

A Framework for Exploring Optimization Properties
Min Zhao Bruce R. Childers Mary Lou Soffa

Hewlett Packard University of Pittsburgh University of Virginia
 {min.zhao@hp.com} {childers@cs.pitt.edu} {soffa@cs.virginia.edu}

Abstract. Important challenges for compiler optimization include determining
what optimizations to apply, where to apply them and what is a good sequence in
which to apply them. To address these challenges, an understanding of
optimization properties is needed. We present a model-based framework, FOP, to
determine how optimizations enable and disable one another. We combine the
interaction and profitability properties to determine a "best" sequence for applying
optimizations. FOP has three components: (1) a code model for the program, (2)
optimization models that capture when optimizations are applicable and their
actions, and (3) a resource model that expresses the hardware resources affected by
optimizations. FOP determines interactions by comparing the create- and destroy-
conditions of each optimization with the post conditions of other optimizations. We
develop a technique with FOP to construct code-specific optimization sequences.
Experimentally, we demonstrate that our approach achieves similarly good code
quality as empirical techniques with less compile-time.

1. Introduction
The field of code optimization has been extremely successful over the past 40 years.
Various reports from research and commercial projects indicate that the performance
of software can be improved by 20% to 40% with aggressive optimization [1][2].
However, it has long been known that there are issues with the application of
optimizations. First, optimizations may degrade performance in certain
circumstances. For example, Briggs and Cooper reported improvements ranging from
+49% to –12% for their algebraic re-association optimization [3]. Second,
optimizations enable and disable other optimizations so the order of applying
optimizations can have an impact on performance [1][18][21][10], which is known as
the phase ordering problem. Finally, optimization configurations can impact the
effectiveness of optimizations (e.g., how many times to unroll a loop or the tile size)
[15][4][8]. These problems are compounded when different hardware platforms are
considered. Due to these problems, optimizing compilers are not achieving their full
potential. To systematically tackle these problems, we need to identify and study the
properties of optimizations, especially those that target the application of
optimizations. For example, to selectively apply only beneficial optimizations, we
need to determine the impact of applying an optimization at a particular code point
given the resources of the targeted platform (i.e., the profitability property). To
efficiently determine a code-specific optimization sequence, we also need to detect
the disabling and enabling interferences among optimizations (i.e., the interaction
property) at code points.

There are two general approaches to exploring optimization properties. The first
one uses formal techniques. The formal approach has been used to prove the
soundness and correctness of optimizations [14][13][16]. Work also has been done to
automatically generate the implementation of optimizations [20][21][9][12] from a

formal specification. Another approach uses experimental techniques. That is, after
performing optimizations, the properties are experimentally determined (e.g., the
code is executed to evaluate performance for determining profitability). The empirical
approach has been used to determine the correctness of an optimizer [6]. It has also
been used to determine profitability and interactions for finding good optimization
sequences and configurations [1][8][18][11]. A disadvantage of the experimental
approach is its cost and scalability, as the execution of the program is required. It may
take hours, or even days, to find a good optimization sequence for a complex program
[10]. Ideally, we need a systematic way to address the application of optimizations,
which is practical, effective and scalable [22].

Our approach is to develop a model-based framework that applies optimizations
based on their properties which are automatically derived from models of the code,
the optimizations themselves, and machine resources. These properties guide the
compiler in the application of the optimizations. In prior work, we showed how to
determine the profitability property from analytic models for code, optimizations and
machine resources [23]. Using the models, the profitability of an optimization was
determined to avoid the circumstances where an optimization can degrade
performance.

This paper presents a Framework for determining Optimization Properties, FOP
and shows it can be used to determine the interaction property, caused by
optimizations enabling and disabling other optimizations. We combine the interaction
property with the previously studied profitability property to efficiently find a good
code-specific optimization sequence. FOP includes code and optimization models.
The code model, automatically constructed from the source, captures characteristics
about the code related to the pre-conditions of an optimization. The optimization
model, constructed by the optimizer engineer, captures the pre-conditions and actions
(i.e., code changes) of optimizations. FOP also has a resource model but it is not
needed to determine the interaction property.

We present an algorithm that derives the enabling and disabling interaction
property for a set of optimizations. The key idea is to determine the code changes
needed to meet the pre-conditions of an optimization, using the post-conditions of
other optimizations. We also give a novel technique that automatically constructs
code-specific optimization sequences using knowledge about the interaction and
profitability properties at each code point. The sequences are used to guide the
compiler in the actual application of optimizations.

We implemented FOP and used it to find code-specific sequences for a set of
optimizations, including copy propagation(CPP), constant folding(CTF), dead code
elimination(DCE), partial redundancy elimination(PRE), loop invariant code
motion(LICM), global value numbering(GVN), branch elimination(BRE), branch
chaining(BRC), and register allocation(RA). We compared our technique with a
fixed-order approach and an empirical approach. The results show that our approach
achieves better program performance than the fixed-order technique and determines
similarly good sequences as the empirical approach with up to a 43 times reduction in
compile-time. Our technique scales to large programs because it does not need to
execute the program.

The contributions of this paper include: a formalization of optimization
application and the interaction property; a framework to determine enabling and
disabling interactions among optimizations; a technique to determine optimization
order from the interaction and profitability properties; and, a study that demonstrates
the usefulness of FOP in addressing the phase ordering problem.

2. Model-Driven Optimization
In this section, we formally define the interaction property. We start with basic
definitions needed to express disabling and enabling conditions for an optimization.
To apply an optimization, we must ensure that the semantics of a program are not
changed by the optimization. Thus, a set of pre-conditions (both text and
dependencies) is needed for an optimization to be applicable. When an optimization
is applicable in some context, it can cause code conditions to change so that another
optimization is enabled or disabled. We define how optimizations enable and disable
one another. We begin with the definition of a Boolean operator ~ that returns true
when the conditions D are met in a code segment C.
Def. 1: D ~ C if the code conditions D are true in code C; /~ is the negation of ~.

We express an optimization O as [OPre, OAct], where OPre represents the pre-
conditions needed before the actions (i.e., code changes) OAct are applied for semantic
correctness. We express the application of an optimization as:

(C) [OPre, OAct]s <R> ⇒ (C´) [Oproperties]s
where C is a code segment with a statement point, S, at which the optimization is
applied. If OPre ~ C, the optimization is applicable. OAct is applied in this case to C
and C’ is produced (⇒). R is the machine resources upon which the code segment is
executed. Oproperties represents the different optimization properties that can be derived,
such as interaction and profitability.

As can be seen, optimization properties depend on code context C, the
optimization O and the machine resources R. We model each one of these
components and use these models to analyze optimization properties; that is, CM OM
RM ⇒Oproperties where CM is the code model, OM is an optimization model and RM is
the resource model (the subscript “M” refers to a model, rather than a specific
optimization, code sequence or resource).

Instead of applying the optimizations, we use models to express the results of the
optimizations and analyze the results to determine the properties. In addition, unlike
actually applying optimizations, we do not apply a data flow algorithm after each
optimization to detect data flow changes. We do this by analyzing the code model.

An example of our technique is shown in Figures 1 and 2. We give a brief
discussion to motivate the definition of the interaction property. The example
describes the determination of enabling interactions for copy propagation (CPP) and
dead code elimination (DCE). A small source program is provided in Figure 1(a).
From the source, FOP automatically generates the dependences needed for the code
model as shown in Figure 1(b). A dependence is expressed as <Si, Sj, type, dir, pos>.
For example, there is a flow dependence between S1 and S2 which has equal direction
for the first operand. Thus, the dependence is <S1, S2, flow, =, 1>. Figure 1 shows the
optimization specification for DCE and CPP in (c) and (d).

We next define the enabling and disabling conditions for optimizations. Then, we
present an efficient technique to compute the interaction property.

Figure 1: An Example of Determining Interaction

Def. 2: Given a code segment, C, an optimization Oi enables an optimization Ok if the
application of Oi creates the pre-conditions of Ok, expressed as:

Oi enables Ok if (C) [O Pre
i , O Act

i]S⇒ (C’) ∧][O Pre
k

/~ C ∧]O[Pre
k ~ C’

Def. 3: An optimization Oi disables Ok if the application of Oi destroys the pre-
conditions of Ok:

Oi disables Ok if (C) [O Pre
i , O Act

i]S ⇒ (C’) ∧][O Pre
k ~ C ∧]O[Pre

k /~ C’

Intuitively, to determine the enabling and disabling interaction property between
Oi and Ok, we need to analyze the code changes caused by applying Oi and the code
changes that can create or destroy the pre-condition of Ok.
Def. 4: The post-condition of O, [OPost-C]S, is the set of the code changes, ΔC , after
applying O at statement S in code segment C. We use ● to indicate the inclusion of
the changes that are made to C by the optimization; that is, C' = C ● ΔC .

[OPost-C]S = { ΔC | (C)[OAct]S ⇒ C ● ΔC }
We also define a set of code changes that are needed to create or destroy an

opportunity for an optimization, O.
Def. 5: The create-condition of O, {[OCreate-C] S}, is the set of code changes, iCΔ that
make O applicable at statement S in code segment C.

S1: b = 0;
S2: a = b;
S3: b = 3;
S4: c = a + 2;
S5: print c;
(a) Code

<S1, S2, flow, =, 1>
<S1, S3, output, =, 0>
<S2, S4, flow, =, 1>
<S2, S3, anti, =, 1>
<S4, S5, flow, =, 1>
(b) Code model

PRECONDITION
 Code_Pattern
1: ANY Si: Si.opcode = copy OR Si.opcode = binary_exp;
 Depend
2: NO Sj: flow_dep(Si, Sj, any);
ACTION
3: Delete (Si);

(c) DCE Optimization model

<{DCE}S1, DCE, not app>, < {DCE}S2, DCE, not app>,
< {DCE}S3, DCE, app>, < {DCE}S4, DCE, not app>,
<{CPP}S2, CPP, not app>

(e) Possible optimizations

PRECONDITION
 Code_Pattern
1: ANY Si: Si.opcode = copy AND type(Si.opnd1) = var;
 Depend
2: ALL Sj, pos: flow_dep(Si, Sj, =);
3: NO Sk: flow(Sk, Sj, =) AND (Sk != Si);
4: NO Sp: mem(Sp, path(Si, Sj)), anti_dep(Si, Sp, =);
ACTION
5: Modify (operand(Sj, pos), Si.opnd1);
6: Delete (Si);

(d) CPP Optimization model

{[OCreate-C]S} = {{ iCΔ } | [OPre]S /~ C ∧ [OPre]S ~ C ● iCΔ }

Def. 6: The destroy-condition of O, {[ODestroy-C] S}, is the set of code
changes, iCΔ that make O not applicable at statement S in code segment C.

{[ODestory-C]S} = {{ iCΔ } | [OPre]S ~ C ∧ [OPre]S /~ C ● iCΔ }

To detect enabling and disabling interactions, we compute the code changes that enable an
optimization Ok by comparing the post-conditions of other optimizations, say Oi,
against the create and destroy-conditions for Ok.
Theorem 1: An optimization Oi enables Ok if there exists a iCΔ in

}]{[S
CCreate

kO − such that iCΔ ⊆ [O
C-Post

i]S.

Proof: Straightforward, based on the Definitions 2 and 5.
Theorem 2: An optimization Oi disables Ok if exists a iCΔ in }]{[S

CDestroy
kO − such

that iCΔ ⊆ [O
C-Post

i]s.

Proof: Based on Definitions 3 and 6.

We develop a new algorithm to determine the enabling and disabling interactions of
optimizations at the per-statement level. For a statement in the program, the
interaction algorithm determines how a set of optimizations interacts with one
another. We now give a high-level overview of the interaction algorithm, which is
discussed in detail in Section 3.3. The algorithm has three steps.

Step 1: For each O ∈ O and each S∈C, compute the code changes needed to create
or destroy an optimization opportunity.
Step 2: For each O ∈ O and each S∈C, compute the post conditions after applying
O at point S in C.
Step 3: For each O ∈ O and each S∈C, compare create- and destroy- conditions
with post conditions of all optimizations to determine enabling and disabling
properties.

Returning to Figures 1 and 2, when the interaction algorithm starts, it generates
the specific post-, create-, and destroy- conditions for every possible optimization
opportunity in the code. Figure 1e shows the possible optimizations. We show the
details for two optimizations, {DCE}S3 and {CPP}S2, in Figures 2(a) and (b).

{DCE}S3 is a dead code elimination that operates on S3 and is applicable. Thus,
there is only one create- condition for {DCE}S3 which is simply “true”. There are
three destroy-conditions for {DCE}S3. The first one is deleting S3. The second one is
modifying S3’s operation. The third one is inserting a flow dependence that has S3 as
the source. The post-conditions for {DCE}S3 show how it changes the code model,
which includes deleting S3, deleting the anti-dependence between S2 and S3 and
deleting the output dependence between S1 and S3. Similarly, the create-, destroy- and
post-conditions are generated for {CPP}S2 from the CPP optimization model.

In the last step, the interaction algorithm compares the create- and destroy-
conditions with the post-condition of other optimizations and determines the

interactions. For example, there is only one condition needed for {CPP}S2 to be
applicable; i.e., <delete_dep, anti,S2,S3,=>. When the interaction algorithm checks
{DCE}S3’s post-conditions, it finds that {DCE}S3 changes the dependency by deleting
the anti-dependence between S2 and S3. This condition matches with the enabling
expression of {CPP}S2. Thus, {DCE}S3

 enables {CPP}S2.

Figure 2: Determining Interaction

3. FOP Components
To determine the enabling and disabling interactions, FOP uses models for both code
and optimizations. The code model expresses the code context that is needed in
determining the create-conditions, destroy-conditions and post-condition of an
optimization. We use the control flow graph (CFG) as the basic code model and
identify a distinguished code point, S, (i.e., statement) where an optimization may be
applied. The general form of the statement is three-address code. We use
dependencies to represent data flow information. A dependence is represented with
the tuple >< posdirtypeSS ds ,,,, . There are four types of dependencies: flow, anti-,
output, and control dependencies [5]. The dir element records the direction of the
dependence, which can be forward, backward or equivalent, represented by <, >, or =,
respectively. The direction is needed in loop optimizations. The pos element records
the position of the operand dependence between Ss and Sd. An optimization model
expresses the pre-conditions OPre and the actions OAct of an optimization. We
developed an optimization specification language, SpeLO, based on Gospel that
specifies a class of scalar and loop optimizations [21]. SpeLO extends Gospel to a
larger class of optimizations, including path-based ones (e.g., PRE). A compiler
engineer uses SpeLO to describe the optimization model for FOP.

<{DCE}S3, DCE, applicable>
<Create-conditions, true>
<Destroy-conditions, <delete S3> ∨ <modify_opcode, S3, ≠, copy/binary_arith>

∨ <insert_dep, flow, S3, any, any> >
<Postcondition, <delete S3> ∧ <delete_dep, anti, S2, S3, =,>
∧ <delete_dep, output, S1, S3, =,>>

 (a) Detailed conditions for {DCE}s3

<{CPP}S2, CPP, not applicable>
<Create-conditions, <delete_dep,anti,S2,S3, =,>>
<Destroy-conditions, <delete S2> ∨ <modify_opcode, S2, ≠, copy>
 ∨ <modify_opnd, S2, dst, ≠, var > ∨ <modify_opnd, S2, opnd1, ≠, var>
 ∨ <delete_dep, flow, S2, S4, =,> ∨ <insert_dep, flow, S2, any, =,>*
 ∨ <insert_dep, flow, any, S4, =, any ≠ S2>
 ∨ <insert_dep, anti, S2, any, =, in_any_path(S2, S4)>>
<Postcondition, <delete S2> ∧ <delete_dep, flow, S1, S2, =,>

∧ <modify_opnd, S4, opnd1, S2.opnd1> ∧ <delete_dep, flow, S2, S4, =,>
∧ <insert_dep, flow, S1, S4, =,>>

(b) Detailed conditions for {CPP}S2

3.1 Optimization Models

3.1.1 SpeLO
The structure of a SpeLO specification is shown in Figure 3. The PRECONDITION
section specifies the conditions, OPre, under which the optimization is safe to apply.
There are two parts in the pre-condition section: code patterns, OPattern and
dependencies, ODepend.

Figure 3: The Format of a SpeLO Specification

Code Pattern. The code pattern gives the generic code structure that must be
satisfied for the optimization to be applicable. The code pattern identifies program
elements such as a statement or loop, which represent the distinguished code point
where the optimization can be applied. If an element is a statement, then the code
pattern expresses what statement operator and operands are needed for the
optimization to be applicable. A quantifier includes ANY referring to any matching
element, ALL referring to all matching elements, and NO indicating that there are no
matching elements. mem_list specifies a set to which an element belongs, such as a
path or a loop. Format expressions are used to give the specific format of the code
element, element_format_list. Multiple expressions can be combined with “AND”
and “OR”. To standardize the format (without losing generality), SpeLO uses
disjunctive normal form (DNF) to express the combination of multiple expressions.

Depend. The second part of the PRECONDITION section gives the generic
control and data dependence relationships that must be satisfied for the optimization
to be applicable. The condition_list consists of the relations combined by AND and
OR operators in DNF. A relation can be a dependence relation in the form of
type_of_dependence (Ss, Sd, dir). The dependence’s type and direction are the same
as in the code model. A position tag, pos, can also be given in a dependence relation
to indicate the position of the dependence should be checked.

The ACTION section describes the modifications to the code or code properties
(e.g., value number of a statement) that would result from applying the optimization.
We decompose these effects into four primitive operations on the code: move, add,
delete and modify. The semantics of the primitive operations are typical edit
operations; they can be used to express the actions of optimizations [21].

3.1.2 Partial Redundancy Elimination (PRE) Optimization Model
Figure 4 gives the optimization model for PRE, a path-specific optimization. Line 1
shows that when a statement Si is a binary expression, there is a possible PRE
opportunity. All the same expressions Sj, executed on a path to Si without a

OptName
PRECONDITION

Code_Pattern
[Quantifier ElementId: mem_list, element_format_list;]+

Depend
[Quantifier ElementId [, pos]: mem_list, condition_list;]*

ACTION
[primitive_operation;] *

redefinition between them are found (lines 2-3). The definitions Sp of this statement
are selected, where there is a path that does not include the collected same
expressions (line 4). The immediate predecessors of the statement on the path that
does not include the same expression are saved. These are insertion points where the
computation should be added. At the same time, it is required that at these insertion
points, the expression is anticipated, as shown on line 5. When applying PRE, the
computation is added at the insertion points and before the same expressions Sj. The
same expressions Sj and statement Si are replaced with the assignment on lines 6-9.

Figure 4: PRE Optimization Model

3.2 Interaction Algorithm
Given an optimization and a program point, the interaction algorithm determines the
enabling and disabling interactions by comparing its post-condition with create- and
destroy-conditions of other optimizations. The algorithm first considers every
statement in the code segment and every optimization in a set of optimizations to
determine the create-conditions and destroy-conditions for each optimization
opportunity. In the second step, the algorithm generates the post-conditions for each
optimization opportunity. In the last step, each optimization’s create and destroy-
conditions are compared with post-conditions of other optimizations to compute the
enabling and disabling interaction.

3.2.1 Step 1: Generating Create- and Destroy-Conditions
For each optimization, O, and a code point, S, the interaction algorithm compares OPre
with the create- and destroy-conditions for other optimizations. That is, for each O ∈
O and each S∈ C, we compute the create- and destroy-conditions using the pre-
conditions and C: (C)[OPre]S ⇒ {[OCreate-C]S} and (C)[OPre]S ⇒ {[ODestroy-C]S}.

To find these code changes, the PRECONDITION of each optimization model is
compared with the code model. The Code Pattern and Depend parts of the
PRECONDITION section are consider separately; that is [OPre] = [OPattern ∧ ODepend].
For example, consider the form, A AND B OR D, where A, B and D are basic
expressions. The code pattern expression for CPP is

PRECONDITION
 Code_Pattern
1: ANY Si: Si.opcode = binary_exp;
2: ALL Sj: mem(path(Entry, Si)), Sj.opcode = Si.opcode

AND Sj.opnd1= Si.opnd1 AND Sj.opnd2 = Si.opnd2;
 Depend
3: NO Sk: anti_dep(Sj, Sk, =) AND flow_dep(Sk, Si, =);
4: ALL Sp: flow_dep(Sp, Si, =) AND ¬ in_every_path(Sj, Sp, Si, save pred(Si)) AND

¬ in_any_path(pred(Si), Sj, Si) to Bq)
5: NO Bl: mem(Bq), ¬post_dom(B(Si), Bl);
ACTION
6: Add ((new_temp= Si.opnd1 Si.opcode Si.opnd2), Bq);
7: Add (new_temp=Si.opnd1 Si.opcode Si.opnd2), Sj);
8: Modify (Sj, (Sj.dst = new_temp));
9: Modify (Si, (Si.dst = new temp));

Si.opcode = copy AND type (Si.opnd1) = var

Thus, A is “Si.opcode = copy” and B is “type(Si.opnd1)=var”. D is not given.
For Depend, the second dependence expression of CPP is “flow(Sk, Sj, =) AND (Sk
!= Si)”. In this case, A is “flow(Sk, Sj, =)” and B is “Sk != Si”.
Code Pattern. When the code model (i.e., the state at code point S) is compared to
the code pattern, two cases are possible. When the code matches Code Pattern, the
create-conditions are true. Thus, step 1 of the interaction algorithm needs only to
determine the destroy-conditions, {[ODestroy-C]S}. When the code does not match the
pre-conditions, the destroy-conditions are true and the algorithm determines only
create-conditions, {[OCreate-C]S}.
Case 1: [OPattern] ~ C: The first case happens when the current statement S in C
matches the code pattern. The destroy-conditions are generated. Suppose, the code
pattern expression is A AND B OR D, the destroy-conditions are created as:

[ODestroy-Pattern-C]S = (delete S) ∨ (¬A ∧¬D)∨ (¬B ∧ ¬ D)
For example, the destroy-conditions for CPPi are:

(delete SStmtid) ∨ (modify_opnd, SStmtid.opcode ≠ copy) ∨
(modify_opcode, type(SStmtid.opnd1)≠ var)

Case 2: [OPattern]S /~ C: Another case occurs when the current statement S does not
match the code pattern. The interaction algorithm generates the create-conditions,
considering only the legal code changes that can be made by other optimizations. For
example, constant folding requires that both operands are constant. Even if a
statement has a variable operand, it is possible to perform constant folding when the
statement’s variable operand can be changed to a constant by other optimizations
(e.g., constant propagation).

[OCreate-Pattern-C]S = (if (A∧¬B) insert B) ∨ if (¬A∧B) insert A) ∨ (if (¬D) insert D)

When it is impossible for any code change made by another optimization to match
Code Pattern, an optimization opportunity is not created.

Depend. After determining create- and destroy-conditions for the code pattern, the
create- and destroy-conditions are generated for the Depend specification. For each
quantifier ANY, ALL and NO, there are two cases, corresponding to a match and no
match between ODepend and C. Again, assume the dependence rules are in the form of
A AND B OR D.
Case 1: For the ALL quantifier, if there is a match [ODepend]S ~ C, then the create-
condition is true and the destroy-conditions are generated as below. “Alldep”
represents the All quantifier.

{[ODestroy-alldep-C]S } = (delete S1) ∧...∧ (delete Sn)∨(insert A^B)* ∨ (insert D)*

{[ODestroy-alldep-C]S} shows that if all of the matching statements are deleted, then the
optimization opportunity is destroyed. It also includes insertion of a dependence that
matches the dependence rule, (insert A ∧ B)* or (insert D).

Case 2: For the ALL quantifier, when the code model does not match the dependence
rule [ODepend]S /~ C, the create-conditions are generated as:

{[OCreate-alldep-C]S } = (insert A^B)* ∨ (insert D)*

Similarly, the interaction algorithm generates create and destroy-conditions for the
ANY and NO quantifiers.

3.2.2 Step 2: Generating Post-conditions
The post-conditions of O are the code changes after applying the actions of O. In its
second step, the interaction algorithm generates the post-conditions for each
optimization opportunity according to the actions of the optimization.
Step 2: For each O in O and S, (C)[OAct]S ⇒ (C) ● [OPost]S

The primitive operations in the ACTION section specify the code modifications
made by the optimization. The actions are decomposed into individual modifications
during generation of the specific post-conditions.

Table 1: Generating Post-Conditions

Table 1 shows how to generate post-conditions for each primitive action in the
ACTION section. A row corresponds to an action, given in the first table column.
The second and third columns give the changes to the code model. For example, the
move operation deletes a statement from its original location and inserts a new one at
a new location. When a statement is deleted, its dependences must also be deleted.
When a new statement is inserted, dependences are inserted at the new location.

3.2.3 Step 3: Computing the Interactions
In this final step, the algorithm determines the interactions among optimizations by
matching the create- and destroy-conditions of each optimization with the post-
conditions of other optimizations.
Step 3: Compare conditions in }]{[SCDestroy

kO − and }]{[SCCreate
kO − with [O C-Post

i] S:

If there exists a iCΔ in }]{[SCDestroy
kO − such that iCΔ ⊆ [O

C-Post
i]S then Oi disables Ok

and if there exists a iCΔ in }]{[SCCreate
kO − such that iCΔ ⊆ [O C-Post

i]S then Oi enables
Ok

Action (Pattern) Code Modifications (Depend) Dependence Modifications

Move delete (S)
insert (NewS, AfterS)

delete_dep (type, stat, S, dir)
insert_dep (type, stat, NewS, dir)
insert_dep (type, NewS, stat, dir)

Add insert(S, AfterS)
insert_dep (type, S, stat, dir)
insert_dep (type, stat, S, dir)

Delete delete (S) delete_dep (type, stat, S, dir)

modify_opnd(S, opnd, new_opnd)

delete_dep (type, stat, S, dir)
where dep_position = opnd
insert_dep (type, stat, S, dir)

where dep_position= new_opnd
insert_dep (type, S, stat, dir)

where dep_position= new_opnd

Modify

modify_opcode(S, new_opcode) --

The process for matching Oi’s create- and destroy-conditions with the post-
conditions is as follows. For each optimization opportunity, the algorithm tries to
match the post-conditions of other optimizations. It finds the optimizations whose
post-condition matches the condition. Next, it tries to match the set of optimizations
whose post-conditions match conditions to enable/disable Oi together. The
optimization whose post-conditions match condition C enables/disables Oi. The
condition action (i.e., delete, insert, delete_dep, insert_dep, modify_opnd, or
modify_opcode) and the object (e.g., statement or dependence) are compared. For
example, if A is <delete S3>, an optimization whose post-condition deletes S3
matches A. If A is <delete_dep, type, Si, Sj, dir, other_condition>, the post-condition
has to match all parts of condition A. The post-condition has the same type of
dependence between Si and Sj, direction, and the other conditions are satisfied.

4. Optimization Ordering Using Properties
Typically, compilers apply optimizations in a predetermined order, perhaps guided by
a compiler writer’s expertise. In our approach, we use the profitability and interaction
properties to determine the optimization order at the statement level.
Def. 7: The Profit of an optimization O, Oprofit, is the performance difference after
applying O. Performance can be defined as execution time, dynamic instruction count
or other metrics. Suppose (C) [OPre, OAct]S <R> (C’)[Oprofit], then

Oprofit = Performance (C’, R) – Performance(C, R)

We determine optimization ordering based on properties, expressed as: Oi before Oj
If (Oi enables Oj) OR (Oj disables Oi)

OR (Oi, no interaction Oj AND Profit(Oi)) > Profit(Oj))
Figure 5 shows our algorithm to determine phase ordering. A working set, app,

tracks which optimizations to consider. A list, seq, holds the optimization sequence
determined by the algorithm. app is initialized to all applicable optimizations and seq
is initialized to the empty sequence. The algorithm iterates until the working set is
empty (line 3). The algorithm evaluates the profit of optimizations in list, Profit(O),
on line 4. The profitability of an optimization is computed analytically [23]. The
algorithm selects the optimization Ok with the largest Profit as the next optimization
in the sequence. Ok is added to seq on line 6. On line 7, the algorithm updates app
according to what optimizations are disabled and enabled by Ok. We require that
when Ok along with other optimizations disables Om and all the other optimizations
are already in the sequence, then we remove Om from app. For the enabling
interaction, we also require that optimizations already in seq do not disable Om, and
then we can add Om to app. We evaluate app until it is empty to achieve the sequence
that maximizes the evaluation function.

Although we use a single optimization in the discussion, FOP can determine the
properties for a series of optimizations, i.e., the combination of optimizations. In this
case, (C)[Pre

...kiO , Act
...kiO] <R> ⇒ (C´) [Properties

...kiO]. The phase ordering among
combinations of optimizations can also be determined using optimization properties.

Figure 5: Algorithm to determine a Good Optimization Sequence

5. Experiments
To evaluate FOP, we compared three approaches to applying optimizations: a fixed-
order approach, an empirical approach that uses a genetic algorithm (GA) to search
for effective optimization sequences [1] and our approach. We run experiments on an
Intel Pentium IV 2.4GHz machine, with 512MB of memory and RedHat Linux.

We consider nine optimizations: CPP, CTF, DCE, PRE, LICM, GVN, BRC, BRE,
and RA. The optimizations are incorporated into the MachSUIF optimizer [17] for
the Intel IA-32 instruction set. The fixed-order sequence is “GVN, BRC, BRE, CPP,
CTF, DCE, PRE, LICM, GVN, BRC, BRE, CPP, CTF, DCE, PRE, LICM, RA”. The
selection of the fixed order was based on a past study of interactions among these
optimizations [21]. In all cases, register allocation is done as the last optimization.

The empirical approach (GA) has the same configuration as in [1]. We performed
a search for each function in a program with 10 generations. Each generation had a
population of 20 sequences. Every sequence had 16 optimization passes, picked from
the possible optimizations. At each generation, the best 10% of the sequences survive
without any change. The remaining part of the new generation is created with a
crossover operation, which is followed by character-by-character mutation (5%
mutation rate). We tried more generations but there was no further improvement.

5.1 Compile-time Comparison
The empirical approach both applies optimizations and executes the code to evaluate
profitability. For the SPEC benchmarks, the test inputs were used to execute the code.
FOP uses the interaction and the profitability properties to determine optimization
order. Table 2 shows the compile-time overhead of the approaches.

From the table, the compile-time for the fixed-order is small. It varies from 0.05
to 6.11 minutes. Because the empirical approach (GA) executes the application to
determine profitability and to apply optimizations, and it recomputes the data flow to
detect interactions, its compile-time is large, varying from 5 minutes to 43.6 hours.
Each function is compiled for 200 sequences and evaluated by executing the code. Its
total compile-time is related to the compile-time and execution time for each function.
For example, there are 106 functions in gzip. The average compile-time for a function
is 0.8 seconds. The execution time for the test input is 2.4 seconds. Considering the
GA search time, it took 1181 minutes to find code-specific sequences for gzip.

1: app = {all applicable optimization instances};
2: seq = {};
3: while (app ≠ empty) {
4: Evaluate_Profit (list);
5: select Ok that Profit(Ok) is the best;
6: seq = seq + { Ok };
7: app = app – { Ok }
8: app = app – { Om | Disable({Ok, …}, Om) ∧ {Ok, …} ⊆ seq }
9: app = app + { Om | Enable({Ok, …}, Om) ∧ {Ok, …} ⊆ seq

∧ ¬∃ (Op ∈ seq ∧ Disable(Op, Om))}
10: app = app + { Om1Om2 | Enable({Ok, …}, Om1Om2) ∧ {Ok, …} ⊆ seq }; }

With our approach, the compile-time is reduced: It varies from 0.7 to 82 minutes.
Our approach needs to determine the interaction property among optimizations and to
predict the profitability property. Its compile-time depends on the time to determine
the interaction property and the time to predict profitability. For example, in mpeg the
average compile-time to determine the interaction property is about 20 seconds and
the compile-time to determine profitability is about 6 seconds. Thus, it took 82.24
minutes for our approach to determine good optimization sequences for mpeg.

Table 2: Compile-time of Three Approaches (minutes)
Benchmarks Fixed-order Empirical FOP

adpcm.rawcaudio 0.05 5.41 1.14
mpeg2.enc 1.92 726.67 82.24

bitcount 0.15 18.97 1.66
dijkstra.large 0.05 11.63 0.68

FFT 0.11 13.20 1.81
164.gzip 1.52 1180.67 53.82
175.vpr 6.11 1469.23 61.23
181.mcf 0.53 74.64 19.54

197.parser 5.4 976.34 49.23
256.bzip2 2.34 2618.79 58.68

5.2 Performance Comparison
We compared the performance of the three approaches, as shown in Figure 6. The
figure shows the improvement of the empirical and the model-driven approaches over
the fixed-order approach. Performance is measured with dynamic instruction count.

0.6

0.8

1

1.2

1.4

adpcm
mpeg2

bitc
ount

dijkstra FFT

164.gzip

175.vpr

181.m
cf

197.parser

256.bzip
2

Im
pr

ov
em

en
t

Fixed-order E m pirical FOP

Figure 6: Performance Comparison of Three Approaches

As the figure shows, the empirical and model-driven approaches improve
performance more than the fixed-order approach. In 256.bzip2, the improvement with
the empirical and model-driven approaches over the fixed-order sequence is 32% and
28% respectively. In most cases, the model-driven approach has similar performance
improvement as the empirical approach. However, the performance of the model-
driven approach is better in a few cases. For example, in adpcm, the improvement is
19% with the empirical technique and 23% with our model-driven approach. This

higher improvement happens because an optimization instance is not applied if it is
predicted to be unprofitable.

In terms of memory, FOP uses 51KB to 723KB (average) to store data and
control dependence information. The maximum memory requirements ranged from
106KB to 9815KB. On today’s machines, this amount of memory is reasonable.

Our experiments show that optimization properties are useful in finding code-
specific optimization sequences. Our techniques show it is practical to analytically
model optimizations and compute interactions to find a good code-specific order in
which to apply optimizations.

6. Related Work
Formal and empirical approaches have been used to determine the order to apply
optimizations. Knuth and Bendix proposed a solution to express optimizations as a
set of rewriting rules [9]. Their algorithm detects potential conflicts and resolves them
by introducing new rewriting rules, derived from the existing set. However, the
procedure is difficult to generalize. Whitfield and Soffa described a framework that
enables the exploration, both analytically and experimentally, of properties of
optimizations, including the interaction property [20], [21]. They proposed Gospel to
express the pre-condition and post-conditions of optimizations. They studied the
optimization interactions with proofs or examples. However, their approach can not
automatically detect the interactions among optimizations based on code context.

Another approach uses heuristic-driven search algorithms to find a good
optimization sequence. Almagor et al. performed a large experimental study on the
space of optimization sequences [1]. Although their approach can produce efficient
code, it can be slow. Kulkarni et al. proposed an interactive compilation system,
VISTA, which used a genetic algorithm, performance information and user input to
select an effective optimization sequence. They further proposed two approaches to
improve search performance [7], [10], [11]. Triantifyllis et al. recognized the benefit
of finding good optimization sequences [18], [19]. To limit compile-time, their
system used a fixed set of optimization sequences and obtained the best result with
the set. However, the selection of the sequences should be considered.

7. Conclusion
This paper presented a framework (FOP) which can automatically determine
optimization properties. We use FOP to determine enabling and disabling interactions
among optimizations without actually applying the optimizations. An application of
FOP is to find a good code-specific order in which to apply optimizations. This paper
presented an algorithm that constructs an effective optimization sequence using the
interaction and profitability properties. We implemented FOP and experimentally
found good code-specific orders. The results showed that we obtain sequences that
have similar performance as an empirical approach with less compile-time. Our work
demonstrates that an analytic approach can be used for optimization properties, which
are useful in addressing phase ordering.

8. References
1. L.Almagor, K. Cooper, A. Grosul, T. Harvey, S. Reeves, D. Subramanian, L. Torczon and T. Waterman.

Finding Effective Compilation Sequences. Conf. On Languages, Compilers, and Tools for Embedded
Systems, 2004.

2. Bodík, R., Gupta, R., and Soffa, M. L. 2004. Complete removal of redundant expressions. SIGPLAN
Not. 39, 4 (Apr. 2004),

3. P. Briggs and K. D. Cooper. Effective Partial Redundancy Elimination. Conf. on Programming
Language Design and Implementation, 1994.

4. S. Coleman and K.S. McKinley. Tile Size Selection Using Cache Organization and Data Layout. Conf.
on Programming Language Design and Implementation, 1995.

5. J. Ferrante, K. Ottenstein and J. Warren, The program Dependence Graph and Its Use in Optimization.
ACM Trans. on Programming Languages, 9(3), 1987.

6. C. Jaramillo, R. Gupta and M.L. Soffa. Comparison Checking: An approach to avoid debugging of
optimized code. Foundations of Software Engineering, 1999.

7. P.Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson and D. Jones. Fast Searches for Effective
Optimization Phase Sequences. Conf. on Programming Language Design and Implementation, 2004.

8. T. Kisuki, P.M.W. Knijnenburg and M.F.P. O’Boyle. Combined Selection of Tile Size and Unroll
Factors Using Iterative Compilation. Int’l. Conf. on Parallel Architectures and Compilation
Techniques, 2000.

9. D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In J. Leech, editor,
Computational problems in abstract algebra. Pergamon Press, 1970.

10. P. Kulkarni, D. B. Whalley, G. S. Tyson and J. W. Davidson. Exhaustive Optimization Phase Order
Space Exploration. Int’l. Symp. on Code Generation and Optimization, 2006.

11. P. Kulkarni, D. B. Whalley, G. S. Tyson and J. W. Davidson. Evaluating Heuristic Optimization Phase
Order Search Algorithms. Int’l. Symp. on Code Generation and Optimization, 2007.

12. D. Lacey. Program Transformation using Temporal Logic Specifications. PhD dissertation, Univ. of
Oxford, August 2003.

13. S. Lerner, T. Millstein, and C. Chambers, Automatically Proving the Correctness of compiler
optimizations. Conf. on Programming Language Design and Implementation, 2003.

14. D. Lacey, N. Jones, E. Wyk and C. Frederiksen, Proving correctness of compiler optimizations by
temporal logic. Symp. on Principles of Programming Languages, 2002.

15. K. McKinley, S. Carr, and C. Tseng. Improving Data Locality with Loop Transformations. ACM
Trans. on Programming Languages and Systems, 18(4), pp 424-453, July 1996..

16. George C. Necula. Translation validation for an optimizing compiler. Conf. on Programming
Language Design and Implementation, 2000.

17. M. D. Smith and G. Holloway. An Introduction to Machine SUIF and Its Portable Libraries for
Analysis and Optimization.

18. S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D.I. August. Compiler Optimization-space
Exploration. Int’l. Symp. on Code Generation and Optimization, 2003.

19. S. Triantafyllis, M. Vachharajani, and D.I. August. Compiler Optimization-space Exploration. Journal
of Instruction-Level Parallelism, 2005.

20. D. Whitfield and M.L. Soffa. An Approach to Ordering optimizing transformations, Symp. on
Principles and Practice of Parallel Programming, 1990.

21. D. Whitfield and M.L. Soffa. An Approach for Exploring Code Improving Transformations. ACM
Trans. on Programming Languages and Systems, 19(6):1053-1084, 1997.

22. K. Yotov, X. Li, G. Ren, and M. Cibulskis. A Comparison of Empirical and Model-driven
optimization. Conf. on Programming Language Design and Implementation, 2003.

23. Min Zhao, Bruce R. Childers and Mary Lou Soffa. A Model-based Framework: an Approach for
Profit-driven Optimization. Int’l. Symp. on Code Generation and Optimization, 2005.

