
Prediction-Based QoS Management for Real-Time Data Streams

Yuan Wei Vibha Prasad Sang H. Son John A. Stankovic
Department of Computer Science

University of Virginia
E-mail: {yw3f, vibha, son, stankovic}@cs.virginia.edu

Abstract

With the emergence of large wired and wireless sen-
sor networks, many real-time applications need to op-
erate on continuous unbounded data streams. At the
same time, many of these systems have inherent timing
constraints. Providing deadline guarantees for queries
over dynamic data streams is a challenging problem due
to bursty data stream arrival rates and time-varying
stream contents. In this paper, we propose a prediction-
based Quality-of-Service (QoS) management scheme
for periodic queries over dynamic data streams. Our
QoS management scheme features novel query work-
load estimators, which predict the query workload using
execution time profiling and input data sampling, and
adjusts the query QoS levels based on online query ex-
ecution time prediction. We implement our QoS man-
agement algorithm on a real-time data stream query
system prototype called RTStream. Our experimental
evaluation of the scheme shows that our query workload
estimator performs very well even with workload fluctu-
ations and our QoS management scheme yields better
overall system utility than the existing approaches for
QoS management.

1 Introduction

Many applications need to operate on continuous
unbounded data streams. The streaming data may
come from sensor readings, internet router traffic trace,
telephone call records or financial tickers. Many of
these new applications have inherent timing constraints
in their tasks. However, due to the dynamic nature of
data streams, the queries on data streams may have
unpredictable execution cost. First, the arrival rate
of the data streams is unpredictable, which leads to
variable input volumes to the queries. For example,
in surveillance systems, the volume of sensor reading
data streams varies dramatically as targets enter the
monitored territory. Second, the content of the data

streams may vary with time, which causes the selectiv-
ity (Sel) of the query operators to change over time.
The selectivity of an operator is defined as:

Sel = size(output)/size(input)
The operator selectivity measures the fraction of

data input that passes the current operator to the next
operator. As operator selectivity varies, the size of the
intermediate results changes, even when the input vol-
ume stays the same. Thus, the query execution cost
could change dramatically as the data stream content
changes. While it is possible to design the system based
on the maximum system workloads, it is not practical
nor efficient because in a lot of these applications, the
transient system overload do not persist for long period
of time.

To address these issues, we propose a QoS manage-
ment algorithm, which uses online profiling and sam-
pling to estimate the cost of the queries on dynamic
streams. The profiling process is used to calculate the
average cost (CPU time) for each operator to process
one data tuple. As we show later in this paper, with
all the input data and intermediate results in main
memory, the execution time per data tuple tends to
be predictable when certain conditions are met (e.g.,
low contention rates for the hash index). The sam-
pling process is used to estimate the selectivity of the
operators in a query. Our experiment data shows that
for high-rate data streams, sampling is a viable and
cost-effective way to estimate query selectivity. To our
best knowledge, this is the first work that uses online
sampling to estimate query cost and control query QoS.
We implement our prediction-based QoS management
algorithm on our real-time data stream query system
and the experiment results show that our QoS man-
agement algorithm handles the workload fluctuations
very well and yield better overall system utility than
existing approaches.

The rest of the paper is organized as follows: Sec-
tions 2 gives an overview of the system model and our
assumptions. Section 3 gives a motivating example,
explaining why QoS management is necessary. Sec-
tion 4 presents our prediction-based QoS management

scheme. The performance evaluation and experimental
results are presented in section 5. Section 6 discusses
the related work and section 7 concludes the paper.

2 System Model and Assumptions

A data stream is defined as a real-time, continu-
ous, ordered (implicitly by arrival time or explicitly
by timestamps) sequence of data items [11]. A Data
stream management system (DSMS) is a system espe-
cially constructed to process persistent queries on dy-
namic data streams. DSMSs are different from tradi-
tional database management systems (DBMSs) in that
traditional database management systems expect the
data to be persistent in the system and the queries to be
dynamic whereas DSMSs expect dynamic unbounded
data streams and persistent queries. Due to the high
volume of data streams, it is often assumed that it is
not possible to store a stream in its entirety, nor is
it feasible to query the whole stream history. Typi-
cally, the queries are executed on a window of data. A
window on a data stream is a segment of data stream
that is considered for the current query. Emerging
applications, such as sensor networks, network traffic
analysis, intelligent traffic management, and financial
market analysis, have brought research related to data
streams in focus. These applications inherently gener-
ate data streams and DSMSs are well suited for such
applications.

2.1 Periodic Query Model

The research in DSMS so far has been mainly fo-
cused on a continuous query model ([8], [15], [5]).
In a continuous query model, long-running continu-
ous queries are present in the system and new data
tuples trigger the query instances. These incoming
data tuples then get processed and the correspond-
ing query results are updated. One of the drawbacks
of a continuous query model is that the application
cannot control the frequency and the deadlines of the
queries. The execution of queries is driven by the data
rate of the streams. Hence, the workload of the sys-
tem depends directly on the data rate of the incoming
streams, which is quite unpredictable.

Recently, we proposed a periodic query model for
data stream queries with timing constraints ([17]) and
developed a DSMS prototype called RTStream based
on the periodic query model. RTStream is an extension
to STREAM [15], which is a general-purpose DSMS
(based on a continuous query model) developed at the
Stanford University. In the periodic query model, ev-
ery query has an associated period. The query in-
stances are generated periodically to process the in-
coming stream data.

RelationRange
Window

Op

Join
Op

Aggregate
Op

(avg)

Data Stream Speed

Relation Lanes

Data
Window

Join
Results

Final
Results

Figure 1. An Example Query Plan

2.2 Query Plan and Query Execution

In a DSMS, the system contains long-running and
persistent queries. When a query arrives in the sys-
tem, it is registered and it is triggered periodically
based on its specified period. In our prototype sys-
tem, all the queries are pre-registered in the system,
and are converted to query plans (containing opera-
tors, queues and synopses) statically before the system
starts. Queues in a query plan, store the incoming data
streams and the intermediate results between the oper-
ators. A synopsis is associated with a specific operator
in a query plan and it stores the accessary data struc-
tures needed for the evaluation of the operator. For
example, a join operator may have a synopsis that con-
tains a hash join index for each of its input. When the
join operator is executed, these hash indices are probed
to generate the join results. Example data stream and
query specifications are given as follows:

Stream : Speed(int lane, float value, char[8] type);
Relation : Lanes(int ID);
Query : Select avg(Speed.value)

From Speed[range1minute], Lanes
Where Speed.lane = Lanes.ID

and Speed.type = Truck;
Period 10 seconds
Deadline 5 seconds

The query above operates on data streams gener-
ated by speed sensors and calculates the average speed
of trucks in particular lanes during the last 1 minute.
The query needs to be executed every 10 seconds and
the deadline is 5 seconds after the release time of every
periodic query instance. The query plan generated is
shown in Figure 1. The query plan is made up of three
query operators (range window operator, join operator
and aggregate operator) and two queues (one for stor-
ing the range window output and one for storing the
join output).

After the query plan is generated, the operators are
sent to the scheduler to be executed. Depending on the

query model (e.g., continuous or periodic), a scheduling
algorithm (e.g., round-robin or Earliest-Deadline-First)
is used to meet the system requirements. In our system,
the queries are scheduled using the Earliest-Deadline-
First scheduler according to their deadlines.

2.3 Assumptions

In this paper, we assume real-time requirements of
the system are soft, which means that a small number
of queries missing their deadlines will not lead to sys-
tem failure. This assumption is necessary as the system
is dealing with unpredictable data streams and some
queries may not meet their deadlines when the system
is overloaded. We also assume the quality of the queries
can be traded off for timeliness by dropping some of
their inputs. One example application which has such
requirements is the intelligent road traffic management
system [14]. The system periodically computes the lat-
est traffic statistics of different road segments and then
sends them to a traffic simulator to calculate the road
signal controls and the best routes for drivers. Ob-
viously, late results are not acceptable in this case as
the traffic simulator needs to have information from all
the road segments to make accurate predictions. At
the same time, if the results obtained are approximate
(in this case, traffic statistics), the data is still useful
for the traffic simulator as the system still gets some
information about the traffic.

To handle the workload for high data stream query
processing, all data structures used by the query need
to be stored in physical memory for better perfor-
mance. In this paper, we assume that the system has
enough physical memory to store data tuples from the
input data streams, intermediate results and accessary
data structures (e.g., indices). This requirement is easy
to satisfy given today’s memory chip size. For exam-
ple, with 512M physical memory, the system can main-
tain 100 queries on high rate data streams (1000 tu-
ples/second per stream) with average window size of
10 seconds.

3 Need for Query QoS Management

Unpredictable data streams pose many challenges
for data stream management systems that have tim-
ing constraints. As mentioned earlier, the DSMS may
get overloaded as the arrival rates and contents of the
incoming data streams change over time. The system
must be able to handle these workload fluctuations, or
some of the queries will miss their deadlines. The QoS
management is performed at two levels. The Inter-
Query QoS Management is used to allocate CPU time
to different queries in the case of system overload so

0 1

Q0

Q1

Q2

(A) Normal Workload

0 1

(B) Overload without Inter-
query QoS Mgt

Q2 Deadline Misses or finish
with very poor quality

1

(C) Overload with Inter-
query QoS Mgt

All three meet deadlines
with reasonable quality

0

Figure 2. Need for Inter-Query QoS Manage-
ment

that the overall system utility is maximized. The Intra-
Query QoS Management is used to allocate available
CPU time to different operators within the query plan
so as to maximize the query quality.

It is necessary to manage data stream query QoS at
both levels. Figure 2 gives an example to show why
inter-query QoS management is necessary. As shown
by Figure 2(A), at time 0, there are three queries, Q0,
Q1 and Q2. All of them need to finish within one time
unit. With normal system workload, all three queries
will finish before their deadlines. When the system
is overloaded, as shown in Figure 2(B), without inter-
query QoS management, queries Q0 and Q1 and are
able to finish before their deadlines but query Q2 is left
with very little time to execute. Statically allocating
CPU time slots does not solve the problem as query
execution time varies depending on the data stream
inputs and statically allocating CPU time results in
less efficient utilization of CPU resources. Inter-Query
QoS Management allocates CPU time to queries pro-
portional to their estimated execution time. This en-
sures a fair distribution as shown in Figure 2(C). If
we consider a single query plan, we use similar reason-
ing for intra-query QoS management. Substituting the
queries in the above example with operators from one
single query plan, we can see from Figure 2(B) that
some operators may not get enough time to execute,
depending on the policy used for scheduling the opera-
tors. Moreover, the output of one operator is the input
of the other operator, i.e., the workloads of operators
are correlated. In inter-query QoS management, the
time remaining to execute the query is estimated peri-
odically and if necessary, tuples are dropped to ensure
that the query meets its deadline.

4 QoS Management Algorithm

As we can see from the previous section, when sys-
tem is overloaded, the system needs to perform QoS
management in order to meet query deadlines. For
inter-query QoS management, the system needs to es-
timate the query execution time corresponding to dif-

ferent input data streams. For intra-query QoS man-
agement, the system needs to know the selectivity of
different operators and their estimated execution time.
Since our main objective is to ensure timeliness of query
results, the query execution time estimation is the key
to the QoS management.

In order to estimate the query execution time, we
need three parameters for each query, namely, the in-
put data stream volume, the operator selectivity and
the execution time per data tuple for each operator.
In this paper, we only consider queries that are ready
to execute when performing the QoS management rou-
tine. Therefore, the input data volumes are known for
these queries as the incoming data stream segments are
already in the system. Note that it is beneficial to es-
timate the execution time of queries which do not have
their complete input yet and use these estimations in
the QoS management process, since the current ready-
to-go queries may overlap with these future queries in
their life spans. This is a challenging problem as it
involves designing effective algorithms to monitor and
predict the volume and content of future data streams.
The complete study of this area is left for future work.
Also note that we do not use the query execution time
history to directly predict the execution time of the
next query instance. The reason is that data streams
in the system are dynamic and query execution time
may vary significantly from one query instance to the
next. Using execution history time directly may lead to
large estimation errors. This approach may work for
particular types of applications. Evaluating whether
that works for different types of application workloads
is beyond the scope of this paper.

4.1 Query Operator Overhead Estimation

Since the incoming data streams, intermediate re-
sults and accessory data structures are all stored in
memory, the time taken for one operator to process a
data tuple can be estimated effectively without consid-
ering any additional delays of fetching data from the
disk. Table 1 shows the average execution time per
tuple for different types of operators from our proto-
type system implementation. From Table 1, we can
see that the execution cost of most operators are rel-
atively small and fairly predictable with the exception
of join operators. The cost of stream join, which joins
two streams, varies from 3 microseconds to 100 mi-
croseconds because the number of the data tuples se-
lected from data streams varies dramatically. Joining
one data tuple with thousands of data tuples from an-
other data stream results in the high stream join cost
we see in the table. Based on our experiment results,
the cost of each operator can be estimated as it closely
follows the formula obtained from cost analyses. Here,

Operator Avg Cost Depends Depends
micro s/t on on
micro s/t Sel? Syn Size?

Selection 0.16 - 0.3 Yes No
Projection 0.16 - 0.2 No No

Join 3 - 6 Yes Yes
Stream Join 3 - 100 Yes Yes

Distinct 0.16 - 0.3 Yes Yes
Except 0.16 - 0.3 Yes No

Group Aggr 0.16 - 0.6 Yes Yes
Partition Win 0.16 - 0.3 No No
Range Win 0.2 - 0.3 No No

Table 1. Operator Cost and Dependency on
Selectivity and Synopsis Size

we present our analyses for selection and join operators.
The analyses for other operators are similar.

4.1.1 Selection Operation Cost Analysis

The following notations are used for a selection opera-
tor Osel:

• the input tuple volume, n

• the selectivity of the operator, s

• the execution time to evaluate the predicates, Cp

• the execution time to insert the output tuple to
buffer, Ci

For the selection operator Osel:

The number of output tuples = n× s
The time for evaluating all input tuples = n× Cp

The time for inserting output tuples = n× s× Ci

The total time = n× Cp + n× s× Ci

The average cost per data tuple = n×Cp+n×s×Ci

n
= Cp + s× Ci

The costs Cp and Ci are expected to be constant
for a particular set of predicates. As shown in Figure
3(a), when the selectivity is fixed to 0.2, the average
cost for selection operator ranges between 0.17 to 0.18
microseconds when the average input size is larger than
400 tuples per second. When the average input size is
lower than that, the average cost can be as high as 0.2
microsecond per tuple due to the overhead of operator
context switch. When the selectivity of an operator
varies (the input volume is kept constant), the aver-
age cost per tuple is expected to increase linearly with
the selectivity and the slope of the line corresponds to
Ci. As shown in Figure 3 (b), the cost curve from our
experiments confirms our analysis.

1e-07

1.2e-07

1.4e-07

1.6e-07

1.8e-07

2e-07

100 1000 10000

T
im

e
(s

ec
)

Input Size

(a) Selection Execution Cost (Selectivity = 0.2)

Cost per tuple

1e-07

1.5e-07

2e-07

2.5e-07

3e-07

0 0.2 0.4 0.6 0.8 1

T
im

e
(s

ec
)

Selectivity

(b) Selection Execution Cost (1000 tuples/sec)

Cost per tuple

Figure 3. Selection Cost with Different Input
Sizes and Selectivities

4.1.2 Join Operation Cost Analysis

For join operations, our system uses Symmetric Hash
Join (SHJ) [18] [13]. SHJ works by keeping a hash table
for each input in memory. When a tuple arrives, it is
inserted in the hash table for its input and it is used to
probe the hash table of the other input. This probing
may generate join results which are then inserted in
the output buffer. The following notations are used for
a join operator Ojoin:

• the left and right input volume, nL and nR

• the selectivity of the operator, s

• the execution time to probe the left and right hash
indices, CLProbe and CRProbe

• the execution time to hash left and right input,
nLHash and nRHash

• the execution time to insert the output tuple to
buffer, Ci

For the join operator Ojoin:
The number of output tuples = nL × nR × s
The time for processing left input tuples

= nL × CRProbe + nL × CLHash

The time for processing right input tuples
= nR × CLProbe + nR × CRHash

The time for inserting output tuples

0
5e-06
1e-05

1.5e-05
2e-05

2.5e-05
3e-05

1000 10000

T
im

e
(s

ec
)

Input Size

Join Hash Index Probing Cost (Index size 200K Bytes)

Cost per tuple

Figure 4. Hash Index Probing Cost

= nL × nR × s× Ci

The total time = nL × (CRProbe + CLHash)
+nR × (CRProbe + CLHash) + nL × nR × s× Ci

Of the three types of cost factors, hashing cost
(CLHash and CRHash) and insertion cost (Ci) are much
smaller than the probing cost (CLProbe and CRProbe)
and generally remain constant. The probing cost, how-
ever, depends on the contention rate of the hash join
index, which in turn depends on the input data volume
and the allocated index size. As shown in Figure 4
where the hash index size is set to 200k bytes, the hash
index probing cost is between 4 to 6 microseconds if
the input size do not exceed 3000 tuples. When the in-
put size exceeds 3000 tuples, the probing cost increases
rapidly due to hash contention. The graph shows that
if the hash index size is configured appropriately based
on the expected number of data tuples in the index,
the probing cost will remain within a close range.

4.1.3 Maintaining Cost Constant Using Profil-
ing

From our analysis and experimental results for selec-
tion and join operators, it is clear that the system needs
to know the precise values of the cost parameters (e.g.,
CProbe) in the cost formula to estimate the execution
time accurately. The solution is to keep track of the
time used for each operator and compute these cost
parameters periodically. The cost parameters are up-
dated each time a query instance finishes. Suppose that
after a query instance, the value for the cost parameter
C is computed to be Cnew, then C is updated using the
single exponential smoothing formula:

C = C × (1− α) + Cnew × α 0 < α < 1

We choose the exponential smoothing algorithm to
give relatively higher weights on recent observations in
forecasting than the older observations.

4.2 Selectivity Estimation Using Sampling

The next step is to estimate the selectivity of the
query operators. Selectivity estimation has been stud-

Figure 5. Query Plan with Joins

ied in traditional database systems for query optimiza-
tion [7]. Techniques like parametric methods, curve-
fitting methods, sampling and various histogram meth-
ods have been proposed. In our system, we choose
sampling as selectivity estimation algorithm because it
is easy to implement and yields good estimation when
handling high-rate data streams. Sampling also does
not need to maintain static data structures for selec-
tivity estimation, which has very high cost. Moreover,
sampling is well-suited for a wide range of data types
([7]).

Our solution for selectivity estimation is to construct
a sampler query plan for every query in the system.
The query plans for the sampler queries are exactly the
same as their corresponding real query plans. When a
query instance is released to the scheduler, the sam-
pler is executed first with sampled data tuples from
the input. The data tuples are sampled from the real
input according to preset sample ratio Sr. The sam-
pling process selects a simple random sample without
replacement. The results of the sampler query plans
are used to estimate the selectivity and hence the exe-
cution time of the operators in the real query plans.

4.3 Inter-Query QoS Management

Inter-query refinement is performed to ensure that
available CPU time is divided fairly among all ac-
tive query instances. A pseudo-deadline is assigned
to the queries which are ready to execute. This
pseudo-deadline is based on the estimated execution
time and the input/quality table for each query. The
input/quality table is an application-specified table
which maps the percentage of input tuples used in the
query to the quality of the query results. First, we
briefly describe how to estimate the execution time of
a query plan.

Let Q1, Q2, Q3 . . . be the query plans, such that Qi

is the query plan for the ith query and let Oij be the
jth operator in the ith query plan. We assume that
the numbering scheme for the operators is the order
in which the scheduler views the operators, i.e. the
operator with a lower subscript is scheduled first. Let

1.0

1.0

Quality

Input Data Drop
Ratio

Q0

Q1

Q2

Input %Quality
0.9 0.98
0.8 0.96
0.7 0.95
0.6 0.92
0.5 0.87
0.4 0.82
0.3 0.75
0.2 0.65
0.1 0.5

Q0

Input/Quality Tables

Input %Quality
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1

Q1

Input %Quality
0.9 0.45
0.8 0.3
0.7 0.2
0.6 0.14
0.5 0.09
0.4 0.05
0.3 0.03
0.2 0.02
0.1 0.01

Q2

Current
QoS

0.750.30.03
0

Figure 6. Inter-Query QoS Management with
Query Quality Curves

sij be the selectivity of operator Oij and tij be the
processing time of the operator per input tuple. Given
the input n, the cost of the query Qi (without join) is:

Ti = n× ti1 +
N∑

j=2

n× tij ×
(

j−1∏

k=1

sik

)
(1)

For query plans involving joins, we should use equa-
tion 1 to calculate the cost for operators from the
stream source to the join operator for both branch.
Then add the cost of the two branches with the cost
of join operator to get the total cost. We repeat this
process until we reach the end of the query plan. For
example, for the query plan in Figure 5, the estimated
time of the query is:

T1 = n1t11 + n2t12 + n3t14 + (n1s11)(n2s12)t13 +
((n1s11)(n2s12)s13)(n3s14)t15

Inter-query QoS management uses the estimated ex-
ecution time to find an acceptable QoS level for all ac-
tive queries. It is possible that for some queries, it is
acceptable to drop a large amount of input data yet
still be able to maintain good query quality. Whereas
for some other queries, it is unacceptable to drop even a
small amount input data. In order to solve this prob-
lem, the system allows the application to specify the
relation between the query quality and the percentage
of input data dropped using the Input/Quality table.
As illustrated in Figure 6, three queries, Q0, Q1 and
Q2, have different requirements in terms of maintaining
query quality when system is overloaded. As shown by
the input/quality table and the curve, the query qual-
ity of Q0 drops slowly with input dropping ratio. We
define this type of the input/quality curve as convex
QoS curve. In reality, Q0 can be a query to compute
the average value of a data stream. It can still calcu-
late the average value reasonably well when some input

// Pseudo Code for Inter-Query QoS Mgnt
// SQI: Set of Active Query Instances
// QoSDelta: QoS Negotiation Unit
// TAvail : Available CPU time

double InterQueryQosMgnt (SQI, double TAvail) {
 // Set Initial Target QoS Level at 100%
 double QoS

Target
 = 1.0;

 // Get exe time estimation for active queries
 double TEst = exeTimeEst(SQI, QoSTarget);
 while(TEst < TAvail) {
 // Reduce Target QoS
 QoSTarget -= QoSDelta;
 TEst = exeTimeEst(SQI, QoSTarget);
 }
 return QoSTarget ;
}

Figure 7. Pseudo Code for Inter-Query QoS
Managment

data tuples are dropped. The quality of Q1 drops lin-
early as input data dropping ratio. We call this type
of the input/quality curve as linear QoS curve. On
the other hand, Q2 is the opposite of Q0 as it can not
tolerate dropping any input data tuples. We call this
type of the input/quality curve as concave QoS curve.
In reality, surveillance queries are of this type as they
need to capture all anomalies in the system and they
can not afford to miss any input data tuples. With
the input/quality table, same output quality is trans-
lated into different input dropping ratios for different
queries. For example, if the QoS of the target system
is set to 70%, it translates into dropping 75%, 30%
and 3% of the input data for Q0, Q1 and Q2 respec-
tively. These ratios are called drop ratios and they
denote the fraction of input tuples dropped. For query
plans that operate on multiple stream inputs, the in-
put/quality table specifies the optimal dropping ratios
for each stream input for a given quality level.

As shown in Figure 7, the algorithm for inter-query
QoS negotiation is a simple iterative process which
keeps reducing the query QoS from 100% and calcu-
lates the cost of all active queries. The query QoS
with which all the active query instances can finish be-
fore their deadlines is chosen and the corresponding
pseudo-deadlines are calculated for the queries. The
pseudo-deadlines are assigned proportional to the esti-
mated time of the queries.

4.4 Intra-Query QoS Refinement

In inter-query QoS management, every query in-
stance is assigned a pseudo-deadline, based on their

estimated execution time. The query instances now
perform intra-query refinement to meet their pseudo-
deadlines instead of their actual deadlines. Before a
query starts, it drops a fraction of the input data if
the estimated execution time of the query exceeds the
pseudo-deadline. We choose to drop the data tuple
early in the query plan as it yields the best system
utility [4] compared to dropping intermediate results
later. Furthermore, the progress of the query is mon-
itored periodically to ensure that the query meets its
pseudo-deadline. If the query is running late, data tu-
ples are dropped during execution to ensure that the
query meets its deadline.

Suppose that the operator Oij is scheduled currently
and we are trying to estimate the processing time for
the operator Oip, where p > j.

The number of input tuples = n×∏p−1
k=j sik

The estimated time for processing = n× tip
∏p−1

k=j sik

The estimated number of output tuples = n×∏p
k=j sik

Hence, when operator Oij is scheduled, the esti-
mated time for query plan Qi is given by

Ti = n× tij +
N∑

p=j+1

n× tip ×

p−1∏

k=j

sik

 (2)

where N is the total number of operators in the
query plan Qi. At time τ , this estimated time, Ti,
needs to be compared to the remaining time for the
deadline Di, where Di = di− τ . If Ti ≤ Di, there is no
need to drop tuples.

If Ti > Di, we calculate ε, which denotes the frac-
tion of input tuples that should be kept for further
processing using equation 2. In a query plan with no
join and hence no branches, dropping tuples at any op-
erator Oij affects the entire query plan. At operator
Oij , if Ti > Di and ε×n is the number of input tuples
after dropping tuples, for a query to finish before its
deadline, the following must be true:

ε× n× tij +
N∑

p=j+1

ε× n× tip × (
p−1∏

k=j

sik) < Di

Taking the boundary case,

ε× (n× tij +
N∑

p=j+1

n× tip × (
p−1∏

k=j

sik)) = Di

ε× Ti = Di

For the query plans without joins, we calculate ε as
follows:

ε =
Di

Ti

For query plans involving joins, we should also make
sure that tuples are not dropped from any stream un-
fairly. To distribute the drop amount fairly, we drop
tuples according to the data dropping ratios given in
the input/quality table. The table allows minimizing
query workloads while still meeting certain QoS levels.
During intra-query QoS management, if one branch of
the join operator needs to drop more data tuples, the
other branch also needs to drop a matching amount so
that the dropping ratios between two inputs conform
to the ratios specified in the input/quality table.

We use the process described above to determine
the drop amounts from the incoming streams as well
as during the execution of the query plan. The only
difference is that in the former case, the estimated time
Ti is the estimated execution time for the entire query
plan when none of the operators has started. For each
query we calculate the total number of tuples dropped
during its execution. Then, using the input/quality
table for the query, we can find the quality of the query
results. This query quality is used as a measure of
system performance. Ultimately, our objective is to
maximize the average quality of the query results.

5 Performance Evaluation

We implement our prediction-based QoS manage-
ment algorithms on a real-time data stream query
prototype system called RTStream [17]. All experi-
ments are carried out on a machine running Linux 2.6.
The machine is equipped with a 2.8 Ghz Pentium 4
hyperthreading processor and 1 Gigabyte DDR 3200
SDRAM main memory.

5.1 Query Execution Cost Estimation

The first set of the experiments are used to evaluate
how reliable random sampling can be in term of es-
timating the operator selectivity and query execution
time. As shown in Figure 8, both the estimation error
and its standard deviation decreases as the input size
increases. When the input size is fixed, the selectiv-
ity estimation error increases with the actual value of
selectivity.

Figure 9 shows the query execution time estimation
error using the estimated selectivity values. Figure 9
(a) shows the execution cost estimation for the query
plan shown in Figure 1. In the query plan, an aggre-
gation operator is executed after a join operator (join
→ aggr). Surprisingly, the query execution time esti-
mation is very good despite the bad selectivity estima-
tions. The reason is that the cost of join operation is
much higher than that of the aggregation operations
(Table 1). As a result, when calculating the overall

(a) Selectivity Estimation Errors for Selections and Stream-Relation Joins (Sampling 10%)

Error Average

0 500 1000 1500 2000 2500 3000Input Size 0 0.05 0.1 0.15 0.2 0.25 0.3

Selectivity
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04
0.045

0.05
0.055

Absolute Error

(b) Selectivity Estimation Error Standard Deviation (Sample 10%)

Error Standard Deviation

0 500 1000 1500 2000 2500 3000Input Size 0 0.05 0.1 0.15 0.2 0.25 0.3

Selectivity
0

0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045

Absolute Error

Figure 8. Selectivity Estimation Error and Er-
ror Standard Deviation

(a) Join -> Aggr Type Query Execution Time Estimation Errors (Sampling 10%)

Error Average

0 500 1000 1500 2000 2500 3000Input Size 0 0.05 0.1 0.15 0.2 0.25 0.3

Selectivity
0.0005
0.001

0.0015
0.002

0.0025
0.003

0.0035
0.004

0.0045
0.005

Relative Error

(b) Select -> Join -> Aggr Type Query Time Estimation Errors (Sample 10%)

Error Average

0 500 1000 1500 2000 2500 3000Input Size 0 0.05 0.1 0.15 0.2 0.25 0.3

Selectivity
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0.22
0.24

Relative Error

(c) Select -> Join -> Aggr Type Query Time Estimation Errors (Selection Sample 50%)

Error Average

0 500 1000 1500 2000 2500 3000Input Size 0 0.05 0.1 0.15 0.2 0.25 0.3

Selectivity
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.11

Relative Error

Figure 9. Query Execution Time Estimation
using Sampled Selectivity Value

query cost, the cost of the aggregation operator can
almost be neglected. Figure 9 (b) shows the execu-
tion time estimation of a typical select-join-aggregation
query. As we can see from the graph, the estimation
error ratio drops as the input size and the selectivity
increases. When the input size is small and the selec-
tivity is low, the query estimation time error can be as
high as 22%. The reason is that if there is a large error
in estimating the selectivity of the selection operation,
the error will affect the estimated input volume of the
join operator, which in turn affects the accuracy of the
overall query execution time estimation. We address
this problem by increasing the sampling ratio of the se-
lection operator. Since selection is very cheap in terms
of CPU overhead, we get very good estimation of its se-
lectivity without sacrificing too much CPU time. The
improved selectivity estimation will in turn improve the
execution cost estimation of the whole query. As shown
in Figure 9 (c), when we increase the sampling ratio for
the selection operator, the estimation error ratio of the
overall query cost is improved by more than 50%.

The above observations lead to an optimization
technique called dynamic sampling. Essentially, if an
operator is expensive to sample and its selectivity es-
timation is not critical in estimating the overall query
cost (e.g., the join operator in the first case), its sam-
pling ratio should be small; if an operator is cheap to
sample but its selectivity estimation is important in es-
timating the overall query cost (e.g., the selection op-
erator in the second case), its sampling ratio should be
large to allow better selectivity estimation. The system
can dynamically adjust those sampling ratios based on
the execution time of different operators in the system.

5.2 Synthetic Workload Experiments

We conduct the performance evaluation with syn-
thetic workloads to compare our approach with other
approaches such as feedback-based workload control.

5.2.1 Workload Settings

The setting for the synthetic workload experiments is
shown in table 2. The data stream management sys-
tem is configured to use 512 megabytes of main mem-
ory space. Each queue is configured with 400K mem-
ory. The system is configured with such large memory
space to eliminate the effects of memory constraints.
The arrival of the data tuples conforms to Poisson dis-
tribution and the average data tuple arrival rate of the
data streams is 1000 tuple/sec. In the experiments, we
set the selection query selectivity to 0.2, the stream-to-
stream join selectivity to 0.0001 and stream-to-relation
join selectivity to 0.2. There are 10 queries for con-
vex and linear QoS curve queries each and 4 concave

Parameter Value
Total Memory 512 M

Queue Size 400K
Stream # 8

Data Rate per Stream 1000 tuples/sec
Total Query # 24
Selection Sel. 0.2

Stream-2-Stream Join Sel. 0.0001
Stream-2-Rel Join Sel. 0.2

Query Period 1 - 4 sec
Query Deadline 1 sec

Convex QoS Curve 10
Query #

Linear QoS Curve 10
Query #

Concave QoS Curve 4
Query #

Inter-Query QoS 1 sec
mgt period

Intra-Query QoS 5 ms (or end of op)
mgt period

Sampling Ratio 10%
Experiments Run Time 300 sec

Table 2. Synthetic Workloads Settings

QoS curve queries. The sampling ratio for the sampler
query is set at 10%. The inter-query QoS manage-
ment algorithm runs every 1 second and intra-query
QoS management runs at the end of each operator or
every 5 ms, whichever comes first. The total run time
of one experiment is 300 seconds. The data streams
and relations used in the experiments have the follow-
ing schema:

Stream S : (ID : integer, value : float, type : char(8))

Relation R : (ID : integer)

For each data stream, there are three queries asso-
ciated with it. For example, the periodic queries cor-
responding to data stream S0 are given below:

1. select * from S0 [range 4 second], S1 [range 4 sec-
ond] where S0.type = S1.type and S0.ID = S1.ID
and S0.value <> S1.value period 2 second dead-
line 1 second;

2. select avg(S0.value), min (S0.value), max
(S0.value) from S0 [range 2 second], R0 where
S0.ID = R0.ID period 2 second deadline 1 second;

3. select S0.type, Count(*) from S0 [range 1 second]
group by S0.type period 1 second deadline 1 sec-
ond;

Query 1 is a stream-to-stream join query, which
monitors two different data streams (S0 and S1) and

returns tuples that have the same sensor types and sen-
sor IDs but different values. Query 2 is an aggregate
query that maintains the statistics for the sensors spec-
ified in relation R0. Query 3 collects statistics about
the incoming data stream. It maintains the number
of tuples arriving for each type of sensor in the data
stream.

5.2.2 Performance Metrics

The performance metric we use in comparing different
algorithms is the average query quality. Let qi be the
final quality of a query Qi, the average query quality
is calculated as follows:

AvgQuality =
∑N

i=1 qi

N
(3)

Where N is the total number of active query in-
stances in the system. For queries that miss their dead-
lines, the query quality is equal to zero.

The query quality is computed by using the in-
put/quality table for the queries. The percentage of the
tuples retained for the query instance is used to find the
corresponding query quality from this table. Comput-
ing the percentage of input tuples used for processing is
straightforward. For example, consider a simple query
plan Q1 with only two operators, O11 and O12, and one
incoming data stream. If the first operator O11 drops
20% of its input data tuples and the second operator
O12 drops 50% of its input data tuples, the percentage
of input tuples retained = 80% × 50% = 40%. In the
case of query plan with joins, we chose the branch with
higher drop amount compared to the dropping ratios
in the input/quality curve. Thus, we find the worst
case query quality for queries with joins.

5.2.3 Algorithms and Evaluations

We compared the performance of the following four
algorithms:

• Best-Effort: The system does not drop any data
tuples.

• Feedback: the system uses a feedback controller
to control the data dropping ratio. The output
query miss ratios are feeded back to control the
incoming data streams. The feedback controller
used is similar to the one in our previous paper
[17].

• Fixed Sampling: The system fixes sampling ratio
at 10%.

• Dynamic Sampling: The system use dynamic sam-
pling for different queries.

The experiment results are shown in Figure 10. The
system is saturated when the average arrival rate for
the data stream is 1000 tuples per second. The aver-
age query quality is collected through at least 10 ex-
periment runs (each lasts 300 seconds) and 90% con-
fidence interval is less than 10% of the value shown.
As shown by Figure 10 (a), as system workload in-
creases, the average query quality of the fixed sampling
algorithm drops around 2 percent due to the overhead
of sampler queries. As system workload goes higher,
the query quality of the best-effort algorithms begin to
drop when the average data stream rate exceeds 1000
tuples per second. The query quality drops faster than
the other three due to the fact that it does not drop
data and more and more queries miss their deadlines.
The feedback-control-based algorithm performs better
since it begins to drop data tuples when queries miss
their deadline. The sampling-based algorithms perform
the best as they allocate CPU time to queries based
on the queries’ costs and their QoS curves. From the
graph, we can see that dynamic sampling saves signif-
icant amount of sampling costs compared to the fixed
sampling approach. It performs really well consider-
ing that it is working with over 50% more workload
and it still manages to maintain average query qual-
ity close to 80%. The Figure 10 (b) shows the query
quality standard deviations with variable system work-
load. As shown by the graph, the two sampling-based
algorithms manage to keep the deviation less than 0.1
whereas the other two algorithms have their maximum
deviation at 0.24 and 0.36 when the system workload
is 150%. This means that our inter-query QoS man-
agement scheme works well and the system is fair to
all queries in terms of query quality. The Figure 10 (c)
compares the performance of dynamic sampling algo-
rithm and feedback-control based algorithm under dif-
ferent workload fluctuation patterns. We configure the
system workload to fluctuate around 120% according
to different frequencies (or different periods). For ex-
ample, if the workload fluctuation period is set at 2 sec-
onds, the system data stream arrival rate is at 1400 tu-
ple per second for one second and then changes to 1000
tuple per second. The workload maintains such a pat-
tern during the course of an experiment. By comparing
system performance under such workload pattern, we
test system performance for queries on highly dynamic
data streams. As shown by the results, our sampling-
based approach handles workload fluctuations of dif-
ferent frequencies effectively because it does not rely
on the workload history when making QoS manage-
ment decisions. The feedback-control based approach,
however, does not handle the high-frequency workload
fluctuations very well since it relies on the history to
decide whether to drop data tuples.

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

600 800 1000 1200 1400

Q
ua

lit
y

Data Stream Arrival Rate

(a) Average Query Quality

Best-Effort
Feedback

Fixed Sampling
Dynamic Sampling

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

600 800 1000 1200 1400

Q
ua

lit
y

S
ta

nd
ar

d
D

ev
ia

tio
n

Data Stream Arrival Rate

(b) Query Quality Standard Deviation

Best-Effort
Feedback

Fixed Sampling
Dynamic Sampling

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

Q
ua

lit
y

Fluctuation Period (second)

(c) Average Query Quality with Fluctuations of Different Frequencies

Dynamic Sampling
Feedback

Figure 10. Query QoS with Synthetic Work-
load

The overheads of our prediction-based algorithms
are already reflected in the results above as the exper-
iments are carried out on a prototype system. From
our measurements, the majority of the algorithm over-
heads come from the execution of the sampler query
plans. With sampling ratio setting at 10%, the fixed
sampling algorithm can take up to 10% of CPU time.
While the dynamic sampling approach, depending on
query workloads, costs 5% of total CPU time.

6 Related Work

In recent years, there has been a number of research
projects and industrial efforts that focus on stream
data management [5] [6]. The research in stream data
management can be divided into categories such as
query language [2], query processing [1], scheduling
[9][3], memory management [3]. Real-time data stream
query processing systems are different from real-time

multimedia streaming systems in the sense that the
stream query systems focus on executing complicated
SQL-like queries on data streams instead of encod-
ing/decoding/transferring multimedia streams. The
Aurora project [8] claims to provide real-time data
stream processing capabilities. However, their real-
time metric is the average latency of data tuples, while
our system manages QoS of each periodic query in-
stance according to its individual deadlines.

There has been work involving dropping tuples in
DSMS to decrease the system load, mostly termed as
“load shedding”. Tatbul et. al. [16] propose a tech-
nique to dynamically insert or remove drop operators
into query plans in order to handle the workload fluc-
tuations. Babcock et. al. [4] propose load shedding
techniques for a restricted class of stream queries. In
both approaches, a query plan with load shedding op-
erators is created statically. During execution, a query
plan is chosen from the options available [16] and sim-
ply executed according to the run-time characteristics.
Note that in the approach used in [4], each query plan
has only one plan for load shedding associated with it,
which is determined statically.

Our QoS management scheme is different from these
approaches, as we execute sampler queries to estimate
the selectivity of the actual query and use that estima-
tion to negotiate the QoS between queries. Our sys-
tem uses prediction and manages QoS a priori, i.e.,
before system actually gets overloaded while existing
approaches adjust system workload after the system
gets overloaded.

Sampling has long been used in tradition database
systems for query optimization purposes [12] [7] [10].
Sampling gives a more accurate estimation than para-
metric and curve fitting methods used in traditional
DBMS and provides a good estimation for a wide range
of data types [7]. Furthermore, since no data struc-
ture is maintained in sampling-based approaches as op-
posed to histogram-based approaches, we do not need
to worry about the overhead of constantly updating
and maintaining the data structure. This is a very im-
portant point in the context of data streams as the
input rate of the streams is constantly changing. Al-
though sampling-based approaches for selectivity esti-
mation have been studied in traditional database sys-
tems, we are not aware of any existing research work
that uses sampling-based approaches to estimate data
stream query workload and use those results to manage
the query QoS.

7 Conclusions and Future Work

In this paper, we propose a prediction-based QoS
management algorithm, which uses online profiling and

sampling to estimate the cost of the queries on dy-
namic data streams and use the estimations to ad-
just QoS among different queries. From our analysis
and experimental data, we show that sampling is a vi-
able solution for estimating the workload of queries
on high rate, dynamic data streams. We incorpo-
rate the sampling approach to our QoS management
framework and implement the algorithm on a proto-
type real-time data stream query system. The ex-
periment results show that our algorithm handles the
workload fluctuations well and provides good QoS to
real-time queries in the system. Comparing to exist-
ing approaches, which adjust the system workloads af-
ter the system is overloaded, our prediction-based ap-
proach is unique in avoiding the system overload be-
forehand based on workload estimations. As a result,
our prediction-base algorithm exhibits noticeable per-
formance advantage over existing algorithms in han-
dling queries on dynamic data streams.

For future work, we are considering schemes for pre-
dicting the future volume and selectivity of the data
streams. With the prediction, the QoS management
algorithm can consider the queries which are not cur-
rently active in the system, but whose instances will be
invoked during the lifetime of current active queries.
The QoS management will be able to take account
of future query workloads and allocate CPU resources
fairly among queries. The research problems include
finding good data stream tracking algorithms and de-
ciding how far to “look ahead” and still have high con-
fidence in the predictions.

Acknowledgements

This work was supported, in part, by NSF grants
IIS-0208758, CCR-0329609, and CNS-0614886.

References

[1] A. Arasu, B. Babcock, S. Babu, J. McAlister, and
J. Widom. Characterizing memory requirements for
queries over continuous data streams. ACM Transac-
tions on Database Systems, 2004.

[2] A. Arasu, S. Babu, and J. Widom. The cql continuous
query language: Semantic foundations and query exe-
cution. Technical report, Stanford University, 2003.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and
D. Thomas. Operator scheduling in data stream sys-
tems. VLDB Journal Special Issue on Data Stream
Processing, 2004.

[4] B. Babcock, M. Datar, and R. Motwani. Load shed-
ding for aggregation queries over data streams. In Intl.
Conference on Data Engineering (ICDE), 2004.

[5] S. Babu and J. Widom. Continuous queries over data
streams. SIGMOD Record, 2001.

[6] H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, M. Cherniack, C. Convey, E. Galvez,
J. Salz, M. Stonebraker, N. Tatbul, R. Tibbetts, and
S. Zdonik. Retrospective on aurora. VLDB Journal
Special Issue on Data Stream Processing, 2004.

[7] D. Barbara, W. DuMouchel, C. Faloutsos, P. Hass,
J. Hellerstein, Y. Ioannidis, H. Jagadish, T. Johnson,
R. Ng, V. Poosala, K. Ross, and K. Sevcik. The new
jersey data reduction report. Technical report, Bul-
letin of the Technical Committee on Data Engineering,
1997.

[8] D. Carney, U. Centintemel, M. Cherniack, C. Convey,
S. Lee, G. Seidman, M. Stonebraker, N. Tabul, and
S. Zdonik. Monitoring streams - a new class of data
management applications. In 28th VLDB Conference,
2002.

[9] D. Carney, U. Centintemel, A. Rasin, S. Zdonik,
M. Cherniack, and M. Stonebraker. Operator schedul-
ing in a data stream manager. In the 29th Interna-
tional Conference on Very Large Data Bases (VLDB),
2003.

[10] S. Chaudhuri, G. Das, M. Datar, R. Motwani, and
V. Narasayya. Overcoming limitations of sampling for
aggregation queries. In ICDE, pages 534–542, 2001.

[11] L. Golab and M. Ozsu. Issues in data stream manage-
ment. SIGMOD Record, 32(2), 2003.

[12] P. Haas, J. Naughton, and A. Swami. On the rela-
tive cost of sampling for join selectivity estimation.
In PODS ’94: Proceedings of the thirteenth ACM
SIGACT-SIGMOD-SIGART symposium on Princi-
ples of database systems, pages 14–24, New York, NY,
USA, 1994. ACM Press.

[13] W. Hong and M. Stonebraker. Optimization of paral-
lel query execution plans in xprs. In Distributed and
Parallel Databases, 1993.

[14] M. Mehta. Design and implementation of an interface
for the integration of dynamit with the traffic man-
agement center. Master’s thesis, MIT, 2001.

[15] R. Motwani, J. Widom, A. Arasu, B. Babcock,
S. Babu, M. Datar, G. Manku, C. Olston, J. Rosen-
stein, and R. Varma. Query processing, resource man-
agement, and approximation in a data stream man-
agement system. In 2003 Conf. on Innovative Data
Systems Research (CIDR), 2003.

[16] N. Tatbul, U. Centintemel, S. Zdonik, M. Cherniack,
and M. Stonebraker. Load shedding in a data stream
manager. In the 29th International Conference on
Very Large Data Bases (VLDB), 2003.

[17] Y. Wei, S. H. Son, and J. Stankovic. Rtstream: Real-
time query for data streams. In 9th IEEE Interna-
tional Symposium on Object and component-oriented
Real-time distributed Computing (ISORC), Apr. 2006.

[18] A. Wilschut and P. Apers. Dataflow query execution
in a parallel main-meory environment. In PDIS, 1991.

