobeexplored,but
we canbesurethat thecorrectonewill not beomitted. At
thesametime, the increasedprecisionof theabstractstack
model makes it lesslikely that real attackswill go unde-
tected.

The context-freemodel In our implementation,theND-
PDA is constructeddirectly. However, astheconstructionis
ratherdetailed,it maybeeasierto considerbuilding an(al-
most,asexplainedbelow) equivalentcontext-freegrammar
for the program,with non-terminalstaken from 2 , termi-
nals in , (the setof systemcalls), andrulesgiven asfol-
lows4. If f is a functioncall sitewith correspondingreturn
site f�~ , weaddtherule fñð|ð�.>�)�����¢�
wW�
{
f�~ for eachfunction
� thatcouldbecalledfrom f . For eachnon-callnodef and
eachsuccessori of f , we addtherule fñð�ð|.@q�i if thereis
a systemcall qck>, at f , or therule fòð�ð|.>i otherwise.Fi-

4Therearesomecomplicationswith ó¢ô�õ+ö�÷+ø¦ùÀú andothernon-standard
formsof controlflow; seeSection5.1for extensionsto handlethem.



nally, for eachfunction � in theprogram,we addthe a -rule
�)�%�|�`w���{^ð�ð|.ïa . Thisgrammaris quitenatural[27, 28, 6, 7].

Thesimplificationreferredto above is thattheNDPDA,
by construction,alsoacceptsall prefixesof sentencesgen-
eratedby the grammarabove. The actualgrammarwould
bemorecomplicatedif it took this into account.

The NDPDA describedearliermay be obtainedby ap-
plying the trivial top-down constructionto the context-
free grammarobtainedabove (similar to û)û�wýü¿{ parsing,
except that we keep the conflicts and thus obtain a non-
deterministicautomaton). This top-down constructionis
convenientbecauseits operationcorrespondscloselyto ex-
ecutionin procedurallanguagessuchasC. SeeFigure2 for
anexample.

Monitoring algorithm To detectattacks,we mustmoni-
tor the systemcalls issuedby the applicationandsimulate
the operationof the NDPDA on thoseinputs. It turnsout
thatefficient simulationof theNDPDA is a significantthe-
oreticalandengineeringchallenge,especiallyaswe scale
up to intrusiondetectiononvery largeapplications.

The most naive approachis to exhaustively search
throughall possiblenon-deterministicchoicesof the ND-
PDA. In otherwords,at eachtime step,we maintaina list
of all possiblestackconfigurationsof the NDPDA; when
a new systemcall is observed, for eachpreviously possi-
ble configurationwe computethesetof new configurations
theNDPDA might transitionto, andupdatethelist of possi-
blestackconfigurations.However, in practicethisapproach
is untenablefor any but the simplestapplication,because
theselistsgrow exponentiallylargein thelengthof thesys-
temcall trace(in fact,eveninfinitely large,in thepresence
of left-recursion).

Lessnaively, we might hopethat standardparsingal-
gorithmsmight be applicablehere. Of course,we cannot
usestandardparsers(suchas þ%ÿ�X%X ) becauseourNDPDA is
non-deterministic.It is easyto seethat, for every context-
freegrammar� , thereis someprogramwhich generates� ,
and in practice,real applicationsproducegrammarswith
considerablenon-determinismandcomplexity. So,weneed
anefficientalgorithmfor onlineparsingof generalcontext-
freelanguages.

It is alsoimportantto have a top-down parsingroutine.
As describedin Section5, dealingwith someof thespecial
featuresof theUnix runtimeenvironmentrequiresusto oc-
casionallystepoutsideof the context-free framework and
performoperationsdirectlyonthesetof possiblestackcon-
figurations. Realprogramsexecutein a roughly top-down
fashion—westartexecuting �%ÿ<9�')(+* beforeexecutingany
of its callees—sothis seemsto rule out bottom-uppars-
ing. Unfortunately, muchof the work in the literatureon
recognizinggeneralcontext-freelanguages(e.g.,theCYK,
Earley, Tomita,andGLR techniques[37, 10, 16, 33]) uses

bottom-upmethods.
Consequently, wewereforcedtodevelopnew techniques

for efficient top-down parsing.A full descriptionof our al-
gorithm is outsideof the scopeof this paper, but we list
a few usefulpropertiesof the algorithmthat make it well
suitedfor ourpurposes:

� It supportsonline parsing:aseachsystemcall is ob-
served, we can decidewhether the resulting partial
traceformstheprefix of a sentencein thecontext-free
language,asrequiredfor real-timeintrusiondetection.

� It is relatively efficient: like othergeneralcontext-free
recognizers,its worst-caserunningtime is cubicin the
length of the systemcall trace. This is likely to be
tooslow for largeapplications,but is muchbetterthan
exponential-timesolutions. In practice,we encounter
cubic-timebehavior only occasionally.

� Mostimportantly, it supportsreal-timeaccessto theset
of possibletop-down parsetrees.Thekey datastruc-
tureis arepresentationof thesetof possiblecall stacks
asa regular languageover the alphabetof stacksym-
bols. This lets us modify this datastructuredirectly
whenever we needto stepoutsideof the context-free
framework.

Moredetailson thisalgorithmareavailableelsewhere[34].

4.4.The digraph model

We next introducea very simpleapproachwhich com-
binessomeof the advantagesof the callgraphmodel in a
simpler formulation. The basicapproach,first introduced
in previous work on runtimeintrusiondetection[14], is to
considerwindows of consecutive systemcalls.

Ourmodelwill thusbea list of thepossible� -sequences
of consecutive systemcalls, startingat an arbitrary point
during programexecution. In our prototypeimplementa-
tion, weconsideronly thespecialcase��.�� for simplicity.
Notethat � -sequencesof systemcallswith �F.�� areoften
referredto asdigraphs, so we call this the digraphmodel.
We considerhereboth thespecialcaseof digraphsandthe
generalcase.

Building the model We could derive the setof possible
� -sequencesfrom the control-flow graphin a straightfor-
ward fashion,but we observe that thereis a moreprecise
approachavailable if we usethe context-free languageof
possiblesystemcall traces, û�w�� { , as introducedin Sec-
tion 4.3. To determinewhetherthe sequenceì�kÙ,	� can
occurin a systemcall traceduringnormalapplicationexe-
cution,wesimply testwhetherw�,�"+ì¨,�"�{�
�û�w�� {�t.� , which
is effectively computable[18, 27]. Repeatingthis test for



each ì1k�, � gives a generalalgorithm to build the de-
sired model. Unfortunately, this precomputationhasrun-
ningtime ��w������²xy57x��²x×,�x �¦{ , which is exponentialin � . In
practice,it is slow enoughthatwe have only experimented
with the �².�� case.

Monitoring algorithm Detectingattacksthen becomes
easyoncewe have performedtheabove precomputationto
build alist of theallowed � -sequences.Wekeepahistoryof
thelast ����� systemcalls,andwhenwe seea new system
call, wecheckwhethertheresulting � -sequenceis allowed.
Thus, the runtimemonitoringalgorithm is extremelyeffi-
cient for this model;thetrade-off is that thedigraphmodel
is lessprecisethan the callgraphor abstractstackmodel,
andthuscanbeexpectedto missmoreattacks.

5. Implementation issues

We sketchedabove threetheoreticalframeworksfor im-
plementingintrusion detectionusing static analysis. In
practice,though,therearea numberof complicationsthat
arisewhenimplementingtheseideas.Wediscussheresome
of theimportantimplementationchallengesandhow to han-
dle them.

5.1.Non-standardcontrol flow

Implementationsof control-flow analysis, when in-
tendedfor optimization,often give up in the presenceof
non-localcontrol flow (suchassignals, Z+&%:����%$�(+* , andso
on). However, wehave foundthat,in practice,realapplica-
tionsof interestfor intrusiondetectionoftenusethesefea-
tures.Therefore,wedescribehow toaugmentthemodelling
frameworks describedabove to incorporatetheseforms of
non-standardcontrolflow.

Function pointers To build theprogramcall-graphin the
presenceof function pointers, it is crucial to be able to
predictthepossibletargetsof every indirect call througha
functionpointer. Many sophisticatedalgorithmsfor pointer
analysisareavailablein theliterature[11,31, 30], but in our
implementationwe simply assumethatevery pointercould
referto any functionwhoseaddresshasbeentaken.Empir-
ically, even this very crudetechniqueseemsto suffice for
ourpurposes.

Signals Many operatingsystemsallow applicationsto
registera signalhandlerto be executeduponreceptionof
a signal. It is straightforward to statically recognizesig-
nal handlers:we simply look for systemcalls of the form
Z%9�A%'%ÿ�Y)(+9<M 8 $<* , which bindsthehandler

8 $ to thesignal 9
sothatwhenthis signalis received,thefunctionreferredto

by thefunctionpointer
8 $ will becalled.Consequently, the

real challengeis to augmentthe model to representthese
additionalpossibilitiesfor controlflow.

Naively, onemight consideraddingto the control-flow
graphanextra edgefrom eachnodeto eachpossiblesignal
handlerto representthis additionalcontrolflow. This naive
solutionwouldwork,but it addsanenormousamountof ex-
tra non-determinismto thecontrol-flow graph,soour anal-
ysiswouldbecomelessprecise:theintrusiondetectionsys-
temwouldbecomesignificantlyslower(becauseweneedto
follow morepossiblepathsin the control-flow graph)and
poorerat recognizingintrusions(becauserealattacksmight
mimic unlikely pathsthroughsignalhandlersand thereby
avoid detection).Wewouldpreferto modelsignalswithout
incurringthesecosts.

Fortunately, thereis a cleansolutionavailable. We ex-
ploit thepresenceof a runtimecomponentin oursystem:

Principle 1. If you can arrange to receivean extra event
whenever someexceptionalpath (such as invocationof a
signal handler)might be taken, you can oftenimprove the
precisionof themodel.

In this case,we arrangeto monitor not only the system
callstheapplicationmakesbut alsothesignalstheapplica-
tion receives5, andwe ensurethatall theextra pathsin the
control-flow grapharepre-guardedby an initial signalre-
ceptionevent. In many Unix operatingsystems,all signal
handlersinvokethe Z%9+A���&%:%B��%')(+* systemcall afterthey re-
turn, so we alsoadda post-guard to the endof eachextra
path,too.

It is straightforward to augmentthe control-flow graph
to ensurethat every executionof a signalhandlerwill be
bracketedby botha pre-andpost-guard.Theseextra paths
in the control-flow graphwill not be triggeredunlessthe
appropriatesignalis received,andtosavespacethey maybe
implicitly representedandonly re-generatedondemand,so
they areeffectively invisible exceptin thecaseswherethey
arenecessary. Thesetechniquesprovideaprecise,efficient,
andsimpleway to extendany of themodelsin Section4 to
reflectthesemanticsof signals.

The Z�&%:�����$)(+* primiti ve ANSI C provides a form of
non-localcontrol flow that is sometimesusedto provide
a crudeform of exceptionhandlingor error recovery: the
Z+&%:����%$)(�* primitivesavesthestackpointerandotherregis-
ters,andthen Y%#%'�A����%$�(+* maybecalledby a subroutineto
roll theregisters,andhencethestack,backto its savedstate.
In the callgraphmodel,we may simply addan extra tran-
sition from eachY%#%'%A����%$�(+* to every possible Z+&%:����%$�(+* ,

5The ability to monitor signalsis convenientlyalreadyavailablewith
most existing mechanismsfor processtracing, sinceit is usedby some
debuggers.



but this will not work for theabstractstackmodelbecause
Y%#�'%A����%$)(+* modifiesthecall stack.

We do not know of a goodstaticapproachto call stack
analysisin thepresenceof Z+&%:����%$)(�* , but fortunately, there
is no needto solve this problemstatically. Instead,we ex-
tendtheruntimemonitoringagent.Ourmonitormaintainsa
runninglist of all call stacksthatwerepossiblewhensome
Z+&�:�����$)(+* call was visited earlier in this executiontrace.
EachY%#%'�A�����$)(+* call canbeemulatedby addingthisaccu-
mulatedlist to theautomaton’s currentsetof states.Since
setsof statesarerepresentedasregularlanguagesin theab-
stractstackmodel (seeSection4.3), the union operations
maybeimplementedefficiently.

As a future extension,we might also enforcethe con-
straintthat returningfrom a function activation invalidates
any Z+&%:����%$)(�* it mayhave called. This would allow us to
garbage-collectold Z�&%:�����$)(+* states(therebyreducingstor-
agecostsby someunknown amount)andto excludeimpos-
sible Y%#�'%A����%$)(+* targets(therebyimproving precisionand
attackdetectionpower). Sofar, though,we have not found
the need. Our experiencehasbeenthat Z+&%:����%$�(+* is typ-
ically usedjust often enoughthat it cannotbe completely
ignoredbut rarelyenoughthattheburdenof theabovesim-
ulationtechniquesis minimal.

In any case,our experiencewith Z+&�:����%$�(+* suggeststhe
following lessonfor hybrid static-dynamicsystems6:

Principle 2. Someprogram propertiesthat are difficult to
infer statically may becomeeasierto modelsatisfactorily
when the burden is offloadedto a runtime agent, where
available.

5.2.Other modelling challenges

Libraries Ourapproachrequiresamodelfor eachlibrary
function that might be called. Therefore,we usea modu-
lar analysisto build thesemodels. In particular, we mod-
ified the A�X%X compilerto outputintermediateanalysisout-
put files alongsideeachobjectfile as it compiled,andwe
modifiedthelinker to combinetheintermediatefiles into a
whole-programanalysis.A sidebenefitwasthatwe could
analyzeexistingsoftwarepackagesby simplyusingthepro-
videdMakefilesto compilethem.

6In thedigraphmodel,neitherPrinciple1 nor 2 is muchhelp,sinceno
helpis availablefrom theruntimeagentnor is thereany convenientway to
monitor ó¢ô¢õ�ö�÷¯ø¦ùWú and ���! #"�ö�÷¯ø»ùÀú callsat runtime. Thus,we areforced
to usemoreconservative techniques.Considertemporarilyextendingthe
alphabetwith thesymbols$ and % to representó¢ô¢õ�ö�÷¯ø»ùÀú and ���! #"�ö�÷¯ø»ùÀú
invocations.We infer that digraph &(')&+* is possiblein someprogramex-
ecutiononly if (1) & ' & * is a possibledigraphin theoriginal (unextended)
language,or (2) both &('!% is a possibledigraphwhenthe languageis ex-
tendedwith % and $�&,* is apossibledigraphwhenthelanguageis extended
with $ and % .

We found that library codetaxed the limits of our tool
more thoroughlythanmostapplications,anda dispropor-
tionateamountof our effort wasspenton the C libraries.
For instance,the GNU Z+:%C�9+# implementationusesfunc-
tion pointersextensively to emulateanobject-orientedpro-
grammingstyle; with our naive pointer analysis,the in-
ferredmodelsweretoo imprecise,so we replacedour au-
tomatedanalysisresultswith hand-craftedmodels.In con-
trast,thedatabaselibrary Y<9.-%C�- alsousesfunctionpointers
extensively to parametrizedatabaseimplementations,but in
this casewe werewilling to acceptthe imprecision. As a
third example,the GNU ELF librariesmake heavy useof
both Z+&%:����%$)(�* andfunctionpointersto implementexcep-
tion handling,sowe resortedto refiningtheinferredmodel
by handin someplacesto improve its precision.

Therearemany disadvantagestohand-built models:they
are time-consumingto construct;they are difficult to get
right (andthusunsoundnessandfalsealarmsarearisk); and
they makeit unpleasantto keepupwith changesto thecode.
Ideally, we would have preferreda morepreciseautomatic
analysisso thatwe couldavoid thesedisadvantages,but in
practiceevenourcrudetechniquesweregenerallysufficient
to getthejob donewithoutcompromisingourprimarygoals
in thefew caseswheremanualanalysiswasnecessary.

Dynamic linking Dynamically linked libraries posean-
otherchallenge,becausethey forceus to updatethemodel
at runtime. In our implementation,we predict in advance
thesetof librarieswhichmightbelinkedin andbuild mod-
els for all of them from source. This can introducefalse
alarmsif our predictionbecomesout of date(when,e.g.,a
new versionof thelibrary becomesavailable),whichmeans
that everythingmustbe updatedwhenever the underlying
libraries are. This is not a fundamentallimitation, and a
moresatisfyingsolutionwould be to build a modelat run-
time from objectcode,but we have not exploredthis direc-
tion becauseit hasnotbeennecessaryin ourexperience.In
any case,bindingapplicationsto librariesstaticallyhassub-
stantialsecuritybenefits,becauseit preventsintroductionof
Trojanhorsesvia dynamiclinking attacks.

Thr eads Threadsposeyetanotherchallenge,becausethe
context-switchingoperationintroducesanothertypeof im-
plicit control flow. If it were possibleto reliably receive
‘thread context-switch’ events(seePrinciple 1), handling
threadswould be straightforward; this is no problemfor
kernelthreads,but unfortunately, userthreadsposeathorny
challenge,andweknow of nogoodgeneralsolution.A sec-
ondissueis thatthreadedcodemaycontainsecurityvulner-
abilities dueto synchronizationbugsthat we do not know
how to detect.Becauseof thesechallenges,andbecauseno
security-criticalapplicationwe examinedusedthreads,our
prototypeimplementationdoesnot supportthreadedcode.



5.3.Optimizations

Irr elevant systemcalls Up to now we have describedan
intrusiondetectionsystemthatmonitorsall systemcallsthe
applicationinvokes,andwe originally expectedthis to be
optimal. However, we foundthat ignoring,e.g.,the -���/)(+*
systemcall cangreatly improve performanceby reducing
the size and ambiguity of the model: in many programs,
memoryallocationcanoccurjustaboutanywhere,soseeing
a -���/�(+* systemcall givesusvery little contextual informa-
tion. This may causeus to missdenial-of-serviceattacks,
but thosearebeyondthescopeof thispaper.

In somecases,ignoringcertainsystemcallscanevenim-
prove theprecisionof themodel.It maysoundparadoxical
that throwing away informationcanimprove precision,but
considerthe digraphmodel: excluding very commonsys-
temcallsgivesmorecontext. It is usefulto beableto enable
thisoptimizationonaper-applicationbasis.

Systemcall arguments Themostimportantoptimization
is basedontheobservationthatwecangainquiteabit of ex-
trainformationabouttheapplicationbehavior byexamining
theargumentsto eachsystemcall. Sincewe canoftenstat-
ically predictsomesystemcall argumentswith little effort,
wemightaswell checkthemat runtime.Werecognizelex-
ically constantsystemcall argumentsin our prototypeand
foundthateventhisextremelycrudetechniqueprovidesno-
ticeableimprovementsto both precisionandperformance;
seethemeasurementsin thenext section.

6. Evaluation

In this sectionwe measuretheperformanceof our three
approaches(the abstract stack, callgraph, and digraph
models)on a numberof typical security-criticalapplica-
tionsthatonemightwanttomonitorfor intrusions.For each
model, we measuretwo variants: a basicimplementation
that ignoressystemcall arguments,andthenan improved
implementationthat checksall systemcall argumentsthat
canbe staticallypredicted.In eachcase,we focuson two
key metrics: runtimeoverhead(performance), androbust-
nessof detectionagainst targetedattack (precision). As
will becomeclear, our resultsindicatethatthereis a strong
tradeoff betweenperformanceandprecision.

Performance In Figure3, we show theruntimeoverhead
incurredby our systemwhenappliedto four representative
applicationswith known securityvulnerabilities,

8 9+'�A%&�� ,0 $�#%$%$�&�� , $��%#<X.�%ÿ<9�Y , and Z+&%'�C��%ÿ�9+Y . Of these,
8 9+'�A%&��

is the smallest(at 1K lines of code,excluding comments,
blank lines,andlibraries),and Z+&%'�C��%ÿ�9+Y is the largest(at
32K lines); the othertwo arein the middle. The heightof

eachbar in Figure3 indicatestheperformanceoverheadof
eachmodel,measuredin secondsof extra computationper
transaction7.

The figuresuseshadingto show the effect of checking
systemcall arguments.Onemight expectthatcheckingar-
gumentscouldimproveperformanceby reducingambiguity
in themodelandthusreducingthenumberof possiblepaths
throughthemodelthatwe needto exploreat runtime. The
measurementsconfirmthishypothesis,showing that—even
thoughwe implementedonly anextremelycrudedata-flow
analysis—theperformancebenefitsaresubstantial.

We initially expectedthat,dueto its complexity, theab-
stractstackmodel would be consistentlyslower than the
callgraphmodel.This is partially confirmedby our experi-
ments,but we weresurprisedto find many exceptions.For
instance,in the caseof $���#<X1��ÿ<9+Y , it appearsthat the im-
provedprecisionprovidedby theabstractstackmodelmore
thanmakesup for thecomplexity of thismodel.In general,
moving to moreprecisemodelsmay reducethe degreeof
non-determinismandtherebyreducethe numberof possi-
blepathsexploredat runtime.

Notethatthereis a wide variationin runningtimes.The
digraphmodelsare consistentlyextremely fast (the over-
headis too small to measure),but the other modelsare
sometimesvastlyslower. For Z�&%'%C���ÿ<9+Y , thecallgraphand
abstractstackmodelsweresoslow thatwe forcibly termi-
natedthe experimentafter an hour of computation.Since
ourgoalis for real-timeintrusiondetection,imposingmore
thana few secondsof latency ontoany interactive applica-
tion is absolutelyunacceptable;an hour is clearly several
ordersof magnitudetoo much.Consequently, for someap-
plications,only the digraphmodel is fastenough;for oth-
ers,themoresophisticatedcallgraphor abstractstackmod-
elsarealsoworkable.Weconcludethat,in all cases,at least
oneof theapproachesprovidesacceptableperformance,but
thetypeof modelmustbechosenonaper-applicationbasis.

Our prototypeimplementationhasknown problemsthat
make its performancesub-optimal.SeeSection7.

Mimicry attacks To motivatethe needfor precisemod-
els, we introducea new classof attacksagainst intrusion
detectionsystems,the mimicry attack. Recall that oneof
our primary designgoalsis to detectnot only the attacks
thatarecommontoday, but alsoto detecttheattacksof the
future. Furthermore,our model of the applicationproba-
bly cannotbekeptsecretfrom attackers.Consequently, our
modelsneedto be preciseenoughthat thereis no way for
an attacker to causeany harmwithout deviating from the

7We usetheword transactionto denotea singleinteractive event,such
asdelivery of a pieceof email. For interactive applicationsthat arenot
compute-intensive, we believe themaingoal is to avoid introducingmore
thana few secondsof latency pertransaction,andsowe measureabsolute
ratherthanrelativeoverheads.All measurementswereperformedona450
MHz PentiumII runningJava,usingIBM’ sJIT for Linux.
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Figure 3. Overhead imposed by the run-
time monitor for four representative ap-
plications, measured in seconds of extra
computation per transaction.

Figure 4. Precision of each of the models,
as characteriz ed by the average branc hing
factor (defined later in Section 6). Small
number s represent better precision.

Noteson both figures: For eachapplication,we show measurementsfor threemodelsusinga clusterof threevertical bars: the abstract
stackmodel(leftmostbar), thecallgraphmodel(middle),andthedigraphmodel(rightmost).Eachverticalbarusesshadingto represent
two measurements:the shorter, solid-coloredsegment representsthe casewhereargumentsare checked; the total height of the bar
(includingboththesolid-coloredandlightly-shadedregions)shows thecasewhenargumentsareignored.

model,even whenthe attacker canpredictwhat modelwe
areusing. Otherwise,attackerswill befreeto developma-
licious exploit codethatmimics theoperationof theappli-
cation,stayingwithin theconfinesof themodelandthereby
evadingdetectionby oursystemdespiteits harmfuleffects.

In general,if the attacker somehow obtainscontrol of
theapplicationwhenour intrusiondetectionautomatais in
the state ì , andif someinsecurestate ì¢~ is reachablefrom
ì throughany path in the automata,thenthe attacker will
beableto bring thesystemto aninsecurestatewithout risk
of detectionby synthesizingthesystemcalls thatmake up
thepath ìcg �+�+�
g ì�~ . We call this a mimicryattack, and
weexpectthat,asintrusiondetectionbecomesmorewidely
deployed,mimicry attacksareunavoidable[26].

Note that imprecisemodelscontain impossiblepaths,
which introducesa vulnerability to mimicry attacksif any
of thosepathscanreachan insecurestate. Consequently,
the primary defenseagainst mimicry attackslies in high-
precisionmodels.

Precision Unfortunately, we do not know the right way8

to quantifyanintrusiondetectionsystem’sdegreeof robust-
nessagainstmimicry attacks,sowedonothaveacomplete

8In practice,it may often be difficult even to identify just the set of
insecurestatesof thesystem.

characterizationof the precisionof our models. Nonethe-
less,we will attemptto give someintuition for the preci-
sionof ourmodelsby applyingthefollowing metric. Imag-
ine freezingtheintrusiondetectionsystemin themiddleof
someapplicationexecutiontrace. Thereis someset ! of
systemcalls that would be allowed to comenext without
settingoff any alarms. We definethe branching factor to
be the sizeof ! . A small branchingfactormeansthat the
intruderhasfew choicesaboutwhatto donext if shewishes
to evadedetection,andsowe canexpectthatsmallbranch-
ing factorsleavetheintrudermostconstrainedandleastable
to causeharm. Finally, becausewe cannotpredictat what
point duringexecutiontheattacker might obtaincontrolof
theapplication,wesuggestto measuretheaveragebranch-
ing factor over all normalexecutiontraces.We stressthat
this metric is insufficient on its own, but it seemsto yield a
usefulfirst approximation.

Figure 4 shows the precision of our models on our
four sampleapplications,undertheaveragebranchingfac-
tor metric. We can see that checking system call ar-
gumentsprovidessubstantialprecisionimprovements,be-
causeit reducesthe numberof possiblepathsthroughthe
model,andbecausesomesystemcalls areharmlesswhen
their argumentsare fixed in advance. For instance,an
#%$%&%'�(+L12�&%:<X.2��%#%:�C<L<MON%P�Q%R%N�S%T%U<* call is harmlesswhen



its argumentsarestaticallyknown, but otherwisecouldpo-
tentiallybeexploitedbyattackerstooverwritearbitraryfiles
onthesystem.Ourexperienceis thatuncheckedsystemcall
argumentsgreatlyincreaseourexposureto mimicry attacks.
Sincecheckingargumentsimprovesbothperformanceand
precision,weconcludethatit shouldalwaysbeenabled.

We can also seethat, when systemcall argumentsare
checked,theabstractstackmodelis muchmoreprecisethan
the callgraphmodel,which is itself moreprecisethanthe
digraphmodel.

We have also examinedthe generatedmodelsby hand
to evaluatehow muchharma sophisticatedattacker could
causeusingmimicry techniques.We areconfidentthat all
threeof the

8 9�'%A%&�� modelsleave very little room for at-
tack,dueto the fact that the

8 9+'�A%&�� sourcecodedoeslit-
tle elsebut opena network connectionandaccessworld-
readablefiles on thesystem.Resultsfor theotherapplica-
tions,though,aremixed.Thedigraphmodelseemsunlikely
to resista mimicry attack,andgenerallywe feel it should
not be relieduponfor defenseagainstmaliciouscodespe-
cially tailored to fool our system. However, the abstract
stackmodelseemsto do fairly well: we believe it would
successfullylimit theharmfuleffectsof any compromisein0 $�#%$%$�&�� or $��%#<X.�%ÿ<9�Y . On theotherhand,for Z�&%'%C���ÿ<9+Y ,
thegeneratedabstractstackmodelis too complex for usto
makeany determination.

We considerit an importantopenproblemto develop a
metricor methodologyfor quantifyingtheresistanceof in-
trusiondetectionsystemsto unforeseenattacks,suchasthe
mimicry attacksintroducedabove.

Attacks detected Wehavetestedoursystemonanumber
of known attacksfrom thepastdecadeor so. For instance,
eachof the four applicationsdiscussedabove hasa known
securityvulnerability; we confirmedthat we wereable to
detecttheknown attackon thoseapplications.

Probablythe most commonclassof attackswe detect
arebuffer overruns,whichseemto accountfor perhapshalf
of all attacksin recentyears[8, 35]. Becausemostexist-
ing exploit scriptsgrab full root privilege and take other
distinctive actions(suchaslaunchinga shell underthe at-
tacker’s control) immediatelyafter exploiting the overrun
vulnerability, detectionis typically straightforward for our
tool. Our tool mayevenbeoverkill for detectingmisbehav-
ior this blatant—many othersystemswill alsodetectthese
attacks,albeitwith substantialfalsealarmrates—but anun-
usualfeatureof our tool is that it is alsodesignedto detect
some‘stealthy’ attacks,aswell.

Our approachis also able to detectTrojan horsesin
trustedsoftware. Onecurrentfavorite of today’s attackers
is the �%#%#�:�/<9�: toolkit, which replacessomesystemutili-
ties with a versionthat containsa backdoor. We verified
that our implementationwasable to detectwhensomeof

thesebackdoorswereexercised(which causesthebehavior
to deviatefrom thatspecifiedby theoriginal sourcecode).

Themostinterestingfeatureof ourapproachis thatit can
alsodetectmoreexotic attacks,evenonesthatthedesigners
themselvesdid notknow about.For instance,oneextremely
subtleattackexploitedtheability to passenvironmentvari-
ablesto :%&�Y%'%&�:%C to causethedynamiclinker to link with a
sharedlibrary providedby theadversary;oursystemwould
have detectedthis attack, and any other dynamic-linking
attackthat might be discoveredin the future, becauseour
modelis generatedstaticallywith thecorrectlibrary. More
recently, format string attackshave provided anotherun-
expectedway to introducemaliciouscodeinto vulnerable
applications;sinceour detectionmechanismmakesno as-
sumptionsabouthow maliciouscodemay be introduced,
we canexpectour systemto applyto formatstringattacks,
aswell as to any otherwaysto take control of vulnerable
applicationsthat may be discoveredin the future. We feel
that theseexamplesillustrate the importanceof detecting
unforeseenattacks.

Despitethesesuccesses,we feel strongly that our tool
shouldnot beusedasthesoledefenseagainstany of these
attacks,but insteadshouldbe usedto complementother
techniques. Prevention is often a more effective barrier,
andintrusiondetectionsystemsareusuallybestviewed as
abackuplayerin casethemainline of defenseis breached.

7. Futur ework

This work opensup many avenuesfor future research.
The main limitation of our approachis that the run-time
overheadis very high for someautomata;however, we
expect that we could achieve betterperformanceby using
moreadvancedstaticanalysisto get moreprecisemodels.
Also, theprototypewaswrittenin Java;wecouldrecodeour
systemin C or assemblylanguageanddirectly integrateit
into theoperatingsystemkernelto reducetheperformance
overheadsubstantially. This work also raisesthe intrigu-
ing possibilityof reusingthespecificationthatwe generate
to automaticallyverify propertiesof security-criticalpro-
gramswith a model checker. We note that our callgraph
model is a finite automatonthat appearsnearly ideal for a
modelchecker. Our stackmodelwill bemorechallenging
to modelcheck,but therehasbeentheoreticalwork in this
area[5, 13, 32, 36, 4].

8 Conclusions

We have successfullyappliedstaticprogramanalysisto
intrusiondetection.Our systemscalesto handlerealworld
programs.Also, our approachis automatic:the program-
mer or systemadministratormerelyneedsto run our tools



on the programat hand. All other automaticapproaches
to intrusion detectionto datehave beenbasedon statisti-
cal inference,leadingto many falsealarms;in contrast,our
approachis provably sound— when the alarm goesoff,
somethinghasdefinitelygonewrong. Nonetheless,we can
immediatelydetectif a programbehavesin an impossible
(accordingto its source)way, thusdetectingintrusionsthat
othersystemsmiss.

We relied on a strategic combinationof static analysis
and dynamicmonitoring. This combinationyields better
resultsthaneithermethodaloneandpresentsa promising
new approachto theintrusiondetectionproblem.
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