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Abstract

Indoor speaker identification systems have been re-
searched for a long time and are widely used in many hu-
man interaction acoustic monitoring systems. Many works
have focused on improving accuracy in dealing with differ-
ent realisms, including noise and varying distances from the
microphone. However, these works either require signifi-
cant extra effort such as measuring room types and dimen-
sions, obtaining many speakers’ samples, or requiring ex-
pensive hardware such as microphone arrays and complex
deployment settings. In this paper, we introduce a complete
speaker identification solution using an artificial reverbera-
tion generator with different parameters to adjust the origi-
nal close-distance speech samples so that each speaker has
different artificial voice samples. Samples in different envi-
ronments are not required because these artificial samples are
close approximations to different environments. Two kinds
of models, GMM-UBM and the i-vector, are evaluated. The
models are trained on all samples separately, and testing is
done against all in parallel. A score fusing approach with two
thresholds, a minimum value and a minimum difference, is
applied to the scores in producing the final result. Also, sev-
eral standard acoustic pre-processing routines, including a
voice activity detection algorithm and an overlapped speech
remover, are included to make the system fully deployable.
Finally, to assess the improvements when applying a rever-
beration adjustment, we evaluate our system with two lit-
erature speech databases, one has 251 people and the other
one has four kinds of emotions. Further, we perform an in-
lab speaking experiment. The evaluation results show our
system has more than 90% accuracy in identifying speakers
within 6 meters if the emotion is neutral, and a 10% improve-

ment over no reverberation adjustments when speakers have
non-neutral emotions.
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1 Introduction

Today we are surrounded by millions of digital devices
and sensors. These devices and sensors can be anywhere and
have various types and purposes, from smartphones in one’s
pocket to motion sensors at home, from noise detectors on
roads to fire alarms in forests. We use them to monitor and
improve our daily lives. The key benefit of these systems
is their ability to gather and analyze the data from the sur-
rounding environment automatically, robustly, and easily.

An acoustic sensor is one of the most commonly used sen-
sors to deal with human interaction mainly because sound
has fewer limitations than other physical signals, such as
vision, when being used to monitor people. For example,
sound is not affected by light conditions, and it does not re-
quire a direct path. For acoustic sensors, which monitor hu-
mans, knowing the identity of the subject is crucial.

The idea of Speaker IDentification (SID) has been pro-
posed and developed for more than two decades. The goal of
this kind of system is to automatically detect who is speak-
ing within the coverage of a microphone. For example, we
can use a SID system to detect who is at home, who is talk-
ing in a meeting, or whether there is a malicious person in a
security-sensitive place. Recently, virtual assistants in smart
homes such as Google Home announced that it can recognize
an individual’s voice [4]] which could be extremely valuable.
But, it detects the speaker from fixed sentences.

SID is non-trivial due to different kinds of realities. The
accuracy of the system is affected by many factors, such as
noise and distances. Noise makes it difficult to obtain the



actual speaker’s voice features, and distance adds reverbera-
tion and de-amplification problems which distorts the origi-
nal signal.

The current state-of-the-art algorithms focus on solving
these realisms by measuring room characteristics which can
be used to adjust the signal [43], by obtaining significant
amount of training data for each speaker in different envi-
ronments, or by using expensive equipment [24, |36} 137, 142].
All of these methods require huge amounts of additional ef-
fort, and they are not practical for rapid or large-scale de-
ployments. Also, a practical and operational SID system is
likely to face several environmental and realistic challenges
like non-human sound, overlapping speakers, varying dis-
tance from microphones, training overhead, and presence of
non-trained speakers (both real and from sources like a TV)
which need to be solved.

Recently, researchers are deploying health care systems
to monitor people’s activity of daily living, creating activ-
ity diary systems, studying family eating dynamics, and so
on. Acoustic monitoring is often a part of these systems.
An important issue is that these systems must be deployed
with little effort. The motivation for this paper is to solve
the SID problem for a system that must be deployed quickly
and easily in a home to detect speaker IDs without the room
measurements, extensive data samples, fixed sentences, or
expensive hardware.

The basic solution approach is that for each speaker, we
only need to record a few voice samples (at training time) by
a close microphone in a single arbitrary room. The record-
ings are adjusted with different artificial reverberations to
generate a group of artificial samples. The artificial rever-
beration parameter settings cover various types of rooms.
Standard cepstral mean normalization (CMN), feature warp-
ing and noise reduction techniques are applied. We treat
all these groups of samples as different artificial speakers
in the training phase. Conventional GMM-UBM and more
state-of-the-art i-vector methods are used to build speakers’
model. When testing, scoring is done in parallel for each arti-
ficial speaker model. In the end, all the scores are compared,
fused, and translated back to the real speaker identity.

The main contribution of this paper is a speaker identifi-
cation system which does not require huge amount of train-
ing data and can handle different environments, far distances
from microphones, unknown speakers and emotions. The
highlights include:

e Realisms The solution takes realisms into considera-
tion and provides a general solution of SID for indoor
scenarios. The solution is practical and easy to de-
ploy. It detects and filters out non-speech and over-
lapped speech samples.

e Distance-independent. The solution is distance inde-
pendent. There is no need to have a particular reverbera-
tion measurement as an input before deploying. Speak-
ers can be at different distances to the microphone. It
also does not need a localization algorithm nor expen-
sive microphone arrays to locate the speaker’s position.

e Limited training samples required. Since different
reverberation settings are used to adjust the training

sample, there is no need to collect many user samples
at different distances or in different types of rooms.

e Non-trained speaker separation. Non-trained speak-
ers’ samples can be separated from trained speakers,
which means the system filters out background televi-
sion speech, or an outside visitor.

o High confidence in the results. By applying a differ-
ence threshold between the first and second most likely
speakers we eliminate almost all false positives.

o General emotions. This is the first work to study SID
under various moods such as angry, sad, and happy
mixed with their voice. The accuracy of our solution
at close distances to the microphone is the same as the
state-of-the-art results, and the accuracy at distant is im-
proved by 10%.

e Good overall performance. By evaluating our solu-
tion with two literature datasets and new controlled lab
experiments, we show that distant speakers’ IDS within
6 meters of the microphones can be detected with more
than 90% accuracy.

o Evaluation. In the evaluation, we show that our solu-
tion outperforms various baselines, i.e., a GMM-UBM
solution with MFCC features only by 10.9% at 6 me-
ters, an i-vector PLDA solution with enhanced MFCC
features (enhanced by CMN and feature warping) by

11.5% at 6 meters.
Note that ARASID is designed for detecting a small num-

ber of speakers in a single deployment. For example, it can
be used in a house of 4-6 family members to monitor their
daily lives such as conversations during meal time. It can
be used in a small conference to keep logs of who is talk-
ing. The system can handle arbitrary number of speakers,
but we limit the total number of speakers in order to ensure
computational efficiency.

2 Related Work

SID has been researched for a very long time. While
some research is still being conducted in fundamental algo-
rithms to improve performance, other research is addressing
realisms.

One realistic problem is the distance between the speaker
and the recording device. McCowan et al. [24]] introduced
microphone arrays into SID algorithms. They mentioned
that a single distant microphone cannot have acceptable per-
formance in very noisy conditions. On the other hand, using
a microphone array enhances the signal based on the knowl-
edge of sound direction. So it can improve the robustness of
SID systems. Wang et al. [36}|37] used position-dependent
Cepstral Mean Normalization to minimize channel distortion
caused by distance. The speaker model is trained based on
the speaker’s position with estimated compensation parame-
ters for position-dependent CMN. To recognize a speaker,
the system first estimates the speaker’s position, then ap-
plies the particular compensation parameters in CMN and
performs the SID algorithm. Zieger et al. [42] addressed
the problem of user identification and voice control of a
TV-system. Reverberation, noise from TV’s output and dis-
tance affect the system’s performance. Techniques includ-



ing source localization, beamforming and echo cancellation
were applied by using a microphone atray to improve accu-
racy. As we can see here, all these approaches need a micro-
phone array, which is relatively expensive. The algorithms
heavily rely on the localization algorithm. Neither of these
assumptions is often practical for a large-scale deployments.

Meanwhile, many works focus on using fundamental al-
gorithms to deal with distance distortion. Jin et al. [16]]
investigated two approaches in a far-field speaker recogni-
tion system. One is reverberation compensation and feature
warping, which provides significant improvements under
mismatched training-testing conditions. Multiple channel
combination strategies including data combination, frame-
based score competition, segment-based score fusion, and
segment-based decision voting were introduced to deal with
multiple channels’ data. The second approach uses higher-
level linguistic features. In [15], they evaluated minimum-
variance distortionless response features, fundamental fre-
quency variation features, factor analysis, and frame-based
score competition by using MIXERS Corpus [3]] under mis-
matched conditions. Similarly, Ye et al. [[14] applied spec-
tral subtraction before feature extraction, feature warping,
and model compensation. Remus et al. [29] used partial
least squares (PLS) to decompose the features and mitigate
the degradation in SID performance. Fowler et al. [11]
described a standoff multi-microphone speech corpus, and
further evaluated the performance of PLS. All these works
are trying to adjust the contaminated speech to the clean
speech, and then obtain the speech features from the recov-
ered speech. However, they cannot solve all the realistic sce-
narios because the model is only trained on one scenario,
and the recovered speech may not match with the real de-
ployment scenario.

Another focus of current research is reverberation. Re-
verberation is the most important factor in distant speech.
Zieger et al. [43] used artificial reverberation to contaminate
clean speech. The real impulse responses were measured at
different distances in a typical room. Both clean speech and
contaminated speech were used to build the speaker models,
and the final decision was generated by a weighted score fu-
sion. Falk et al. [9] also considered room reverberations.
A Gammatone filter-bank was used to filter speech signals,
and speaker features were extracted from modulation fre-
quency bands. Clean speech, artificially generated rever-
berant speech and reverberant speech recorded in a meeting
room were used to evaluate their models. Also, multichannel
score combination and adaptive channel selection techniques
were introduced for multi-microphone systems. Zhang et al.
[40] trained speaker models using dereverberant speech ob-
tained by suppressing reverberation from arbitrary artificial
reverberant speech. Dickerson et al. [8] introduced a sys-
tem called RESONATE, which compensated for reverbera-
tion using simulated room impulse responses to adapt to the
real reverberant rooms. These works either need to measure
the room reverberation parameters or rely on the dereverber-
ation algorithms. In a real deployment, we cannot obtain
each room’s parameters because it may take a huge amount
of time and effort, and the dereverberation algorithms are
still not robust enough to different room types or they require

expensive computation overhead such as [41].

Recently, deep neural network approaches were used to
achieve better performance. However, the training set and/or
the enrollment set for those system is large. [31] used a 100
hours dataset to train the DNN model. In [25]], training data
was sourced from 800 and 1300 hours of microphone and
telephone speech. The English training dataset in [20] has
2,174 speakers, 543,840 utterances, and more than 620 hours
of speech. [35]] uses 28k recordings from 2.6k speakers from
the SWBD dataset and from NIST SREs between 2004 to
2010 which contains about 63k recordings from 4.4k speak-
ers to train their model. To our best knowledge, deep learn-
ing methods are generally dependent on availability of large
amounts of data. With small training sets, it is more likely
to overfit or underfit. The main idea is that our solution does
not require a large training dataset.

Some other work [10] mentioned they used an open-
source simulator to generate degraded speech recordings
from clean speech to train speaker models. They addressed
the effect of a wide variety of speech degradation on a SID
system. Similar to this work, in [[1], they implemented a
multiple speaker model approach on a GMM-UBM based
speaker identification system by using different reflection co-
efficients to model realistic levels of reverberation. These
works improve the accuracy, but they do not mention the per-
formance of speaker identification at distances.

In this paper, we focus on a speaker identification sys-
tem which generates speaker models with artificial reverber-
ations. The artificial reverberations mimics various distance
effects with a single recording sample, so the system can
handle various conditions with a very small training sample
set. All the adjustments can be done offline such that no ad-
ditional human effort is needed to collect more sample data
or use special devices.

Speaker Recordings Speaker Recordings
(Training) (Testing)

‘ Noise Reduction ‘ ‘ Noise Reduction ‘

.{ " MFCC + CMN
Artificial Feature Warpin
Reverberation ping

Sample Generation

GMM-UBM

7~

or
i-Vector with PLDA

Speaker
Identification

Background MFCC + CMN /’
Speaker =P Feature
Recordings Warping

Figure 1. ARASID system overview.
3 ARASID

In this section, we describe the details of our solution,
called ARASID. As shown in Figure [I] it consists of sev-
eral steps including pre-processing, noise reduction, artifi-
cial reverberation sample generation, MFCC features, CMN,
feature warping, GMM-UBM model training, testing, and
score fusion.The major idea here is instead of using one
speech sample to generate a speaker model, each speaker has



a group of generated samples and models. We only need to
collect a close microphone’s recording for each speaker, and
all the other samples are generated from the pre-processed
and noise-removed close recording by adding different re-
verberations. When running the system, we try to match a
speaker’s speech input to all these models in parallel. Be-
cause each model covers one kind of room reverberation
type, the real environment is more likely to match one of
them so that it is expected to have a better performance in
realistic scenarios.

3.1 Pre-processing and Noise Reduction

Pre-processing and noise reduction are both applied in the
training and testing phases. Both phases share the same pro-
cedure. First, the input signal is filtered by a Butterworth
bandpass filter in order to get rid of the noise, which is out-
side the human voice frequency range. A Butterworth filter
is widely used in noise filtering. It rolls off slowly around
the cutoff frequency, but without ripples. In our system, we
use third order bandpass range from 100Hz to 3500Hz. Sec-
ond, we apply the traditional and standard spectral subtrac-
tion method to remove the noise which has some overlapped
in the frequency range of human voice. It is a simple and
effective method of noise reduction. The first step is to get a
spectrum profile from the pure background noise, and form a
fingerprint. For each frequency spectrum of each short seg-
ment, if the energy in a frequency spectrum is less than the
average value in the fingerprint, it gets reduced. After fin-
ishing this process in each spectrum, time-smoothing and
frequency-smoothing are used to smooth the output signal.

In real time deployments, a simple threshold-based en-
ergy filter is used to filter out low energy signals. A voice
activity detection algorithm is applied to get rid of non-
human speech. Here, we use the LTSD VAD filter from
[28]. It measures the long-term spectral divergence (LTSD)
between speech and noise, and uses the decision rule to de-
termine speech/non-speech segments. Furthermore, one of
the major challenges in realistic conversations is overlap-
ping speech. Overlapping speech could generate many false
positives/negatives. In order to eliminate these overlapped
speech samples, we apply the overlap speech detector from
our recent work [33]. It is a binary neural network classi-
fier with two output classes, overlapped speech and single-
person speech. If a segment is output as overlapped speech,
we simply ignore it and skip the speaker identification pro-
cess for this sample.

3.2 Artificial Reverberation Sample Genera-
tion

Dereverberation methods have been developed for a long
time. But it is still not perfect. The output signal has some
level of distortion because of reverberation. Another prob-
lem is that it requires measuring room-specific reverberation
model parameters as the dereverberation algorithm’s input
because room types change models significantly. We noticed
that, recently, many single-channel and multi-channel dere-
verberation methods have been proposed, such as [38] and
[7]. But there is significant computational overhead.

However, if we address this differently, based on an input
signal, we can easily add artificial reverberations. In order to

cover as many different types of rooms as possible, we do not
need to measure the parameters for each reverberation model
in advance, because instead we can use general combinations
of reverberation parameter settings.

A reverberation model has several important parameters.
In this paper, we refer to the parameters included in the Au-
dio System Toolbox in Matlab 2016a [22]. Wet and dry ratio
is the ratio of the reverberated signal to the original signal.
The more reverberation the room has, the larger this ratio is.
Diffusion is the density rate of the reverberation tail. Higher
diffusion rate means the reflection is closer and the sound is
thick. Lower diffusion rate has more discrete echoes. De-
cay factor measures the time duration that a reflection runs
out of energy. A larger room has longer reverberation tails
and lower decay factors. A smaller room has shorter tails
and higher decay factors. There are other parameters such as
pre-delay time, which is the time between the direct sound
and the first reflection, and high-frequency cutoff / damping,
which is the attenuation of higher frequency in reverberated
sound output.

In ARASID, we use different combinations of wet / dry
ratio, diffusion, and decay factors to model different rooms
(see Section 4.1). All the other parameters are set to the
default. To each speaker’s recording is added reverberation
with different reverberation parameters.

3.3 MFCC and CMN

MEFCC is the most widely used feature sets in SID algo-
rithms. We use it as basic model features in ARASID.

In order to minimize the energy differences between dif-
ferent distant speech, the signal is scaled to (-1, 1) based on
Equation () before extracting MFCC features.

_ So(1)
max (|so(1)|,[50(2)], ..., [s0(n)])

where s,(¢) is the scaled signal value at time t and s,(¢) is
the original signal value at time t. The whole time period
has n values. The scaled signal value is the original value
divided by the maximum absolute signal value. This ensures
the original zero value stays at zero and the range is scaled
and fit into (-1, 1).

Cepstral Mean Normalization (CMN) subtracts the over-
all mean value from each cepstral value. It can compensate
for distortion such as those caused by different microphone
channels. However, CMN does not work when the impulse
response lasts longer than the short time analysis window
[[16]]. For those input signals which include noise, the CMN
results have biases.

Let us assume the original signal is x(¢), noise is n(t),
h(t) is the impulse response of reverberation, and y(¢) is the
recorded signal.

sn(t)

(D

y(t) = x(t) ¥ h(r) +n() 2)

After taking Fourier Transform, the time-domain relation
in (2) becomes the frequency-domain relation (3)).

Y(f) =X (f)«H(f)+N(f) 3)

We use the logarithm when calculating the cepstral. Then



we get ().

_ N(f)
log¥ (f) = log[X (f) * (H(f)+m)]

N(f)

= logX (f) +log[H(f) + @]

If we subtract the mean value from each cepstral, the last

“

part in , 1;/(%), cannot be subtracted and distorts the esti-

mation. The model trained on this estimation has an unpre-
dictable performance.

Instead of relying on the noise reduction algorithm to re-
move the unhandled part of Equation (@) or separating im-
pulse responses like [16]] did, our solution idea is straightfor-
ward. It applies CMN to all the generated recordings and the
original recordings. The assumption is that one of the mod-
els (including generated and original ones) matches closely
enough to the actual speaker’s environment. It has similar
h(r) and n(¢) both in training and testing, which minimizes
the side effects of CMN.

3.4 Feature Warping

Feature Warping [27]] is widely used in many robust SID
systems. It was intended to solve channel mismatch and ad-
ditive noise problems. In our experiments, we find feature
warping also improves the accuracy of emotion mismatch
between training and testing data.

The feature warping warps the short-time MFCC values
into a standard distribution. The process we used is taken
from [[16]. Each dimension of MFCC is considered inde-
pendent and runs the warping algorithm separately. First, we
define a short time window, and only the middle value of that
short time window is warped. Then we shift the window by
one and do another round of warping. Zeros are appended at
the beginning and end of the original MFCC stream.

The warping has three steps. The first step is to find the
rank r of the middle value among all the N values in that
short time window. The second is to calculate the match-
ing CDF value by using ((r — %)/N) The last step is to
find the inverse CDF value by searching the standard normal
CDF table. The inverse CDF value is the warped value of the
original middle value.

After doing the above processes on all the dimensions of
the MFCC streams, we obtain our model features.

3.5 GMM-UBM Model or i-Vector Model
with Multiple Reverberation-adjusted
Samples

In this paper, in order to evaluate the performance im-
provements when using reverberation adjustment, we choose
two models, the traditional GMM-UBM model and the more
recent i-vector with PLDA model, to model speakers. These
two models are replaceable, and in the final deployment, the
system uses only one model. During the evaluation, the sys-
tem learns each model and tests on each model separately.

We compare the results to see which model works better un-

der the reverberation adjustments.

For each speaker, we only record one speech sample by
using a close microphone. We use this recording to gen-
erate multiple (e.g., 80) reverberation-adjusted samples (see

Section 5.1), which represent each speaker in different rever-
beration environments. We treat each sample as a different
speaker in training. The GMM-UBM model training algo-
rithm we used has no difference from the standard algorithm.
A huge amount of human voice is used to train the universal
background model (See details in the Evaluation Section).
MapAdapt is used to adapt the universal background model
to each speaker’s model [30].

The i-vector extraction algorithm is a well-known algo-
rithm, which is taken from [23]], [[17] and [6], and imple-
mented in [32]. We did not change the algorithm, and the
basic steps of this algorithm are as follows. After UBM is
trained from the background speaker samples, the zero-th
and first order Baum-Welch statistics are computed from the
UBM. Then the total variability subspace is trained from the
statistics. The dimension of total variability subspace is cho-
sen as 400. In the next step, the i-vector of each speaker is
extracted by using the statistics, the UBM model, and the
total variability subspace. As recommended in [32]], we do
LDA on the extracted i-vector. The dimension of LDA is
chosen as 200. Later a Gaussian probabilistic LDA (PLDA)
model is learned by using the EM algorithm.

3.6 Testing

For each segment of a sample, we perform the same
pre-processing, noise reduction, MFCC feature extraction,
CMN, and feature warping.

If the GMM-UBM model is used, the log-likelihood ratio
for each test segment is calculated in Equation (5) [30].

score(X) =log P(X|Speaker's GMM model)

—log P(X|UBM model) )
where score(X) is the log-likelihood of speech segment X.
It is the difference between the log probabilities of the in-
coming speech belonging to one specific speaker and the log
probability of the incoming speech belonging to the univer-
sal background speakers.
If i-vector with PLDA is used, the verification score is
calculated as Equation (6)) [12].

score(X) =log P(x1,x2|H;)

6
—logP(x;|Hy) —log P(x2|Hp) ©)

where x| and xp are two i-vectors, H; means both i-vectors
share the same identity latent variable, Hy means different
identity latent variables.

If the score is larger than some threshold (for exam-
ple, a non-negative value in GMM-UBM model, such as
0), it means, to some degree, it is more likely to be a
trained speaker than the background speakers in GMM-
UBM model, or it is more likely to be from the same speaker
than from a different speaker. If we compare all the scores
above the threshold, the largest one indicates the detected
speaker. If all the scores are below the threshold, it means
the algorithm cannot identify the speaker. It is possible when
the algorithm tries to identify a non-trained speaker. This
point is valuable under certain circumstances. For example,
if the system is used to monitor and keep a log of family’s
daily conversations, background speakers from a television



or visitors to the home should be filtered out by the thresh-
old. Because those speakers are not trained speakers in the
model, the scores are below the threshold.

3.7 Score Fusion

In ARASID, each speaker has multiple models. When
testing, each model outputs a score indicating the log-
likelihood difference between the speaker and the back-
ground speakers. To get the real speaker’s identity, we
need to integrate these scores. This integration process in
ARASID is called score fusion.

One method is to find the index of the largest score among
each speaker’s scores, and compare these largest scores. The
largest of the largest is the detected speaker. We notate this
method as the top-1 score fusion approach. It only compares
the models with the highest score from each speaker.

Another method is to use the sum of each speaker’s top
n scores as the speaker’s score. This considers not only the
highest-score model, but also other related or similar models
to get an overall evaluation of the speaker.

The third method is the sum of each speaker’s top n
scores, which are above a pre-defined threshold. This ex-
cludes those models which output the result showing univer-
sal background speakers.

The fourth method is to vote. In this way, the number of
scores, which are above the threshold, is calculated for each
speaker. Comparing these numbers, we label the speaker
who has the most votes as the detected speaker.

Here is an example that explains all the above methods.
To keep it simple, in this example, there are three speakers,
and each speaker has four artificial reverberation models and
one original model. Table[T|shows the results of each speaker
model’s score.

Table 1. A sample result

Speaker 1 | Speaker2 | Speaker 3
Model 1 1.66 0.69 2.78
Model 2 341 2.78 2.77
Model 3 3.37 2.86 2.79
Model 4 3.39 2.87 2.33
Model 5 3.40 2.92 2.28

In the top-1 approach, the final score is 3.41, which be-
longs to Speaker 1, and reverberation model 2 is closest to
the real environment. In the top-3 approach, the final score
is 10.2 (3.4143.39+3.40), which also belongs to Speaker 1.
Speaker 2 has a score of 8.65 (2.86+2.87 +2.92), and Speaker
3 has a score of 8.34 (2.78+2.77+2.79). In the top-3 with
threshold approach, let us assume the threshold is 2.8. The
final decision is the same, but Speaker 3’s score is 0 because
none of the scores is above the threshold. In the voting ap-
proach, we use the same threshold. Speaker 1 has four votes,
Speaker 2 has three votes and Speaker 3 has zero votes. So
the final decision is Speaker 1.

As we can see here, there are some differences between
each score fusion strategy. But most of the time the final
decision is the same. We perform more evaluations on these
different score fusion approaches in the evaluation section,
and find out the top-1 approach shows the best performance.

In addition to the minimum value threshold, we apply an-
other threshold on the difference between the largest and the
second largest speaker’s value. When we use the top-1 ap-
proach, each speaker has one value. If the largest and the sec-
ond largest value among the speakers is not greater than the
threshold, we output ’cannot decide’ as the decision instead
of outputting the identity of the largest value. The motivation
is that when we deploy the system, we care more about the
confidence of the results. A wrong identity is more severe
than a missed identity. In the evaluation section, we show
that we can achieve a high confidence in the results with a
low compromise on missed detections.
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Figure 2. Implementation of ARASID.

4 Implementation

In this section, we describe the implementation our sys-
tem. Matlab is used to implement the signal processing and
the classifier. C++ is used to build a program to collect
acoustic signals and output the results. The link between
the Matlab code and the C++ program is made by the Matlab
Compiler. It compiles Matlab functions into Dynamic-Link
Libraries (DLLs) and the C++ program invokes these func-
tions from the DLLs. The training is done offline by Matlab,
which generates the trained speaker models. The testing can
be either online or offline by the combination of C++ and
DLLs generated from Matlab complier. Figure [2| indicates
the structure of the system.

4.1 Training

A speaker is required to speak in front of a close micro-
phone to obtain the training samples. Then each sample is
passed to a Butterworth filter (details in Section 4.1) which
is included in Matlab R2016a. Then we apply frequency sub-
traction on the filtered signal. The frequency subtraction al-
gorithm is implemented by [2].

The reverberation generator is selected from the Audio
System Toolbox of Matlab 2016a [22] which used the idea
from [5]. The idea of adding reverberation is to match and
simulate as many real scenarios as possible. In practice, we
found that a typical indoor environment has the wet/dry ratio
of {0.2, 0.3, 0.4, 0.5 and 0.6}, the decay factor of {0.2 0.4
0.6 0.8} and the diffusion of {0.2 0.4 0.6 0.8}. More fine-
grained combinations have closer matches, but requires more
computational complexity. The computation complexity is
linear to the number of combinations. 80 (5 x4 x 4) different
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combinations of these parameters are chosen because of the
trade-off between performance and complexity.

All these speaker samples including the actual and artifi-
cial speakers are treated as different speakers to train GMM-
UBM models. If the total number of speakers is n, we have
n actual speaker models and 80 * n artificial speaker mod-
els with one universal background model. The GMM-UBM
training algorithm and the i-vector with a PLDA training al-
gorithm are implemented by [32].

Each speech recording is split into small segments and is
scaled as described in Section 4.2. The MFCC feature ex-
traction algorithm is implemented by the HTK MFCC MAT-
LAB Library [39]. The CMN is simply implemented by sub-
tracting the mean of cepstral value from each cepstral values.
13 MFCC coefficients are used, as well as the deltas and
delta-deltas. Feature Warping is implemented by window
shifting and using the icdf function in Matlab.

We implemented these on a Windows machine with Intel
Core 17 CPU having four physical cores. It takes an average
of 2 seconds to add one type of reverberation to a wave file
of 2.5 minutes by using one core. If we applied the default
parallelism in Matlab, four cores can parallelize the work
separately. When training the model, it is obvious that the
time complexity is related to the total number of actual and
artificial speakers. We found adding 80 artificial reverbera-
tions per speaker is reasonable for a small group of speakers.
The time complexity is almost linear to the total number of
reverberation parameters.

4.2 Testing

In the offline version, each recording is passed to the same
filter and frequency subtraction function. Then, MFCC fea-
tures are extracted. CMN and feature warping are applied.
Later, the GMM-UBM model or the i-vector with PLDA tri-
als are performed, generating the log-likelihood ratios for
each speaker. Using the score fusion techniques, we get the
detected speaker’s identity.

The online (real-time) version is implemented by the co-
operation of Matlab and C++. The C++ program reads the
acoustic signal from the connected hardware devices and
puts the signal into a buffer. In our solution, the buffer is set
to 5 seconds for each microphone channel. Once the buffer
is filled, it copies and sends all the buffered signals to the
detection thread. Then it clears all the contents and stores
the next incoming signal. The detection thread gets the data
and calls the functions in the DLLs which are generated from
the Matlab complier. These functions have all the required
processes as the offline version, including filter, frequency
subtraction, MFCC feature extraction, CMN, feature warp-
ing, GMM-UBM model scoring, and score fusion. The final
returned value of these functions is the detected speaker’s
identity. The testing takes about 1 second to run the classifier
built from 80 artificial reverberations on a 5-second speech
sample.

5 Evaluation

In order to show the performance improvement from our
artificial reverberation adjustment, we did a comprehensive
evaluation on different combinations of feature processing
methods. In this section, we present three evaluations on

two literature speech datasets and one in-lab experiment.
We choose two different literature datasets because the first
dataset is used to evaluate the system on groups of people
from a large population, and the second one is to evaluate
the performance improvement on emotional speech. We also
perform an in-lab experiment because for the two literature
datasets, we need to play and re-record them in order to gen-
erate the distance issue. We want to know the difference
between re-recording and actual collected voices in terms of
our system’s performance. The baseline is the MFCC only
approach. Further, we evaluated our two thresholds. The re-
sults show that our solution improves the accuracy dealing
with different distances.

5.1 Literature Dataset I — Librispeech

We choose Librispeech [26], a corpus of read English
speech, as one literature dataset to evaluate our solution. It is
chosen because it includes a large number of speakers. The
Librispeech was originally collected as a dataset for evaluat-
ing speech recognition systems. It was derived from audio-
books, containing 1000 hours of speech sampled at 16 kHz,
and the speech was recorded on the mono channel with 32-
bit resolution. 251 people were involved in one of the sub-
sets named ’train-clean-100’. It has a total of 100 hours of
speech, and each person speaks for about 20-25 minutes. We
use all the recordings to train the UBM model and a small
portion of speakers to form groups as training speakers.

Table 2. Librispeech dataset results for close distance
# of Mixtures
Group # 64 128 256
1 (3 people) | 98.8% | 98.8% | 98.5%
2 (3 people) | 97.7% | 98.2% | 97.9%
3 (4 people) | 954% | 96.2% | 97.5%

In this dataset, we only apply the GMM-UBM algorithm.
Later in Section 5.4, we compare the GMM-UBM with the
i-Vector algorithm. We took approximately 2 minutes of
speech recordings from each person in the original record-
ing as the training set for the UBM model. Three groups of
speakers were randomly chosen to train the GMM speaker
models, which were two 3-person groups and one 4-person
group. The models had different amounts of mixtures, which
were 64, 128, and 256. Table2]shows the results when train-
ing and testing were both based on the original recordings.
The decision window was set to 2 seconds.

When the training and testing samples were clean and
matched, as shown in the Table Q], the MFCC-only based
GMM-UBM model worked well as it should. We only used
13 MFCC features along with the deltas and delta-deltas. No
reverberation model, CMN, or feature warping were intro-
duced. The group of three people had almost 98% accuracy.
The group of four had less accuracy, but still remained about
96%. The number of mixtures slightly changed the accuracy.

To evaluate the accuracy when the sound source has dis-
tance from the microphone, we developed a script which can
play the original sound through a laptop speaker and record it
at the same time by a microphone system. We used 6 micro-
phones. Microphone #1 was close (0 meters) to the laptop
speaker. Microphone #2 and Microphone #3 were about 1



meter away. Microphone #4 was about 3 meters away. Mi-
crophone #5 was about 4 meters away and Microphone #6
was about 5 meters away. The microphones were directional
and were faced towards the laptop speaker. It sampled at
16kHz and had 32-bit resolution. All the recordings were
done in a quiet room except the air-conditioner was on and
made small noises. Due to the limited volume of the laptop
speaker, the Microphone #6 could barely record clear voices
because it was buried under the background noise. So we
dropped results from Microphone #6.

We tested different approaches to solving the distance is-
sue. The UBMs were trained on the same 2 minutes speech
recordings of each person in the original dataset. The speaker
models were trained only on the closest microphone data
with different approaches, only-MFCC, MFCC with CMN,
MFCC with CMN and Reverberation, MFCC with Reverber-
ation, and MFCC with CMN, feature warping and Reverber-
ation. 81 artificial reverberation models were generated in
those models with reverberation. The highest testing score
among models was selected as the output speaker. Table
shows the average accuracy in different distances. The deci-
sion window was set to 5 seconds.

Table 3. Results on the distant Librispeech dataset. Ap-
plying all methods has the best performance

Distance (meters)
Only Mixtures 0 1 3 4
MFCC 64 100% 82.6% | 83.2% | 82.5%
(Baseline) 128 100% | 83.8% | 83.9% | 84.8%
256 100% 91.5% | 90.9% | 86.6%
Distance (meters)
Mixtures 0 1 3 4
1(\:/[1\1;‘IEC, 64 99.5% 78.5% | 68.2% | 68.0%
128 99.8% 80.2% | 69.3% | 69.8%
256 99.8% 82.7% | 70.5% | 74.3%
Distance (meters)
MFCC Mixtures 0 1 3 4
Reverb’ 64 99.6% 81.5% | 77.7% | 77.1%
128 99.6% 81.2% | 783% | 77.4%
256 100.0% | 80.0% | 78.0% | 75.4%
Distance (meters)
MFCC, Mixtures 0 1 3 4
CMN, 64 99.3% 97.8% | 95.9% | 95.9%
Reverb 128 99.3% | 98.1% | 95.7% | 96.8%
256 99.5% 98.6% | 96.1% | 96.1%
Distance (meters)
1(\3/[1\1;‘12(:’ Mixtures 0 1 3 4
Warp’, 64 99.3% 95.0% | 95.7% | 95.9%
Reverb 128 99.3% 96.3% | 96.1% | 96.8%
256 99.5% 97.0% | 96.4% | 97.5%

As we can see in Table [3] if we only use the MFCC ap-
proach to detect a distant speaker, the accuracy drops to 80%,
especially when the number of mixtures in the model is low.
For 64 and 128 mixtures, the accuracy is around 83% which
means there is a 17% accuracy gap between the close mi-
crophone and the distant microphone. The model with 256
mixtures has better results, but it is still low (86% at 4 me-
ters). The further the distance is, the lower accuracy it has.

For the MFCC-CMN approach, the results indicate that
when we perform CMN on distant recordings, some charac-

teristics of the speaker are removed. CMN was supposed to
minimize the distortion of recording. But as some other re-
lated works [[16 [14] shows, it does not work perfectly in a
reverberation environment. Its functionality is highly related
to the type of reverberation. When the length of the chan-
nel impulse response is longer than the short-time spectral
analysis window, it actually does not help, but adds some
uncertainty. In this evaluation, it lowers the accuracy.

The MFCC-Reverb has the better results because the ar-
tificial reverberation we added matches the real scenario
better. The MFCC-CMN-Reverb approach’s result shows
even better performance compared to the first three ap-
proaches. The overall accuracy within 4 meters is over
95.9%. The MFCC-CMN-Warp-Reverb approach is simi-
lar to the MFCC-CMN-Reverb approach, which also shows
great performance. Notice that, the results of 4 meters are a
little better than 1 meter’s and 3 meters’ in the last approach.
It can happen because the artificial models are generated to
match the real scenario regardless of distances, and the dis-
tance effect is further minimized by feature warping. So it is
possible that the 4 meters’ speech has a slightly better match.

The above results showed that when training and detect-
ing are both based on the closest microphone, the standard
algorithm works well. When the voice distance and train-
ing/testing is mismatched, the accuracy drops rapidly from
100% to around 85%, and only applying CMN is not enough
because the result is even worse (below 80%). However, the
accuracy can be improved back to over 95% when we apply
both CMN and the artificial reverberation approach, and ap-
plying the feature warping as in our solution, ARASID, has
almost the same results.

Table 4. Accuracy of other score fusion methods is lower
than the Top-1 Method

Method

Distance (meters)
0 1 3 4
Top 1 Positive 99.3% | 95.0% | 95.7% | 95.9%
Top 3 Positive | 97.1% | 94.8% | 90.1% | 93.0 %
Top 5 Positive 96.5% | 94.8% | 90.1% | 93.0 %
Top 10 Positive | 96.5% | 94.8% | 90.7% | 93.2 %

Top 3 97.1% | 94.8% | 90.1% | 93.0 %
Top 5 96.5% | 94.8% | 90.1% | 93.0%
Top 10 96.5% | 942% | 90.7% | 93.0 %
Top 15 96.5% | 93.0% | 90.1% | 93.0 %

[ Vote [ 91.9% | 84.9% [ 57.6% | 628 % |

We further analyze our score fusion methods based on
the approach in our solution. In the above evaluation, only
the Top-1 method is used. Now we test all the score fu-
sion methods. The results are shown in Table Each
speaker has 81 different scores from the original model and
each reverberation-adjusted models. The top n positive is
the method that sums the highest n positive scores of each
speaker as the fused score. The top n is the method that
sums up the highest scores no matter they are positive or not
for each speaker. The vote is to count the number of positive
scores for each speaker. As we can see in the table, when we
consider more artificial models, the accuracy drops, and the
voting method has the lowest results. This is mainly because



only one of the artificial reverberation models will actually
match reality. If we combine more than one model’s score,
it actually degrades the performance. So in the later evalua-
tions, we only use the highest score among all the scores as
the speaker’s score.

5.2 Literature Dataset IT - EMA

Another literature dataset, Electromagnetic Articulogra-
phy (EMA) database from [[19], is used to evaluate our sys-
tem. This dataset is chosen because it not only has clean
speech like the previous one, but also it includes some moods
while speaking. Three talkers in this database produced
acted emotional speech on a set of 10 sentences. Each sen-
tence was recorded 5 times in four different moods (angry,
happy, neutral and sad). In each mood, we took 40 record-
ings to train the speaker model and took the remaining 10
recordings to test.

In order to evaluate our system on the distant record-
ing, we performed the same procedures as we did on the
Librispeech dataset. The original recordings were played
through a speaker and recorded by microphones at different
distances, which were at 1, 2 and 3 meters.

The first evaluation only focuses on neutral speech. Table
[5] shows the accuracy results when we applied MFCC only,
MFCC with CMN, feature warping, and MFCC with CMN,
feature warping and artificial reverberation.

Table 5. Results on the EMA dataset shows applying all
these methods has a better performance

# of Mixtures | Only MFCC | MFCC CMN | MFCC CMN

(Baseline) Warp Warp Reverb
64 100% 100% 100%
0 Meter 128 100% 97.8% 97.8%
256 100% 97.8% 97.8%
64 88.5% 88.5% 94.2%
1 Meter 128 90.4% 88.5% 96.2%
256 90.4% 92.3% 96.2%
64 84.6% 84.3% 88.5%
2 Meters 128 88.5% 80.4% 90.4%
256 88.5% 86.3% 94.2%
64 80.8% 80.8% 86.6%
3 Meters 128 86.5% 82.7% 88.5%
256 86.5% 86.5% 92.3%

When comparing the results of MFCC+CMN+Warp+ Re-
verberation to the results of only MFCC or MFCC+CMN
+Warp, we can see improvements. The accuracy within 3
meters are over 90%.

Although this paper is not focusing on identifying speak-
ers under different moods, it is still valuable to see the per-
formance after adding artificial reverberations when training
on different moods speech data. Table[6|shows the speaker id
results on speech segments with three different moods (An-
gry, Happy, and Neutral) when using the close neutral speech
as the training set. The number of mixtures is 256.

We only use neutral speech as the training set because in
reality, it is difficult for speakers to pretend to be happy, an-
gry or sad when training the models. This is due to several
reasons. First, not all people are good at acting. Second,
each person has his own understanding of moods. Differ-
ent people change speech differently. Third, when training
models, it is usually done once in a short time which cannot
cover the whole scope of moods in the real life. If we do

emotion-dependent modeling, the model may be trained on
happy. When testing, it may not work when the speaker is
extremely happy or slightly happy. In order to address these
realisms, we can only use the neutral speech to train speaker
models.

From the results in Table[6] we can see the overall perfor-
mance on emotional speaker identification is low when train-
ing set and testing sets have different moods. Lots of works
such as [34, 113,18} 21]] have shown that moods have a huge
influence on the performance of SID systems. The dataset
we use is collected from the professional actors. They were
trained to change their voices and express moods explicitly,
so the voice is more distinguishable and different.

Table 6. Results on the distant emotional dataset show
applying all these methods has a better performance
Only MFCC (Baseline) MFCC CMN Warp Reverb
Emotion Emotion
1 Meter Angry | Happy Sad Angry | Happy Sad
51.7% | 50.9% | 60.3% | 61.7% | 61.4% 71.4%
Emotion Emotion
2 Meters | Angry | Happy Sad Angry | Happy Sad
48.3% | 50.9% | 50.8% | 61.7% | 59.7% 60.3%
Emotion Emotion
3 Meters | Angry | Happy Sad Angry | Happy Sad
50.0% | 50.9% | 49.2% | 58.3% | 52.6% 65.1%

The results also show, as expected, that when the distance
is further, the accuracy drops. Our artificial reverberation
method has less improvement on the emotion recordings, but
it still mitigates the distance influence. When we add rever-
beration adjustments, the performance on different distances
improves by about 10%.

5.3 Controlled Lab Experiment

We recruited 12 people to read scripts in our controlled
lab experiment. We used a VocoPro UHF-8800 Wireless
Microphone System and a transmitter, M-Audio Fast Track
Ultra 8R USB 2.0, to record and transmit sound. The micro-
phone setting is shown in Figure[3] It was a rectangular room
and 7 microphones were placed facing the speaker. One was
0.5 meters away, three were about 1.5 meters away, two were
about 3 meters away and the last one were about 6 meters
away. Each microphone recorded speaker’s voice separately,
but simultaneously, into 44.1kHz, 32-bit wave format files.
Each speaker read two one-minute long scripts and four 6-
second sentences in his/her natural volume. All the micro-
phones could record the speech.
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Figure 3. Microphone positions
We evaluated five approaches with the GMM-UBM
model, which are MFCC only, MFCC with CMN, MFCC
with artificial reverberation, MFCC with CMN and artificial
reverberation, and MFCC with CMN, feature warping and



Table 7. Results on the distant controlled lab experi-
ment show applying all these methods has the best per-
formance

Distance (meters)
Only Mixtures 0.5 1.5 3 6
MFCC 64 100% | 82.7% | 77.7% | 75.0%
(Baseline) 128 100% | 85.0% | 77.8% | 76.7%
256 100% | 85.0% | 78.5% | 78.3%
Distance (meters)
Mixtures 0.5 1.5 3 6
e 64 100% | 92.9% | 87.4% | 86.7%
128 100% | 91.3% | 88.2% | 88.3%
256 100% | 92.1% | 88.2% | 90.0%
Distance (meters)
Mixtures 0.5 1.5 3 6
Il\{/[eeF;Sl-(l:)’ 64 100% | 83.4% | 88.5% | 85.0%
128 100% | 85.8% | 89.3% | 86.7%
256 100% | 90.6% | 90.1% | 88.3%
Distance (meters)
MFCC, Mixtures 0.5 1.5 3 6
CMN, 64 100% | 93.7% | 91.0% | 88.3%
Reverb 128 100% | 94.5% | 91.7% | 90.0%
256 100% | 95.3% | 93.4% | 91.7%
Distance (meters)
MFCC,  Myfixtures | 0.5 5 3 6
\CVI::[er’, 64 100% | 95.3% | 90.0% | 88.3%
Reverb 128 100% | 96.9% | 90.9% | 90.0%
256 100% | 95.3% | 90.2% | 90.0%

artificial reverberation. The UBM was the same. The two
one-minute long speech clips were used to train the speaker
model, and the four 6-second sentences were used to test.
Only the closest (0.5 meters) microphone recordings were
used as the training samples. 80 artificial reverberation mod-
els were applied to each raw recording. So each speaker had
81 different GMM models (80 reverberation models and 1
original).

12 people were split into four groups evenly. The accu-
racy was calculated as the ratio of a total number of correctly
identified segments to the total number of segments. The
decision window was set to 5 seconds. Table [7] shows the
results of the averaged accuracy.

The MFCC-Only approach shows the lowest results when
detecting the distant speech. Obviously, it is because the
closest recording has quite different features compared with
the distant speech. MFCC-CMN and MFCC- Reverberation
approaches show similar improvement. In this experiment,
CMN did minimize some distortion caused by distances.
Each result was improved by about 10%. But when consider-
ing the negative effect in the previous experiment, we know
only applying CMN to the reverberation scenario has uncer-
tain effects. MFCC-Reverberation improves the accuracy of
3-meter and 6-meter speech by 10%, while the accuracy of
1.5-meter stays almost the same.

MFCC-CMN-Reverberation shows acceptable results,
which are about 94% at 1.5 meters, about 92% at 3 meters,
and about 90% at 6 meters. MFCC-CMN-Warp- Reverber-
ation approach, as we do in ARASID, has similar results.

It has a slight improvement at 1.5 meters while the overall
performances are almost the same.

Notice that the overall accuracy in this controlled lab ex-
periment is less than the Librispeech experiment. It is mainly
because of the following reasons. First, the part in Lib-
rispeech dataset we used was noise-free, and we trained on
the microphone recordings next to the laptop speaker (at O
meters). We can assume the recordings were relatively clean
as well. However, the controlled lab experiment used the mi-
crophone recordings at 0.5 meter distance which contained
some level of noise. Second, the sound quality in the origi-
nal Librispeech experiment was higher because the speakers
were selected professionals. But in our controlled lab exper-
iment, we have never trained our speakers. Third, the rela-
tive position and distance between the laptop speaker and the
microphone stayed fixed in the Librispeech experiment, and
the volumes of all speech were stable. But it was not true in
our controlled lab experiment, for example, a speaker may
change his volume randomly.

5.4 Comparison between GMM-UBM and i-
Vector with PLDA on Reverberation Ad-
Jjustment

In the previous two evaluations, we only use GMM-UBM
as the model to detect a speaker. In this subsection, we com-
pare the performance between the GMM-UBM model and
the i-vector with PLDA model.

In this evaluation, the same dataset we collected in Sec-
tion 5.3 is used, and the GMM-UBM model is built almost
the same as the previous setting. The only difference is more
mixtures (512, 1024, and 2048 mixtures) are chosen. We
compare the two models results of three different feature
processing approaches, which are MFCC-only, MFCC with
CMN and Warping, and MFCC with CMN, Warping and Re-
verberation adjustment. The results are shown in Table[§]

As we can see from the results, both GMM-UBM and
the i-Vector with PLDA have high accuracy at the close dis-
tance and low accuracy at far distances when only MFCC
was used. Especially, when distances become further, the
i-Vector with PLDA solution almost does not work. This
means that the i-Vector solution is more sensitive than
GMM-UBM when the training and testing channels are mis-
matched.

When applying CMN and feature warping, both methods’
accuracy are increased. The results show that GMM-UBM
and 1-Vector have similar results, and differences are within
about 3%. It is important because when applying reverbera-
tion adjustment, the accuracy gets further improved. GMM-
UBM shows slightly better results than the i-Vector with
PLDA at different distances, although both of them achieve
more than 90% accuracy. In the final deployment version,
we only used the GMM-UBM algorithm to model and detect
speakers.

5.5 Result Confidence vs Detection Miss

In the previous section, we discussed that a wrong identity
is more severe than a missed identity, and by applying a min-
imum difference threshold, we can achieve a high confidence
with a low compromise on the missing detection. Here we



Table 8. Comparison between GMM-UBM and i-Vector with PLDA

GMM-UBM i-Vector with PLDA
Distance (meters) Distance (meters)
Mixtures 0.5 1.5 3 6 0.5 1.5 3 6
fI);I:llsyeﬁ/IllI;‘)CC 512 100% | 80.9% | 86.6% | 85.2% 100% | 66.5% | 70.0% | 63.5%
1024 100% | 85.9% | 87.0% | 86.2% | 99.8% | 59.1% | 59.1% | 51.5%
2048 100% | 89.3% | 87.3% | 85.3% | 99.8% | 53.5% | 52.5% | 48.1%
Distance (meters) Distance (meters)
Mixtures 0.5 1.5 3 6 0.5 1.5 3 6
&:;C’ CMN, 512 100% | 84.3% | 82.7% | 81.0% | 99.3% | 84.0% | 83.6% | 83.4%
1024 100% | 86.5% | 83.0% | 81.9% 100% | 85.1% | 85.5% | 83.7%
2048 100% | 87.5% | 85.2% | 82.3% | 99.6% | 82.2% | 82.0% | 81.2%
Distance (meters) Distance (meters)
Mixtures 0.5 1.5 3 6 0.5 1.5 3 6
1‘\}/[VFCC’ CMN, 512 99.8% | 98.6% | 93.0% | 923% | 98.2% | 93.8% | 91.4% | 90.7%
arp, Reverb
1024 100% | 98.3% | 93.4% | 94.1% | 99.5% | 93.5% | 90.0% | 91.2%
2048 100% | 98.5% | 95.0% | 94.6% | 98.2% | 92.8% | 90.0% | 90.5%

perform an evaluation on all the outputs of the GMM-UBM
model in all the datasets.

we could have output correct identities, but we remove more
than R0% of times when a wrone identitv is senerated.
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Figure[d]shows the distribution of the differences between
the largest and the second largest value when the system out-
puts correct identities. Figure [5|shows the distribution when
outputs are wrong. As we can see in the figures, when the
results are correct, the majority of the differences is larger
than 0.2 while the majority of the differences is less than 0.2
when the results are wrong.

Figure[6]further illustrates that a threshold (e.g. 0.2) guar-
antees a high confidence with a low compromise on the miss-
ing detection. If the threshold is 0.2, a ’cannot decide’ result
is generated. We may miss about 10% of the times when

Figure 6. A threshold can guarantee a high confidence
with a low compromise on the missing detection.

6 Conclusion

In this paper, we discuss the problem of distance in
speaker identification systems. A realistic and easy-
and-ready-to-deploy indoor speaker identification system,
ARASID, is presented. In our solution, there is no need to
measure room sizes or types, to obtain many speech samples,
or to use expensive equipment. By adjusting the original
speaker’s recording samples with different artificial rever-
berations, a group of artificial speaker models covering var-
ious room types and speaker-microphone distances is gen-
erated. Combined with cepstral mean normalization and
feature warping, the standard GMM-UBM or i-vector with
PLDA modeled SID system’s performance is improved. In
the evaluation, results show that distant speakers in the neu-
tral mood within 6 meters can be detected with more than
90% accuracy. Furthermore, our solution includes standard
acoustic pipelines, e.g. filters, voice activity detector, and an
overlap speech remover for real deployments. Two kinds of
thresholds, minimum value and minimum difference thresh-
old, are applied to improve the confidence of the results with
a low compromise on the missing detection.
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