
 

A Framework for Exploring Optimization Properties
Min Zhao         Bruce R. Childers           Mary Lou Soffa 

Hewlett Packard University of Pittsburgh   University of Virginia 
  {min.zhao@hp.com}        {childers@cs.pitt.edu}       {soffa@cs.virginia.edu} 
 
Abstract. Important challenges for compiler optimization include determining 
what optimizations to apply, where to apply them and what is a good sequence in 
which to apply them. To address these challenges, an understanding of 
optimization properties is needed. We present a model-based framework, FOP, to 
determine how optimizations enable and disable one another. We combine the 
interaction and profitability properties to determine a "best" sequence for applying 
optimizations. FOP has three components: (1) a code model for the program, (2) 
optimization models that capture when optimizations are applicable and their 
actions, and (3) a resource model that expresses the hardware resources affected by 
optimizations. FOP determines interactions by comparing the create- and destroy-
conditions of each optimization with the post conditions of other optimizations. We 
develop a technique with FOP to construct code-specific optimization sequences. 
Experimentally, we demonstrate that our approach achieves similarly good code 
quality as empirical techniques with less compile-time. 

1. Introduction 
The field of code optimization has been extremely successful over the past 40 years.  
Various reports from research and commercial projects indicate that the performance 
of software can be improved by 20% to 40% with aggressive optimization [1][2].  
However, it has long been known that there are issues with the application of 
optimizations. First, optimizations may degrade performance in certain 
circumstances. For example, Briggs and Cooper reported improvements ranging from 
+49% to –12% for their algebraic re-association optimization [3]. Second, 
optimizations enable and disable other optimizations so the order of applying 
optimizations can have an impact on performance [1][18][21][10], which is known as 
the phase ordering problem. Finally, optimization configurations can impact the 
effectiveness of optimizations (e.g., how many times to unroll a loop or the tile size) 
[15][4][8]. These problems are compounded when different hardware platforms are 
considered. Due to these problems, optimizing compilers are not achieving their full 
potential. To systematically tackle these problems, we need to identify and study the 
properties of optimizations, especially those that target the application of 
optimizations. For example, to selectively apply only beneficial optimizations, we 
need to determine the impact of applying an optimization at a particular code point 
given the resources of the targeted platform (i.e., the profitability property). To 
efficiently determine a code-specific optimization sequence, we also need to detect 
the disabling and enabling interferences among optimizations (i.e., the interaction 
property) at code points. 

There are two general approaches to exploring optimization properties. The first 
one uses formal techniques. The formal approach has been used to prove the 
soundness and correctness of optimizations [14][13][16]. Work also has been done to 
automatically generate the implementation of optimizations [20][21][9][12] from a 



 

formal specification. Another approach uses experimental techniques. That is, after 
performing optimizations, the properties are experimentally determined (e.g., the 
code is executed to evaluate performance for determining profitability). The empirical 
approach has been used to determine the correctness of an optimizer [6]. It has also 
been used to determine profitability and interactions for finding good optimization 
sequences and configurations [1][8][18][11]. A disadvantage of the experimental 
approach is its cost and scalability, as the execution of the program is required. It may 
take hours, or even days, to find a good optimization sequence for a complex program 
[10]. Ideally, we need a systematic way to address the application of optimizations, 
which is practical, effective and scalable [22]. 

Our approach is to develop a model-based framework that applies optimizations 
based on their properties which are automatically derived from models of the code, 
the optimizations themselves, and machine resources. These properties guide the 
compiler in the application of the optimizations. In prior work, we showed how to 
determine the profitability property from analytic models for code, optimizations and 
machine resources [23]. Using the models, the profitability of an optimization was 
determined to avoid the circumstances where an optimization can degrade 
performance.  

This paper presents a Framework for determining Optimization Properties, FOP 
and shows it can be used to determine the interaction property, caused by 
optimizations enabling and disabling other optimizations. We combine the interaction 
property with the previously studied profitability property to efficiently find a good 
code-specific optimization sequence. FOP includes code and optimization models. 
The code model, automatically constructed from the source, captures characteristics 
about the code related to the pre-conditions of an optimization. The optimization 
model, constructed by the optimizer engineer, captures the pre-conditions and actions 
(i.e., code changes) of optimizations. FOP also has a resource model but it is not 
needed to determine the interaction property. 

We present an algorithm that derives the enabling and disabling interaction 
property for a set of optimizations. The key idea is to determine the code changes 
needed to meet the pre-conditions of an optimization, using the post-conditions of 
other optimizations. We also give a novel technique that automatically constructs 
code-specific optimization sequences using knowledge about the interaction and 
profitability properties at each code point. The sequences are used to guide the 
compiler in the actual application of optimizations. 

We implemented FOP and used it to find code-specific sequences for a set of 
optimizations, including copy propagation(CPP), constant folding(CTF), dead code 
elimination(DCE), partial redundancy elimination(PRE), loop invariant code 
motion(LICM), global value numbering(GVN), branch elimination(BRE), branch 
chaining(BRC), and register allocation(RA). We compared our technique with a 
fixed-order approach  and an empirical approach. The results show that our approach 
achieves better program performance than the fixed-order technique and determines 
similarly good sequences as the empirical approach with up to a 43 times reduction in 
compile-time. Our technique scales to large programs because it does not need to 
execute the program.   



 

The contributions of this paper include: a formalization of optimization 
application and the interaction property; a framework to determine enabling and 
disabling interactions among optimizations; a technique to determine optimization 
order from the interaction and profitability properties; and, a study that demonstrates 
the usefulness of FOP in addressing the phase ordering problem.  

2. Model-Driven Optimization 
In this section, we formally define the interaction property.  We start with basic 
definitions needed to express disabling and enabling conditions for an optimization. 
To apply an optimization, we must ensure that the semantics of a program are not 
changed by the optimization. Thus, a set of pre-conditions (both text and 
dependencies) is needed for an optimization to be applicable. When an optimization 
is applicable in some context, it can cause code conditions to change so that another 
optimization is enabled or disabled. We define how optimizations enable and disable 
one another. We begin with the definition of a Boolean operator ~ that returns true 
when the conditions D are met in a code segment C.   
Def. 1: D ~ C if the code conditions D are true in code C;  /~ is the negation of ~. 

We express an optimization O as [OPre, OAct], where OPre represents the pre-
conditions needed before the actions (i.e., code changes) OAct are applied for semantic 
correctness. We express the application of an optimization as:  

(C) [OPre, OAct]s <R> ⇒  (C´) [Oproperties]s 
where C is a code segment with a statement point, S,  at which the optimization is 
applied. If OPre ~ C, the optimization is applicable.  OAct is applied in this case to C 
and C’ is produced (⇒ ). R is the machine resources upon which the code segment is 
executed. Oproperties represents the different optimization properties that can be derived, 
such as interaction and profitability.  

As can be seen, optimization properties depend on code context C, the 
optimization O and the machine resources R. We model each one of these 
components and use these models to analyze optimization properties; that is, CM OM 
RM  ⇒Oproperties where CM is the code model, OM is an optimization model and RM is 
the resource model (the subscript “M” refers to a model, rather than a specific 
optimization, code sequence or resource). 

Instead of applying the optimizations, we use models to express the results of the  
optimizations and analyze the results to determine the properties. In addition, unlike 
actually applying optimizations, we do not apply a data flow algorithm after each 
optimization to detect data flow changes.  We do this by analyzing the code model. 

An example of our technique is shown in Figures 1 and 2. We give a brief 
discussion to motivate the definition of the interaction property. The example 
describes the determination of enabling interactions for copy propagation (CPP) and 
dead code elimination (DCE). A small source program is provided in Figure 1(a). 
From the source, FOP automatically generates the dependences needed for the code 
model as shown in Figure 1(b). A dependence is expressed as <Si, Sj, type, dir, pos>. 
For example, there is a flow dependence between S1 and S2 which has equal direction 
for the first operand. Thus, the dependence is <S1, S2, flow, =, 1>.  Figure 1 shows the 
optimization specification for DCE and CPP in (c) and (d).  



 

We next define the enabling and disabling conditions for optimizations. Then, we 
present an efficient technique to compute the interaction property. 

 
Figure 1: An Example of Determining Interaction 

Def. 2: Given a code segment, C, an optimization Oi enables an optimization Ok if the 
application of Oi creates the pre-conditions of Ok, expressed as:  

Oi enables Ok  if  (C) [ O Pre
i , O Act

i ]S⇒ (C’)  ∧ ][O Pre
k

/~ C  ∧ ]O[ Pre
k ~ C’ 

Def. 3:  An optimization Oi disables Ok if the application of Oi destroys the pre-
conditions of Ok:  

Oi disables Ok  if (C) [ O Pre
i , O Act

i ]S ⇒ (C’) ∧ ][O Pre
k ~ C  ∧  ]O[ Pre

k /~ C’ 

Intuitively, to determine the enabling and disabling interaction property between 
Oi and Ok, we need to analyze the code changes caused by applying Oi and the code 
changes that can create or destroy the pre-condition of Ok.  
Def. 4: The post-condition of O, [OPost-C]S, is the set of the code changes, ΔC , after 
applying O at statement S in code segment C. We use ● to indicate the inclusion of 
the changes that are made to C by the optimization; that is, C' = C ● ΔC . 

[OPost-C]S =  { ΔC |  (C)[OAct]S ⇒  C ● ΔC  } 
We also define a set of code changes that are needed to create or destroy an 

opportunity for an optimization, O. 
Def. 5: The create-condition of O, {[OCreate-C] S}, is the set of code changes, iCΔ that 
make O applicable at statement S in code segment C.  

S1: b = 0; 
S2: a = b; 
S3: b = 3; 
S4: c = a + 2; 
S5: print c; 
(a) Code 

<S1, S2, flow, =, 1> 
<S1, S3, output, =, 0> 
<S2, S4, flow, =, 1> 
<S2, S3, anti, =, 1> 
<S4, S5, flow, =, 1> 
(b) Code model 

PRECONDITION 
   Code_Pattern 
1:      ANY Si: Si.opcode = copy OR Si.opcode = binary_exp; 
   Depend 
2:      NO Sj: flow_dep(Si, Sj, any); 
ACTION 
3:      Delete (Si); 

(c) DCE Optimization model 

<{DCE}S1, DCE, not app>, < {DCE}S2, DCE, not app>,  
< {DCE}S3, DCE, app>, < {DCE}S4, DCE, not app>, 
<{CPP}S2, CPP, not app> 

(e) Possible optimizations

PRECONDITION 
    Code_Pattern 
1:      ANY Si: Si.opcode = copy AND type(Si.opnd1) = var; 
    Depend 
2:      ALL Sj, pos: flow_dep(Si, Sj, =); 
3:      NO Sk: flow(Sk, Sj, =) AND (Sk != Si); 
4:      NO Sp: mem(Sp, path(Si, Sj)), anti_dep(Si, Sp, =); 
ACTION 
5:      Modify (operand(Sj, pos), Si.opnd1); 
6:      Delete (Si); 

(d) CPP Optimization model



 

{[OCreate-C]S} = {{ iCΔ } |  [OPre]S /~ C ∧ [OPre]S ~ C ● iCΔ } 

Def. 6: The destroy-condition of O, {[ODestroy-C] S}, is the set of code 
changes, iCΔ that make O not applicable at statement S in code segment C. 

{[ODestory-C]S} = {{ iCΔ } |  [OPre]S ~ C  ∧ [OPre]S /~ C ● iCΔ } 

To detect enabling and disabling interactions, we compute the code changes that enable an 
optimization Ok by comparing the post-conditions of other optimizations, say Oi, 
against the create and destroy-conditions for Ok. 
Theorem 1: An optimization Oi enables Ok if there exists a iCΔ in   

}]{[ S
CCreate

kO − such that iCΔ ⊆ [ O
C-Post

i ]S. 

Proof: Straightforward, based on the Definitions 2 and 5. 
Theorem 2: An optimization Oi disables Ok if exists a iCΔ in   }]{[ S

CDestroy
kO − such 

that iCΔ ⊆ [ O
C-Post

i ]s. 

Proof:  Based on Definitions 3 and 6. 

We develop a new algorithm to determine the enabling and disabling interactions of 
optimizations at the per-statement level. For a statement in the program, the 
interaction algorithm determines how a set of optimizations interacts with one 
another. We now give a high-level overview of the interaction algorithm, which is 
discussed in detail in Section 3.3.  The algorithm has three steps.  

Step 1: For each O ∈  O and each S∈C, compute the code changes needed to create 
or destroy an optimization opportunity. 
Step 2: For each O ∈  O and each S∈C, compute the post conditions after applying 
O at point S in C.   
Step 3:  For each O ∈  O and each S∈C, compare create- and destroy- conditions 
with post conditions of all optimizations to determine enabling and disabling 
properties.   

Returning to Figures 1 and 2, when the interaction algorithm starts, it generates 
the specific post-, create-, and destroy- conditions for every possible optimization 
opportunity in the code. Figure 1e shows the possible optimizations. We show the 
details for two optimizations, {DCE}S3 and {CPP}S2, in Figures 2(a) and (b).  

{DCE}S3 is a dead code elimination that operates on S3 and is applicable. Thus, 
there is only one create- condition for {DCE}S3 which is simply “true”. There are 
three destroy-conditions for {DCE}S3. The first one is deleting S3. The second one is 
modifying S3’s operation. The third one is inserting a flow dependence that has S3 as 
the source. The post-conditions for {DCE}S3 show how it changes the code model, 
which includes deleting S3, deleting the anti-dependence between S2 and S3 and 
deleting the output dependence between S1 and S3. Similarly, the create-, destroy- and 
post-conditions are generated for {CPP}S2 from the CPP optimization model.  

In the last step, the interaction algorithm compares the create- and destroy-
conditions with the post-condition of other optimizations and determines the 



 

interactions. For example, there is only one condition needed for {CPP}S2 to be 
applicable; i.e., <delete_dep, anti,S2,S3,=>. When the interaction algorithm checks 
{DCE}S3’s post-conditions, it finds that {DCE}S3 changes the dependency by deleting 
the anti-dependence between S2 and S3. This condition matches with the enabling 
expression of {CPP}S2. Thus, {DCE}S3

 enables {CPP}S2.  

 
Figure 2: Determining Interaction 

3. FOP Components 
To determine the enabling and disabling interactions, FOP uses models for both code 
and optimizations. The code model expresses the code context that is needed in 
determining the create-conditions, destroy-conditions and post-condition of an 
optimization. We use the control flow graph (CFG) as the basic code model and 
identify a distinguished code point, S, (i.e., statement) where an optimization may be 
applied. The general form of the statement is three-address code. We use 
dependencies to represent data flow information. A dependence is represented with 
the tuple >< posdirtypeSS ds ,,,, . There are four types of dependencies: flow, anti-, 
output, and control dependencies [5]. The dir element records the direction of the 
dependence, which can be forward, backward or equivalent, represented by <, >, or =, 
respectively. The direction is needed in loop optimizations. The pos element records 
the position of the operand dependence between Ss and Sd. An optimization model 
expresses the pre-conditions OPre and the actions OAct of an optimization. We 
developed an optimization specification language, SpeLO, based on Gospel that 
specifies a class of scalar and loop optimizations [21]. SpeLO extends Gospel to a 
larger class of optimizations, including path-based ones (e.g., PRE). A compiler 
engineer uses SpeLO to describe the optimization model for FOP.  

<{DCE}S3, DCE, applicable> 
<Create-conditions, true> 
<Destroy-conditions, <delete S3> ∨ <modify_opcode, S3, ≠, copy/binary_arith>  

∨ <insert_dep, flow, S3, any, any> > 
<Postcondition, <delete S3>  ∧ <delete_dep, anti, S2, S3, =,>  
∧ <delete_dep, output, S1, S3, =,>> 

 (a) Detailed conditions for {DCE}s3

<{CPP}S2, CPP, not applicable> 
<Create-conditions, <delete_dep,anti,S2,S3, =,>>  
<Destroy-conditions, <delete S2>   ∨ <modify_opcode, S2, ≠, copy>  
 ∨ <modify_opnd, S2, dst, ≠, var >  ∨ <modify_opnd, S2, opnd1, ≠, var> 
 ∨ <delete_dep, flow, S2, S4, =,>  ∨ <insert_dep, flow, S2, any, =,>* 
 ∨ <insert_dep, flow, any, S4, =, any ≠ S2>  
 ∨ <insert_dep, anti, S2, any, =, in_any_path(S2, S4)>> 
<Postcondition, <delete S2>   ∧ <delete_dep, flow, S1, S2, =,> 

∧ <modify_opnd, S4, opnd1, S2.opnd1> ∧ <delete_dep, flow, S2, S4, =,> 
∧ <insert_dep, flow, S1, S4, =,>> 

(b) Detailed conditions for {CPP}S2



 

3.1 Optimization Models 

3.1.1 SpeLO 
The structure of a SpeLO specification is shown in Figure 3. The PRECONDITION 
section specifies the conditions, OPre, under which the optimization is safe to apply. 
There are two parts in the pre-condition section: code patterns, OPattern and 
dependencies, ODepend. 

 
Figure 3: The Format of a SpeLO Specification 

Code Pattern. The code pattern gives the generic code structure that must be 
satisfied for the optimization to be applicable. The code pattern identifies program 
elements such as a statement or loop, which represent the distinguished code point 
where the optimization can be applied. If an element is a statement, then the code 
pattern expresses what statement operator and operands are needed for the 
optimization to be applicable. A quantifier includes ANY referring to any matching 
element, ALL referring to all matching elements, and NO indicating that there are no 
matching elements. mem_list specifies a set to which an element belongs, such as a 
path or a loop. Format expressions are used to give the specific format of the code 
element, element_format_list. Multiple expressions can be combined with “AND” 
and “OR”. To standardize the format (without losing generality), SpeLO uses 
disjunctive normal form (DNF) to express the combination of multiple expressions.  

Depend. The second part of the PRECONDITION section gives the generic 
control and data dependence relationships that must be satisfied for the optimization 
to be applicable. The condition_list consists of the relations combined by AND and 
OR operators in DNF. A relation can be a dependence relation in the form of 
type_of_dependence (Ss, Sd, dir). The dependence’s type and direction are the same 
as in the code model.  A position tag, pos, can also be given in a dependence relation 
to indicate the position of the dependence should be checked. 

The ACTION section describes the modifications to the code or code properties 
(e.g., value number of a statement) that would result from applying the optimization. 
We decompose these effects into four primitive operations on the code: move, add, 
delete and modify.  The semantics of the primitive operations are typical edit 
operations; they can be used to express the actions of optimizations [21].  

3.1.2 Partial Redundancy Elimination (PRE) Optimization Model  
Figure 4 gives the optimization model for PRE, a path-specific optimization. Line 1 
shows that when a statement Si is a binary expression, there is a possible PRE 
opportunity. All the same expressions Sj, executed on a path to Si without a 

OptName 
PRECONDITION 

Code_Pattern 
[Quantifier ElementId: mem_list, element_format_list;]+ 

Depend 
[Quantifier ElementId [, pos]: mem_list, condition_list;]* 

ACTION 
[primitive_operation;] * 



 

redefinition between them are found (lines 2-3). The definitions Sp of this statement 
are selected, where there is a path that does not include the collected same 
expressions (line 4). The immediate predecessors of the statement on the path that 
does not include the same expression are saved. These are insertion points where the 
computation should be added. At the same time, it is required that at these insertion 
points, the expression is anticipated, as shown on line 5. When applying PRE, the 
computation is added at the insertion points and before the same expressions Sj. The 
same expressions Sj and statement Si are replaced with the assignment on lines 6-9.  

 

Figure 4: PRE Optimization Model 

3.2 Interaction Algorithm 
Given an optimization and a program point, the interaction algorithm determines the 
enabling and disabling interactions by comparing its post-condition with create- and 
destroy-conditions of other optimizations. The algorithm first considers every 
statement in the code segment and every optimization in a set of optimizations to 
determine the create-conditions and destroy-conditions for each optimization 
opportunity. In the second step, the algorithm generates the post-conditions for each 
optimization opportunity. In the last step, each optimization’s create and destroy-
conditions are compared with post-conditions of other optimizations to compute the 
enabling and disabling interaction.  

3.2.1 Step 1: Generating Create- and Destroy-Conditions 
For each optimization, O, and a code point, S, the interaction algorithm compares OPre 
with the create- and destroy-conditions for other optimizations. That is, for each O ∈  
O and each S∈ C, we compute the create- and destroy-conditions using the pre-
conditions and C: (C)[OPre]S ⇒  {[OCreate-C]S} and (C)[OPre]S ⇒  {[ODestroy-C]S}. 

To find these code changes, the PRECONDITION of each optimization model is 
compared with the code model. The Code Pattern and Depend parts of the 
PRECONDITION section are consider separately; that is [OPre] = [OPattern ∧ ODepend]. 
For example, consider the form, A AND B OR D, where A, B and D are basic 
expressions.  The code pattern expression for CPP is  

PRECONDITION 
    Code_Pattern 
1:      ANY Si: Si.opcode = binary_exp; 
2:      ALL Sj:  mem(path(Entry, Si)), Sj.opcode = Si.opcode  

AND Sj.opnd1= Si.opnd1 AND Sj.opnd2 = Si.opnd2; 
     Depend 
3:      NO Sk: anti_dep(Sj, Sk, =) AND flow_dep(Sk, Si, =); 
4:      ALL Sp: flow_dep(Sp, Si, =) AND ¬ in_every_path(Sj, Sp, Si, save pred(Si))  AND 

¬ in_any_path(pred(Si), Sj, Si) to Bq) 
5:      NO Bl: mem(Bq), ¬post_dom(B(Si), Bl); 
ACTION 
6:      Add ((new_temp= Si.opnd1 Si.opcode Si.opnd2), Bq); 
7:      Add (new_temp=Si.opnd1 Si.opcode Si.opnd2), Sj); 
8:      Modify (Sj, (Sj.dst = new_temp)); 
9:      Modify (Si, (Si.dst = new temp));



 

Si.opcode = copy AND type (Si.opnd1) = var 

Thus, A is “Si.opcode = copy” and B is “type(Si.opnd1)=var”. D is not given.  
For Depend, the second dependence expression of CPP is “flow(Sk, Sj, =) AND (Sk 
!= Si)”.  In this case, A is “flow(Sk, Sj, =)”  and B is “Sk != Si”.   
Code Pattern.  When the code model (i.e., the state at code point S) is compared to 
the code pattern, two cases are possible. When the code matches Code Pattern, the 
create-conditions are true. Thus, step 1 of the interaction algorithm needs only to 
determine the destroy-conditions, {[ODestroy-C]S}. When the code does not match the 
pre-conditions, the destroy-conditions are true and the algorithm determines only 
create-conditions, {[OCreate-C]S}. 
Case 1: [OPattern] ~ C: The first case happens when the current statement S in C 
matches the code pattern. The destroy-conditions are generated. Suppose, the code 
pattern expression is A AND B OR D, the destroy-conditions are created as: 

[ODestroy-Pattern-C]S = (delete S) ∨ (¬A ∧¬D)∨ (¬B ∧ ¬ D) 
For example, the destroy-conditions for CPPi are: 

(delete SStmtid) ∨ (modify_opnd, SStmtid.opcode ≠ copy) ∨ 
(modify_opcode,  type(SStmtid.opnd1)≠ var)  

Case 2: [OPattern]S /~ C: Another case occurs when the current statement S does not 
match the code pattern. The interaction algorithm generates the create-conditions, 
considering only the legal code changes that can be made by other optimizations. For 
example, constant folding requires that both operands are constant. Even if a 
statement has a variable operand, it is possible to perform constant folding when the 
statement’s variable operand can be changed to a constant by other optimizations 
(e.g., constant propagation).   

[OCreate-Pattern-C]S = (if (A∧¬B) insert B) ∨ if (¬A∧B) insert A) ∨  (if (¬D) insert D ) 

When it is impossible for any code change made by another optimization to match 
Code Pattern, an optimization opportunity is not created. 

Depend. After determining create- and destroy-conditions for the code pattern, the 
create- and destroy-conditions are generated for the Depend specification. For each 
quantifier ANY, ALL and NO, there are two cases, corresponding to a match and no 
match between ODepend and C. Again, assume the dependence rules are in the form of 
A AND B OR D.  
Case 1: For the ALL quantifier, if there is a match [ODepend]S ~ C, then the create-
condition is true and the destroy-conditions  are generated as below.  “Alldep” 
represents the All quantifier. 

{[ODestroy-alldep-C]S } = (delete S1) ∧...∧  (delete Sn)∨(insert A^B)* ∨ (insert D)* 

{[ODestroy-alldep-C]S} shows that if all of the matching statements are deleted, then the 
optimization opportunity is destroyed. It also includes insertion of a dependence that 
matches the dependence rule, (insert A ∧ B)* or (insert D).  

Case 2: For the ALL quantifier, when the code model does not match the dependence 
rule [ODepend]S /~ C, the create-conditions are generated as: 



 

{[OCreate-alldep-C]S } =  (insert A^B)* ∨ (insert D)* 

Similarly, the interaction algorithm generates create and destroy-conditions for the 
ANY and NO quantifiers. 

3.2.2 Step 2: Generating Post-conditions 
The post-conditions of O are the code changes after applying the actions of O. In its 
second step, the interaction algorithm generates the post-conditions for each 
optimization opportunity according to the actions of the optimization.  
Step 2: For each O  in O and S,  (C)[OAct]S ⇒  (C) ● [OPost]S 

The primitive operations in the ACTION section specify the code modifications 
made by the optimization. The actions are decomposed into individual modifications 
during generation of the specific post-conditions.  

Table 1: Generating Post-Conditions 

Table 1 shows how to generate post-conditions for each primitive action in the 
ACTION section. A row corresponds to an action, given in the first table column. 
The second and third columns give the changes to the code model. For example, the 
move operation deletes a statement from its original location and inserts a new one at 
a new location. When a statement is deleted, its dependences must also be deleted. 
When a new statement is inserted, dependences are inserted at the new location. 

3.2.3 Step 3: Computing the Interactions 
In this final step, the algorithm determines the interactions among optimizations by 
matching the create- and destroy-conditions of each optimization with the post-
conditions of other optimizations.  
Step 3:  Compare conditions in }]{[ SCDestroy

kO −  and }]{[ SCCreate
kO −  with [ O C-Post

i ] S:   

If there exists a iCΔ in }]{[ SCDestroy
kO − such that iCΔ ⊆ [ O

C-Post
i ]S then Oi disables Ok 

and if there exists a iCΔ in }]{[ SCCreate
kO − such that iCΔ ⊆ [ O C-Post

i ]S then Oi enables 
Ok 

Action (Pattern) Code Modifications (Depend) Dependence Modifications 

Move delete (S) 
insert (NewS, AfterS) 

delete_dep (type, stat, S, dir) 
insert_dep (type, stat, NewS, dir) 
insert_dep (type, NewS, stat, dir) 

Add insert(S, AfterS) 
insert_dep (type, S, stat, dir) 
insert_dep (type, stat, S, dir) 

Delete delete (S) delete_dep (type, stat, S, dir) 

modify_opnd(S, opnd, new_opnd) 

delete_dep (type, stat, S, dir)  
where dep_position = opnd 
insert_dep (type, stat, S, dir) 

where dep_position= new_opnd 
insert_dep (type, S, stat, dir) 

where dep_position= new_opnd 

Modify 

modify_opcode(S, new_opcode) -- 



 

The process for matching Oi’s create- and destroy-conditions with the post-
conditions is as follows.  For each optimization opportunity, the algorithm tries to 
match the post-conditions of other optimizations. It finds the optimizations whose 
post-condition matches the condition. Next, it tries to match the set of optimizations 
whose post-conditions match conditions to enable/disable Oi together. The 
optimization whose post-conditions match condition C enables/disables Oi. The 
condition action (i.e., delete, insert, delete_dep, insert_dep, modify_opnd, or 
modify_opcode) and the object (e.g., statement or dependence) are compared. For 
example, if A is <delete S3>, an optimization whose post-condition deletes S3 
matches A. If A is <delete_dep, type, Si, Sj, dir, other_condition>, the post-condition 
has to match all parts of condition A. The post-condition has the same type of 
dependence between Si and Sj, direction, and the other conditions are satisfied. 

4. Optimization Ordering Using Properties 
Typically, compilers apply optimizations in a predetermined order, perhaps guided by 
a compiler writer’s expertise. In our approach, we use the profitability and interaction 
properties to determine the optimization order at the statement level. 
Def. 7: The Profit of an optimization O, Oprofit, is the performance difference after 
applying O. Performance can be defined as execution time, dynamic instruction count 
or other metrics.  Suppose (C) [OPre, OAct]S <R>  (C’)[Oprofit], then 

Oprofit = Performance (C’, R) – Performance(C, R) 

We determine optimization ordering based on properties, expressed as: Oi before Oj 
If (Oi enables Oj) OR (Oj disables Oi) 

OR (Oi, no interaction Oj AND Profit(Oi)) > Profit(Oj)) 
Figure 5 shows our algorithm to determine phase ordering. A working set, app, 

tracks which optimizations to consider. A list, seq, holds the optimization sequence 
determined by the algorithm. app is initialized to all applicable optimizations and seq 
is initialized to the empty sequence.  The algorithm iterates until the working set is 
empty (line 3). The algorithm evaluates the profit of optimizations in list, Profit(O), 
on line 4. The profitability of an optimization is computed analytically [23]. The 
algorithm selects the optimization Ok with the largest Profit as the next optimization 
in the sequence. Ok is added to seq on line 6. On line 7, the algorithm updates app 
according to what optimizations are disabled and enabled by Ok. We require that 
when Ok along with other optimizations disables Om and all the other optimizations 
are already in the sequence, then we remove Om from app. For the enabling 
interaction, we also require that optimizations already in seq do not disable Om, and 
then we can add Om to app. We evaluate app until it is empty to achieve the sequence 
that maximizes the evaluation function.  

Although we use a single optimization in the discussion, FOP can determine the 
properties for a series of optimizations, i.e., the combination of optimizations. In this 
case, (C)[ Pre

...kiO , Act
...kiO  ] <R> ⇒  (C´) [ Properties

...kiO ]. The phase ordering among 
combinations of optimizations can also be determined using optimization properties. 



 

 
Figure 5: Algorithm to determine a Good Optimization Sequence 

5. Experiments 
To evaluate FOP, we compared three approaches to applying optimizations: a fixed-
order approach, an empirical approach that uses a genetic algorithm (GA) to search 
for effective optimization sequences [1] and our approach. We run experiments on an 
Intel Pentium IV 2.4GHz machine, with 512MB of memory and RedHat Linux. 

We consider nine optimizations: CPP, CTF, DCE, PRE, LICM, GVN, BRC, BRE, 
and RA. The optimizations are incorporated into the MachSUIF optimizer [17] for 
the Intel IA-32 instruction set. The fixed-order sequence is “GVN, BRC, BRE, CPP, 
CTF, DCE, PRE, LICM, GVN, BRC, BRE, CPP, CTF, DCE, PRE, LICM, RA”. The 
selection of the fixed order was based on a past study of interactions among these 
optimizations [21]. In all cases, register allocation is done as the last optimization.  

The empirical approach (GA) has the same configuration as in [1]. We performed 
a search for each function in a program with 10 generations. Each generation had a 
population of 20 sequences. Every sequence had 16 optimization passes, picked from 
the possible optimizations. At each generation, the best 10% of the sequences survive 
without any change. The remaining part of the new generation is created with a 
crossover operation, which is followed by character-by-character mutation (5% 
mutation rate). We tried more generations but there was no further improvement.  

5.1 Compile-time Comparison 
The empirical approach both applies optimizations and executes the code to evaluate 
profitability. For the SPEC benchmarks, the test inputs were used to execute the code. 
FOP uses the interaction and the profitability properties to determine optimization 
order. Table 2 shows the compile-time overhead of the approaches. 

From the table, the compile-time for the fixed-order is small. It varies from 0.05 
to 6.11 minutes. Because the empirical approach (GA) executes the application to 
determine profitability and to apply optimizations, and it recomputes the data flow to 
detect interactions, its compile-time is large, varying from 5 minutes to 43.6 hours. 
Each function is compiled for 200 sequences and evaluated by executing the code. Its 
total compile-time is related to the compile-time and execution time for each function. 
For example, there are 106 functions in gzip. The average compile-time for a function 
is 0.8 seconds. The execution time for the test input is 2.4 seconds. Considering the 
GA search time, it took 1181 minutes to find code-specific sequences for gzip. 

1:  app = {all applicable optimization instances}; 
2:  seq = {}; 
3:  while (app ≠ empty) { 
4:    Evaluate_Profit (list); 
5:    select Ok that Profit(Ok) is the best; 
6:    seq = seq + { Ok }; 
7:    app = app –  { Ok }  
8:    app = app –  { Om | Disable({Ok, …}, Om) ∧  {Ok, …} ⊆ seq }  
9:    app = app + { Om | Enable({Ok, …}, Om) ∧ {Ok, …} ⊆ seq    

∧ ¬∃ (Op ∈ seq ∧ Disable(Op, Om))}  
10:  app = app + { Om1Om2 | Enable({Ok, …}, Om1Om2) ∧ {Ok, …} ⊆ seq };  } 



 

With our approach, the compile-time is reduced: It varies from 0.7 to 82 minutes.  
Our approach needs to determine the interaction property among optimizations and to 
predict the profitability property. Its compile-time depends on the time to determine 
the interaction property and the time to predict profitability. For example, in mpeg the 
average compile-time to determine the interaction property is about 20 seconds and 
the compile-time to determine profitability is about 6 seconds. Thus, it took 82.24 
minutes for our approach to determine good optimization sequences for mpeg.  

Table 2: Compile-time of Three Approaches (minutes) 
Benchmarks Fixed-order Empirical FOP 

adpcm.rawcaudio 0.05 5.41 1.14 
mpeg2.enc 1.92 726.67 82.24 

bitcount 0.15 18.97 1.66 
dijkstra.large 0.05 11.63 0.68 

FFT 0.11 13.20 1.81 
164.gzip 1.52 1180.67 53.82 
175.vpr 6.11 1469.23 61.23 
181.mcf 0.53 74.64 19.54 

197.parser 5.4 976.34 49.23 
256.bzip2 2.34 2618.79 58.68 

5.2 Performance Comparison 
We compared the performance of the three approaches, as shown in Figure 6. The 
figure shows the improvement of the empirical and the model-driven approaches over 
the fixed-order approach. Performance is measured with dynamic instruction count.   
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Figure 6: Performance Comparison of Three Approaches 

As the figure shows, the empirical and model-driven approaches improve 
performance more than the fixed-order approach. In 256.bzip2, the improvement with 
the empirical and model-driven approaches over the fixed-order sequence is 32% and 
28% respectively. In most cases, the model-driven approach has similar performance 
improvement as the empirical approach. However, the performance of the model-
driven approach is better in a few cases. For example, in adpcm, the improvement is 
19% with the empirical technique and 23% with our model-driven approach. This 



 

higher improvement happens because an optimization instance is not applied if it is 
predicted to be unprofitable. 

In terms of memory, FOP uses 51KB to 723KB (average) to store data and 
control dependence information. The maximum memory requirements ranged from 
106KB to 9815KB. On today’s machines, this amount of memory is reasonable.   

Our experiments show that optimization properties are useful in finding code-
specific optimization sequences. Our techniques show it is practical to analytically 
model optimizations and compute interactions to find a good code-specific order in 
which to apply optimizations.  

6. Related Work 
Formal and empirical approaches have been used to determine the order to apply 
optimizations. Knuth and Bendix proposed a solution to express optimizations as a 
set of rewriting rules [9]. Their algorithm detects potential conflicts and resolves them 
by introducing new rewriting rules, derived from the existing set. However, the 
procedure is difficult to generalize. Whitfield and Soffa described a framework that 
enables the exploration, both analytically and experimentally, of properties of 
optimizations, including the interaction property [20], [21]. They proposed Gospel to 
express the pre-condition and post-conditions of optimizations. They studied the 
optimization interactions with proofs or examples. However, their approach can not 
automatically detect the interactions among optimizations based on code context.  

Another approach uses heuristic-driven search algorithms to find a good 
optimization sequence. Almagor et al. performed a large experimental study on the 
space of optimization sequences [1]. Although their approach can produce efficient 
code, it can be slow. Kulkarni et al. proposed an interactive compilation system, 
VISTA, which used a genetic algorithm, performance information and user input to 
select an effective optimization sequence. They further proposed two approaches to 
improve search performance [7], [10], [11]. Triantifyllis et al. recognized the benefit 
of finding good optimization sequences [18], [19]. To limit compile-time, their 
system used a fixed set of optimization sequences and obtained the best result with 
the set. However, the selection of the sequences should be considered. 

7. Conclusion 
This paper presented a framework (FOP) which can automatically determine 
optimization properties. We use FOP to determine enabling and disabling interactions 
among optimizations without actually applying the optimizations. An application of 
FOP is to find a good code-specific order in which to apply optimizations. This paper 
presented an algorithm that constructs an effective optimization sequence using the 
interaction and profitability properties. We implemented FOP and experimentally 
found good code-specific orders. The results showed that we obtain sequences that 
have similar performance as an empirical approach with less compile-time. Our work 
demonstrates that an analytic approach can be used for optimization properties, which 
are useful in addressing phase ordering. 
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