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Abstract— Recently, there has been an increased use of
wireless sensor networks and embedded systems in the medical
sector. Healthcare providers are now attempting to use these
devices to monitor patients in a more accurate and automated
way. This would permit healthcare providers to have up-to-
date patient information without physical interaction, allowing
for more accurate diagnoses and better treatment. One group
of patients that can greatly benefit from this kind of daily
monitoring is asthma patients. Healthcare providers need daily
information in order to understand the current risk factors
for asthma patients and to provide appropriate advice. It
is not only important to monitor patients’ lung health, but
also to monitor other physiological parameters, environmental
factors, medication, and subjective feelings. We develop a
smartphone, sensor rich, and cloud based asthma system called
AsthmaGuide, in which a smartphone is used as a hub for
collecting comprehensive information. The data, including data
over time, is then displayed in a cloud web application for
both patients and healthcare providers to view. AsthmaGuide
also provides an advice and alarm infrastructure based on the
collected data and parameters set by healthcare providers. With
these components, AsthmaGuide provides a comprehensive
ecosystem that allows patients to be involved in their own
health and also allows doctors to provide more effective day-to-
day care. Using real asthma patient wheezing sounds, we also
develop two different types of classification approaches and
show that one is 96% accurate, the second is 98.6% accurate
and both outperform the state of art which is 87% accurate
at automatically detecting wheezing. AsthmaGuide has both
English and Korean language implementations.

I. INTRODUCTION

With the integration of wireless sensor networks and
smartphones in hospitals and homes, healthcare providers are
able to provide more accurate and personalized patient care.
For example, devices such as EarlySense are being developed
to accurately collect patient information in hospitals and re-
lay this information to clinicians [13]. One group of patients
that should greatly benefit from intensified daily monitoring
is asthma patients. In the latest surveys by the Centers for
Disease Control and Prevention, about 25 million people in
the United States have asthma [9]. As of 2011, of these 25
million, 53% of these people suffered from acute asthma
attacks [9]. Because there is currently no cure for asthma,
the NIH states that the priority for doctors is to assess and
monitor these patients as there are usually clear symptoms
that indicate an oncoming asthma attack [26]. While it is
obviously essential to monitor patients’ lung health, per se,
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environmental factors also trigger and exacerbate asthma
symptoms. These factors include extreme temperatures, ex-
treme humidity or dryness, pollen, smoke, and mold [10].
The effect of these environmental factors differs from patient
to patient.

Currently, there is no effective way for doctors to monitor
asthma patients at home on a day-to-day basis. Most patients
visit their doctors monthly, but once they go home there is
a lack of communication between the two parties. Since the
course of asthma is dependent on dynamic factors, this loss
of daily information is potentially costly. There have been
attempts to detect wheezing via machine learning or to make
peak-flow measurements convenient [4], [33], [15], [19],
[11], [22], [7], [16], [3], [20], [21]. However, none of these
systems analyzes these factors in an integrated fashion, and
they do not consider environmental factors in conjunction
with lung health.

We develop ”AsthmaGuide”, a sensor rich asthma ecosys-
tem that monitors asthma patients comprehensively. A smart-
phone is used as a hub for collecting physiological, en-
vironmental, human input, picture, and video information.
Physiological information includes lung sounds, peak flow
values, and blood oxygen level. This information is then
pushed to the cloud where doctors and patients interact with
this information. One feature of the cloud web application
is the automatic analysis of lung sounds: they are further
analyzed and classified as either normal or wheezing. Sub-
sequently, this lung health ”diary”, as well as the captured
environmental information, is available in essentially real
time to the healthcare providers and patients in the form
of a web application. Beyond the display of information,
AsthmaGuide uses the data to provide specific patient advice.
Although there are many potential asthma triggers, they are
not applicable to all patients. Thus AsthmaGuide use the data
to act as a personalized coach for the patient. This system
in no way replaces the doctor and we are actively working
with doctors to better understand the kinds of advice that are
appropriate.

The first technical contribution of AsthmaGuide is the
development and assessment of two different approaches to
detect wheezing lung sounds. The first approach uses fea-
tures based on edge detetcion. This novel resultant classifier
solution is, on average, more accurate than the current state
of the art classifiers [27]. The classifier uses a combination



of Support Vector Machine (SVM) and Random Forest
classifiers, which leads to a more robust system than previous
models. Overall accuracy is measured at 96% as compared
to 87% in the state of art. The second approach is based
on acoustic verbal features. The evaluation of the second
approach determines the effective features and the best
classifier (random forest) with the result of 98.6% accuracy.

The second contribution is the full implementation of an
overall system which is the first highly automated com-
prehensive sensor based monitoring and advice system for
asthma patients. By providing information about lung health
and the environment, patients and healthcare providers have
a more complete understanding of the state of pertinent
health issues. Note that this general infrastructure can be used
beyond monitoring asthma patients. Most of these factors
used in AsthmaGuide are important for any lung disease,
(e.g. COPD), and also could be of potential interest even for
healthy individuals.

A third contribution is the design, implementation, and use
of a patient lung sound collection system that is easy to use
for physicians and serves as ground truth in our experiments.
Collecting real patient data is one of huge challenges in
the process of designing a practically working classification
system. We address this issue by developing an application
that can be used by physicians to collect data from patients.

It is important to note that full assessment of the utility
of this system in terms of its impact on long term use by
asthma patients requires long term studies and FDA approval.
These studies are beyond the scope of this paper; instead this
paper demonstrates and evaluates the underlying technical
solutions. For these solutions real patients were used to
collect wheezing sounds and five MDs, three of whom are co-
authors, were used as consultants to identify all the features,
sensors, and feedback of interest, and then these were all
incorporated into AsthmaGuide.

II. RELATED WORKS

Although there are many ways to evaluate the health of
asthma patients, one of the major indicators of deteriorating
lung health is wheezing lung sounds. Many existing wheeze
detection methods are based on frequency and durations of
acoustic signals or location of peaks successive spectra [4],
[33], [15], [19]. Some of these studies work with empirically
fixed discriminative threshold to identify peaks and therefore,
the accuracy of detected wheeze is easily affected by noise.
Certain classification models have thus been combined with
algorithms [11], [22], [7], [16], but most of these studies
work with a limited number of coefficients that are available
online. In contrast to these studies, AsthmaGuide works
with a much larger wheeze sound dataset which we actually
collected from real asthma patients.

Other attempts have been made to automate the wheezing
detection process via machine learning by using features such
as Mel Frequency Cepstral Coefficients [11], AR model [20],
and wavelet coefficients [21]. However, these features are not
robust enough to create an accurate classifier accuracy and
result in high computational complexity.

Other than wheeze detection, there are also recent studies
that have utilized mobile devices to provide users with
feedback about the environmental factors they are exposed
to. Methods accounting for personal movement include
PEIR [24] and iMAP [12], which predict exposure to envi-
ronmental pollution based on a user’s mobile phone location
history. ENVIROFI [31] allow users to use a mobile phone
based application to receive air quality predictions for their
current location based on GPS coordinates supplied by the
user’s phone. These solutions are not directed to asthma.

There are previous works that aim to monitor asthma
patients at home by employing self-monitoring [17] or
home-management [1] plan either in written or electronic
form. However, these monitoring techniques require manual
recordings and regular visits to the hospital for patients
to receive review by the physicians. On the other hand,
Air Sonea [3] and Finkelstein et al. [14] also provide a
mobile application, and LinkMedica [23] provides a web-
based application where patients log information and view
data from previous days.

There are other products that attempt to automate the col-
lection and display of physiological information. MySpiroo
allows for patients to measure their lung capacity and view
this information on their smartphones [25]. Another device
called Propeller allows patients and doctors to track the time
and place patients use their inhalers [28]. Like Air Sonea,
both are not as comprehensive as AsthmaGuide. Despite
this, both MySpiroo and Propeller may be integrated into
AsthmaGuide in the future.

III. SYSTEM OVERVIEW

AsthmaGuide consists of four main components: an ex-
tensive sensor suite, the smartphone hub, the cloud web
application, and the advice infrastructure. The sensor suite
is where data collection occurs (Figure 1-Part A). Envi-
ronmental data are collected from Sensordrone, which is
a sensor platform, and sent to the user’s smartphone via a
physical connection or wirelessly via Bluetooth. Information
such as physiological data, medication, and exercise cannot
be obtained via sensors, so users enter these information
manually into the phone. Patients also have an option to take
a photo or video of themselves with the in-phone camera,
which is useful in helping healthcare providers understand
their health via this built-in telemedicine modality. Moreover,
we provide a way to record patient lung sounds using an
electronic stethoscope.

Once all of this data is collected, it is then pushed to
the cloud where the data is stored and further analyzed
(Figure 1-Part B). First, the lung sounds are classified via
a machine learning classifier as either normal or wheezing.
Next, all of this information is displayed in a coherent
fashion for patients and healthcare providers to view. Patients
and healthcare providers have the option to drill down to see
more details about a specific category, or they can view the
data over time to look for trends. The web application also
accesses information from the internet such as temperature,
allergen, and air quality predictions. With this information
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Fig. 1. AsthmaGuide overview.

organized in a cohesive manner, the patients and healthcare
providers have the option to customize the normal delivery
of reports. This allows both parties to specify how often and
how much information the healthcare provider view on a
daily basis. Alarms and alerts are also specified and are sent
to healthcare providers if certain dangerous events occur.
Overall, the delivery of these reports and alarms is highly
customizable and can be adjusted based on the severity of a
patient’s asthma.

The last part of our system is the advice given to patients
(Figure 1-Part C). Currently, the advice that we provide
follows an asthma action plan approved and used by the
medical community.

The following use case illustrates how patients and health-
care providers collaboratively employ AsthmaGuide. A pa-
tient wakes up and at his bedside are a smartphone, the
AsthmaGuide sensor suite, and an electronic stethoscope.
The patient opens the AsthmaGuide smartphone application
which prompts the user to collect lung sounds and measure
lung capacity; to use the pulse oximeter (for oxygen and
heart rate information) and spirometer (for lung volume); to
take a ’selfie’ picture and video; to answer questions about
how they are feeling; and allows entry of his administered
medication dosage from the previous day. At the same time,
the sensor suite is collecting environmental data and sending
it to the smartphone. At the end of the process, the patient
clicks a button which sends the lung and environmental data
to the cloud. Once in the cloud, the lung sounds are classified
as normal or wheezing. Then based on specifications by
the patient, the appropriate subset of the information is sent
to the healthcare provider. The patient can also access this
web application and view all their lung and environmental
information and advice, if any.

IV. SENSOR SUITE

The sensor suite is the first component of our system. Our
system uses the sensor suite to collect both physiological
and environmental data. To collect patient lung sounds,

a) b) c) d)

Fig. 2. Sensor suite: a) Littmann 3200 electronic stethoscope, b) Sensor-
drone, c) Contec SP10W spirometer, and d)Nonin Medical pulse oximeter.

Fig. 3. Patient data collection application: a) questionnaires that patients
fill out manually and b) physiological and environmental information are
displayed on the application for review.

AsthmaGuide uses the Littmann 3200 electronic stethoscope
shown in Figure 2a. This device has built-in Bluetooth tech-
nology which is capable of recording patient body sounds
and appending them to medical experts for further analysis.

Collecting environmental data such as temperature, humid-
ity, and various gases, such as carbon monoxide, ozone, ni-
trogen dioxide, and chlorine is important for asthma patients.
To collect these data, we use a device called Sensordrone [29]
shown in Figure 2b. Sensordrone is an open platform for
many different sensors and Bluetooth peripheral devices,
which makes it convenient for the users to portably carry
around in indoor and outdoor settings to collect environmen-
tal information. We also use Contec SP10W spirometer as
shown in Figure 2c to measure lung air capacity and Nonin
Medical finger pulse oximeter as shown in Figure 2d to
measure blood oxygen level.

V. SMARTPHONE HUB

The smartphone hub sits in-between sensors and cloud. Its
main functionality is to post aggregated data to the cloud.
In the process of aggregation, sensing data is automatically
sampled and physiological information is surveyed by man-
ual input. Considering that these are non-technical users,
the user interface conveys a simple design as shown on
Figure 3. Behind the user interface, seamless interaction
between different libraries and collection phases has been
implemented.

The first phase of the smartphone hub is the process of
collecting lung sounds from patients. We first instruct a
patient to sample lung sound by placing the stethoscope on
the front of the individual’s torso. Using the SDK library
provided by Littmann 3200, our application first connects to
the pre-paired electronic stethoscope through Bluetooth and
requests the patient to turn on the stethoscope. The patient
can thereafter start collecting four different lung sound
samples from the second intercostal space mid-clavicular
line to the sixth intercostal space mid-axillary line of the
patient’s chest. From each of the four different location, of



the patient’s chest, 10 seconds auscultation wave file is saved
to memory. The wave file header format specifies the 10
seconds with 64 kilobits per second bitrate. The sampling
period is fixed to avoid insufficient or overloaded data for
detecting wheeze sounds.

The second phase of smartphone hub is collecting physi-
ological data, specifically questionnaires that patients fill out
manually as shown on Figure 3. It consists of 10 items, where
each item requires a number or a multiple choice answer.
One of the example entry is administered medication dosage
from the previous day. The answers from these items are
used to predict the severity of the patient’s lung condition.
Test results are displayed in a color format, specifically,
green, yellow, and red. Green or yellow color suggest good
to moderate condition, where as red indicates that the patient
should visit their doctor. Besides physiological data, a patient
photo and video are also taken for further analysis of their
health via appearance. Note that taking a photo or recording
a video is optional and the system proceeds with any data
that are available.

While the electronic stethoscope is connecting, the pre-
paired Sensordrone is also connected to the application.
Similar to the stethoscope connection, the system uses the
SDK from Sensordrone for retrieving sensing data. As men-
tioned above, the user interface requests the patient to take
the physiological questionnaires after lung sound sampling.
The reason for this is to allow enough sampling period for
Sensordone to measure accurate information of the patient’s
surrounding such as temperature, humidity, and air quality.
The Sensordrone connects and transmits data via Bluetooth
to the smartphone.

For outdoor environmental data, we use National databases
to gather information of air quality [2], pollen count [34],
and asthma index [6]. These data are retrieved by using a
patient’s zipcode saved during the registration of the patient.
The zipcode can be modified accordingly to the patient’s
preference in location. After retrieving physiological data,
surrounding environmental data, and outdoor environmental
data, these information are displayed on the application for
review.

In order to upload information to the cloud, sampled data
from each phase needs to be aggregated. The application
implementation is built with 4.4 KitKat SDK with several
activities and each collection phase represents an activity.
Between activities, the previous activity pushes sampled data
to intent which holds onto the data with hashmap, and this
continues until the upload activity phase. At this phase, all
the data stored on the intent is fetched and aggregated for
submission. After the patient clicks on the submit button,
data is uploaded to the cloud and a brief summary of the
information is displayed on the smartphone. If any of this
data triggers an alarm, a high priority notification is sent
to the healthcare provider and to the patient. If any of the
data triggers advice that does not reach the level of alarm,
the content is displayed on the patient’s smartphone. This
process should take a minimal amount of time and can be
repeated multiple times a day.

VI. CLOUD WEB APPLICATION

For doctors and patients to review collected data and
observe daily lung health patterns, we developed a user
interface. The interface is accessible by a web browser which
is a cloud web application as shown in Figure 4. For privacy
purposes, we have secured patients data with password
protection. Patients and doctors need input their ID and
password in order to access information. The doctor’s lists of
patients are presented with an overview of daily patient data.
When a patient is selected, a summary of the latest health
and environmental factors is displayed including: patient face
image, video clip, physiological data, environmental data,
and severity of the patient are presented in a form of numbers
or image. For an advanced search, doctors select a start
time and an end time: all the data collected from a selected
patient between these two dates are presented to that doctor.
Additionally, doctors select or deselect particular health or
environmental factors to see or not see them in the presented
summary as shown in Figure 4a. Moreover, when doctors
select two of these any health or environmental factors,
a correlation graph is generated to show the correlation
between these two selected factors as shown in Figure 4b.

VII. ADVICE INFRASTRUCTURE

The last part of our system is to present recommended
advice to the patient. The advice infrastructure is an es-
pecially challenging part of our system because we do not
want to give any advice that endangers patients. Thus, we
only provide very general and expert advice from exist-
ing asthma standards such as Asthma Action Plan from
American Lung Association [5]. In addition, after retrieving
outdoor environmental data, a patient also receives an alert
notice when the air quality or asthma index is unhealthy,
or pollen count is too high in the user’s area. This advice
infrastructure is extensible and allows for medical experts
to extend the rule set as they continue to use AsthmaGuide.
In general, the advice mostly considers non-pharmacological
strategies which assist patients to reduce risks and sustain
health conditions until a patient receives medical treatment
from a doctor.

VIII. LUNG SOUND CLASSIFIERS

A. Data Overview

For any machine learning problem, it is important to first
understand the data to be classified. There are two basic types
of lung sounds: normal, wheezes. The characteristics of these
types of lung sounds is shown in Table I. For these sounds,
both frequency and time features are important. Normal lung
sound features are located at lower frequencies, as there is a
drop off in power below 200 Hz [8]. On the other hand,
wheezing-type sounds usually have features from 200 to
1000 Hz [8].

In order to train a lung sound classifier, a source of
normal and wheezing lungs sounds is required. There are
three repositories of lung sounds: Marburg Repository of
Sounds [18], R.A.L.E. repository [32], and CORSA [30].
There are many difficulties that come with the current data
set. First of all, there are a limited number of clips available.
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Fig. 4. Cloud web application: a) Overview of daily patient data and b) Scatter graph on physiological and environmental data.

Auscultation Type Typical Frequency Duration (msec)

Normal 100-1000 Hz (Drop of en-
ergy at 200 Hz) N/A

Wheezing 100-5000 Hz 100

TABLE I
CHARACTERISTICS OF NORMAL, WHEEZE LUNG SOUNDS.

In addition, the data is not always well labeled. Some of the
clips are collected from different parts of the lung, but many
times this is not specified. Also, clips come from patients
of different ages and this is not always specified. This is
potentially problematic because it is unclear whether the lung
sounds of a child should be used to train a classifier for an
adult. Lastly, different recording strategies were used for the
clips online, but the exact strategy is not specified. Thus,
there needs to be a way to normalize these clips.

Unfortunately, of the three repositories of lung sounds,
only R.A.L.E is publicly available and it contains 32 wheez-
ing clips and 8 normal clips. This number is not enough
for training and testing our system. Thus, our group used an
electronic stethoscope to collect lung sounds. We collected
32 additional normal lung sounds from (healthy) members
of our research group and 31 wheezing lung sounds from
real patients.

B. Data Collection
One of the main challenges in designing a practical

working classification system is the process of collecting
real samples for learning and acceptable evaluations. We
address this issue by developing a smartphone-based data
collection application. This application collects normal and
wheezing sound data, i.e., auscultation data, from real asthma
patients by healthcare providers. Specifically, for this work,
hospital doctors, without difficulty, collected 64 kilobits
per second bitrate wav data from patients, which include
auscultation recordings from 4 different locations around
the torso. In total, 31 sound clips were recorded. Note
that this application asks healthcare providers to fill out
brief questionnaires regarding the patient’s gender, age, torso
location, and estimated health condition that can be used for
any possible future studies.

C. Data Preprocessing
The following are the steps taken to preprocess the lung

sounds.

1) Given lung sound recordings from online sources or the
stethoscope, normalize these with respect to root-mean-
square energy. Resample the clip to 4000 Hz, as this is
the sampling rate of the stethoscope.

2) Apply a high-pass filter at 200 Hz as this eliminates
many of the features of normal lung sounds. Apply a
low-pass filter at 1990 Hz in order to satisfy the Nyquist
sampling criterion.

D. Two Classification Approaches

We have explored two different approaches to detect
wheezing from preprocessed lung sound clips. The idea is to
determine if classification based on spectral edge detection or
the more classical acoustic signals such as MFCC is better.
The following two sections describe these two approaches
and their evaluations.

1) Approach 1 - Classification Based on Edge Features:
The first approach is based on the methods of [22]. The
strategy is to extract edge features from spectrogram of lung
sound. All of the code was written in Matlab and the audio
analysis used the MIRtoolbox library.

Feature Extraction using Spectrogram Edge Detection:
1) Calculate the short-time Fourier transform with a win-

dow of length 256. Examples of the generated spectro-
grams are shown in Figure 5a. It is clear that most of
the features are filtered from the normal lung sound, but
bands of sounds are seen in the wheezing sound.

2) Apply a Laplacian mask to filter noise and make edge
features more prominent. The effect of this is shown in
Figure 5b and Figure 5c.

3) Apply a threshold to the spectrogram so all data below
0.5*MaximumPower is set to 0.

4) Extract the following edge features: the mean power,
the orientation/slope of the edge, the length in terms of
time, the frequency at the centroid. Pick the two edges
whose length in terms of time and frequency sum to the
greatest value.

After this process is complete, a total of 8 features for
each lung sound is extracted.

Machine Learning Classifier: In order to develop an accu-
rate classifier using features based on edge detection, we
focused on three types of models: C4.5 Decision Trees,
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Fig. 5. Example of lung sound spectrograms: a) wheezing sound after calculating the short-time Fourier transform, b) normal sound after applying a
Laplacian mask, and c) wheezing sound after applying a Laplacian mask.

Classifier
Sensitivity
(Wheezing
Accuracy)

Specificity
(Normal
Accuracy)

Overall Accuracy

SVM 58/63 (92%) 28/40 (70%) 90/103 (87%)
Decision Tree (C4.5) 58/63 (92%) 25/40 (62%) 88/103 (85.4%)

Random Forest Classifier 60/63 (95%) 34/40 (85%) 96/103 (93%)
Combination 62/63 (98.4%) 38/40 (95%) 99/103 (96%)

TABLE II
RESULTS OF APPROACH 1 USING DIFFERENT TYPES OF MODELS AND

COMBINATION OF CLASSIFIERS.

Random Forest models with C4.5 trees, and Support Vector
Machines (SVM). For the Random Forest model, we ran
100 iterations with 3 features considered for each decision
split. For the SVM, we used a linear kernel, quadratic kernel,
Gaussian radial basis kernel, and a polynomial kernel of
order 3. We also used various combinations of features to
see which yield the most accurate classifier. We used the
Matlab implementation of each of these classifiers and tested
the accuracy with 10-fold cross validation.

Using the 63 wheezing clips and 40 normal clips from
the R.A.L.E. repository and data that we collected, we first
evaluate the performance of detecting wheeze and normal
sounds. The first three rows of Table II show the results for
these three classification models. We only show the result for
the quadratic kernel because this yielded the best result. The
results show that of the three models, the Random Forest
classifier performed the best with an accuracy of 93%.

In order to build a more accurate classifier, next we
combined the results of multiple classifiers in order to take
advantage of their strengths. After trying different combina-
tions of features and different kernel functions, we developed
the following three classifiers:

Classifier 1 : A SVM with a Gaussian radial basis ker-
nel function which used all 8 features. This classifier
generally could identify normal lung sounds with high
accuracy, but had some false positives for wheezing.

Classifier 2 : A SVM with a linear kernel function which
used the mean power, the length in terms of time, and
the frequency of the centroid for 2 edges. Thus there
are a total of 6 features. This classifier generally could
identify wheezing sounds with high accuracy, but had
some false positives for normal sounds.

Classifier 3 : A Random Forest model with 3 features
considered for each decision split run for 100 iterations.
This used the same features as Classifier 2. The clas-
sifier had about 90% accuracy with equal numbers of
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normal and wheezing misclassifications.
The following are the steps to use these three classifiers:

1) Run clip on Classifier 1 and Classifier 2.
2) If both label as normal, label as normal. If both label

as wheezing, label as wheezing. Else, go to step 3.
3) Run clip on Classifier 3 and return label.
The result using this combination of classifiers is shown

in the fourth row of Table II. It achieves the best result for
sensitivity and specificity with a best accuracy of 96%.

We have evaluated the performance of our combination
of classifiers approach on all 4 chest positions. Figure 7
shows the sensitivity and specificity on sound clips from
4 chest positions. Both sensitivity and specificity are 1 for
chest position 1 and 3, where sensitivity decreases for chest
position 2 and specificity decreases for chest position 4.

We also have evaluated our algorithm only using sound
clips that we collected from real patients and healthy vol-
unteers. We have collected 31 wheezing sound clips and



Classifier
Sensitivity
(Wheezing
Accuracy)

Specificity
(Normal
Accuracy)

Overall Accuracy

SVM 62/63 (98.4%) 37/40 (92.5%) 99/103 (96.1%)
Decision Tree 59/63 (93.6%) 33/40 (82.5%) 92/103 (89.3%)

Random Forest 63/63 (100%) 38/40 (95%) 101/103 (98%)

TABLE III
RESULTS OF APPROACH 2 USING DIFFERENT TYPES OF MODELS FROM

THE R.A.L.E. LUNG SOUND REPOSITORY DATA

32 normal sound clips from 4 chest positions. A leave-one-
out cross validation on these 63 sound clips were performed
and the performance is compared with different classification
models. Figure 6 reports the performance on sound clips
collected by AsthmaGuide. In both performance metrics
sensitivity and specificity, our combination of classifiers
approach outperforms conventional algorithms and achieves
97% for both metrics.

2) Approach 2 - Using MFCC and Other Acoustic
Features: Approach 2 explores the acoustic signal pro-
cessing features such as Mel-Frequency cepstral coefficients,
loudness, logarithmic power of Mel-frequency bands 0 − 7
(distributed over a range from 0 to 8 kHz), LPC coefficients,
fundamental frequency, zero crossing rate, etc. Through our
evaluation we find that logarithmic power of Mel-frequency
bands and the loudness as the normalised intensity raised to
a power of 0.3 are good predictive features and adding any
of the rest of the features does not increase accuracy.

Feature Extraction Based on Acoustic Features:
1) Segment each preprocessed lung sound clip into 40 ms

frames with 10 ms overlapping.
2) Extract the logarithmic power of Mel-frequency bands

0−7 (distributed over a range from 0 to 8 kHz) and the
loudness as the normalised intensity raised to a power
of 0.3 from each of these small frames. To each of these
features, the delta coefficients are also computed.

3) Next the 12 functionals: mean, standard deviation, kur-
tosis, skewness, minimum and maximum value, relative
position, and range as well as two linear regression
coefficients with their mean square error (MSE) are
applied on all the features extracted from small frames
in a lung sound clip. These are the resulting features
for wheezing detection.

Machine Learning Classifier: Three types of models: C4.5
Decision Trees, Random Forest models with C4.5 trees,
and Support Vector Machines (SVM) are evaluated with the
extracted features of Approach 2. For the Random Forest
model, we ran 100 iterations with 10 features considered for
each decision split. For the SVM, we used a linear kernel,
quadratic kernel, Gaussian radial basis kernel, and a polyno-
mial kernel of order 3. We also used various combinations
of features to see which yielded the most accurate classifier.
Matlab implementation with 10-fold cross validation is used
for the evaluation.

Using the 63 wheezing clips and 40 normal clips from the
R.A.L.E. lung sound repository, we first evaluate the perfor-
mance of detecting wheezing and normal sounds. Table III

Classifier RMSE Overall Accuracy
SVM 0.17 97

Decision Tree 0.31 92
Random Forest 0.12 98.6

TABLE IV
RESULTS OF APPROACH 2 USING DIFFERENT TYPES OF MODELS ON

REAL DATA
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Fig. 8. Performance comparison between different chest positions for
approach 2.

shows the results for the classification models. The results
show that of the three models, the Random Forest classifier
performed the best with an accuracy of 98%.

Also, Table IV shows the evaluation of our classification
models on 31 wheezing and 32 normal sound clips that we
collected. According to this evaluation the Random Forest
classifier performed the best with an accuracy of 98.6% and
0.12 root mean square error.

For Approach 2 we also have evaluated the performance
of our random tree classifier on all 4 chest positions. Figure
8 shows the sensitivity and specificity on sound clips from 4
chest positions. According to this evaluation, specificity is 1
for all chest positions, where sensitivity decreases for chest
position 2.

Both of our proposed approaches miss-classify one partic-
ular wheezing lung sound clip from chest position 2. This
particular clip is a outlier in our collected wheezing data
which can be addressed and corrected with more training
samples.

3) Evaluation Conclusions: From our extensive exper-
iments the performance of classification based on spectral
edge detection (approach 1) versus the more classical acous-
tic features (approach 2) we find that the latter is slightly
more accurate (96% versus 98.6%, respectively). Note that
to obtain this accuracy requires careful choice of features
and classification algorithms. For example, to achieve 96%
accuracy for the spectral edge detection requires a novel
combination of classifiers while the more classical approach
which achieves 98.6% accuracy requires identifying the ef-
fective features and a random forest classifier. Consequently,
because of its better overall performance we use approach 2
for AsthmaGuide.

IX. DISCUSSION AND LESSONS LEARNED

To develop AsthmaGuide, we interviewed 5 medical ex-
perts, multiple times each. For each of these interviews we



presented the current state of the design including a demo. At
each step, feedback from the medical professionals informed
the next version of AsthmaGuide. We give one example to
illustrate this process. In the penultimate version we had
all the physiological and environmental sensors mentioned
in this paper. We then asked the doctors if anything else
is needed or what do they do to make a final diagnosis.
They answered that they just look at the patient and can see
how badly off they are by how they appear. We then added
both static photos and video clips. The final result is the
comprehensive collection of data as described in this paper.
Feedback also emphasized the need for the simplest user
interface possible, simpler than our original notions of what
was simple. One aspect of this is the idea to combine all the
sensor devices into one device, plus the stethoscope. In the
end, experts deemed this final version as extremely useful.

Other lessons learned include: (i) In collecting external
knowledge on air quality, it was found that different countries
have different definitions and techniques for reporting air
quality. AsthmaGuide has implemented solutions for both
U.S. and S. Korea. (ii) Medical device companies were
unwilling to provide APIs for external users to develop
Android applications. We had to use their interfaces. (iii)
It is important to know when the stethoscope sounds are on
the chest and recording properly. It cannot be assumed that
all sounds from the stethoscope are lung sounds. (iv) Doctors
also suggested that AsthmaGuide can easily be used for other
lung problems such as COPD.

Several future steps are required or planned. One, long
term pilot studies are needed to assess if patients would
actually use the system, for how long, and whether better
asthma outcomes result. As mentioned in the introduction,
these pilot studies are outside the scope of this paper. Two,
the classifiers can be extended to detect crackling. Three,
asthma attack predictions can be added to AsthmaGuide.
Four, once enough data is collected very useful longitudinal
studies can be conducted for understanding the triggers of
attacks for an individual and the effectiveness of treatments.

X. CONCLUSIONS

AsthmaGuide is a comprehensive asthma ecosystem that
helps patients become involved in their own health and
allows healthcare professionals to provide up-to-date care.
By collecting both physiological and environmental data,
AsthmaGuide provides a complete view of a patient’s health.
It also contains a state-of-the-art wheezing detector that
utilizes wheezing characteristics such as frequency, power,
and duration. The patient data allows for personalized advice
and alarms that are specific to a patient’s reaction to different
triggers. This infrastructure is extensible and customizable
which allows for healthcare providers to set parameters as
they learn more about their patient’s asthma triggers. It is
also important to point out that the development of Asth-
maGuide was a truly collaborative effort between technical
and medical experts as reflected in the author list.
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