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Abstract—With the rapid development of the Internet of
Things (IoT), there are billions of interacting devices and ap-
plications. With so many devices and applications, one of the
most critical challenges is how to provide security. Traditional
software-based defenses will not be enough to protect the security
of IoT because of the attack surfaces derived from the physical
environment. For example, an attacker can physically re-point a
surveillance camera, can move a smart device to another location,
can send a sound signal to influence an accelerometer, can cause
wireless jamming, etc. We propose to create ”smart buttons,” and
collections of them called ”smart blankets” as hardware/software
(HW/SW) security patches rather than software-only patches.
These fixes operate similarly to software patches, but because of
the hardware added, these new patches can better support against
physical world attacks. While this paper primarily presents a
vision for HW/SW patches, solutions are implemented and shown
for two classes of attacks involving cameras and robots. Open
questions are also discussed.

I. INTRODUCTION

The Internet of Things (IoT) market estimates that there are
around 30.7 billion IoT devices currently in use. This number
is projected to grow to 75.4 billion devices by 2025. At such
a rapid pace, more and more newly connected devices, as
well as applications such as autonomous vehicles or robots,
smart homes, and smart cities are appearing on the Internet.
Applications will both, directly and indirectly, interact with
users, devices, other applications, and the environment. For
example, in smart home environments, there already exists
IoT devices such as security cameras, smart locks, garage
door openers, smart thermostats, smoke detectors, and they
are all connected on the Internet. There are also Industrial IoT
systems where perhaps thousands of devices are monitoring
and controlling a process control plant, and robots are used to
deliver basic resources around the plant. Smart cities are also
seeing an ever-increasing deployment of sensors, actuators,
and services to monitor and control transportation, emergency
services, pollution, energy, health, etc.

Once large IoT systems are installed, they will potentially
exist for a long time and are difficult to shut down and reinstall
updates. Unfortunately, these systems are often subject to
security attacks. Further, because of the physical nature of
IoT, software patches alone are not always sufficient to react
to the attacks. These new physical challenges for security in
IoT are due to many factors. For example, attacks generally

span across three layers: the physical, communication, and
application layers. For the physical layer, the fact that the smart
devices exist in open environments exposes them to tampering.
Attackers can also attack the devices indirectly by changing
the surrounding environment that the devices are monitoring.
Communications are mostly via various wireless technologies,
allowing easy access to devices and applications. The great
heterogeneity among devices and communications complicates
security solutions. Applications and services will often include
software that is installed on the device to control it.

As a new direction, we introduce a new type of security
patch that combines hardware and software (HW/SW). The
goal for this device, called a “smart button,” is to improve
response to security attacks for IoT, especially because of
the physical limitations of these systems. The main goals of
this paper are to present and demonstrate solutions for smart
buttons and to introduce directions and open issues for smart
blankets. Smart blankets are collections of smart buttons that
can be considered a type of security HW/SW middleware
targeted towards security protection at scale. Detailed solutions
for smart blankets are beyond the scope of this paper.

It is important to note that each IoT system will have its
own security measures (e.g., redundancy, including possible
sensor redundancy, secure keys, encryption, and blockchains).
We are not proposing ideas to build a secure IoT application
in the first place, but to “cover” it with our smart buttons and
blankets when unanticipated attacks occur and when standard
software-only patching techniques fail to work, or it is not
feasible to replace devices and reinstall the software with the
new fixes. Of course, future systems may incorporate HW/SW
patch ideas into their systems in the first place.

In this paper, we make the following contributions:

• We propose a new concept and design of HW/SW secu-
rity patches, called smart buttons, for the IoT.

• We build and show the utility of two experimental pro-
totypes of HW/SW security patches, one involving IoT
cameras and another involving robots.

• We provide insights and open questions into protecting
the IoT with smart blankets as larger-scale attacks occur.



II. RELATED WORK

There exists significant research on security threats on
IoT. This work can be classified into three main categories:
hardware, communications, and applications.

Hardware: IoT devices are widely used for different pur-
poses, such as for smart homes and smart manufacturing. In
reality, there is a critical need to develop careful security
assurance methods from the ground-up, with IoT security in
mind [2], [3]. Failure to protect IoT devices from security
threats can lead to severe consequences. The diversity of de-
vice features, make the attack surface in IoT devices larger and
more complex than in other systems. Researchers presented
vulnerabilities of existing smart locks that would allow attack-
ers to gain sensitive user information and unauthorized access
to a smart home [8]. Due to weak password or unprotected
debugging interfaces, many Telnet-capable IoT devices are
considered to be vulnerable [21]. Other studies have shown
that proper protections against malicious attacks are missing
for sensors largely used in the smart devices [6], [14], [22].

Communications: Integration and communication between
IoT devices themselves as well as with the public internet
introduce a wide surface for security threats [18]. Hong et
al. showed that desired network communications must be
explicitly enabled for communication among IoT devices for
better security [9]. Some complex network attacks include
interrupting jamming, scan jamming, and pulse jamming are
discussed in [1]. Sivaraman et al. proposed a three-party
architecture for monitoring network activity to detect unusual
behavior [16]. Once an attacker succeeds in obtaining access
into the network of IoT devices with the help of a malicious
device, other devices connected to the same network could be
easily threatened [11].

Applications: IoT programming frameworks enable devel-
opers to build applications to deal with common types of
devices such as motion sensors, fire alarms, and door locks
[5]. However, those frameworks also give malicious users the
ability to cause major security risks to the underlying IoT
devices. There has been some recent research on the security
analysis of smart home applications. Fernandes et al. analyzed
Samsung’s SmartThings which has the largest number of
applications among currently available smart home platforms,
and presented an attack where malicious applications can steal
sensitive information such as lock codes of the IoT devices [5].

The proposed smart button/blanket can help the underlying
IoT devices to identify the attacks at different levels and
react to those attacks. The smart button/blanket will add
extra sensing hardware (e.g, accelerometer, gyroscope, GPS,
temperature, compass etc.), and software patches to detect if
the to-be-protected IoT device has been physically moved to
another location, changed its direction or behavior, tampered,
or controlled by a remote attacker. An appropriate reaction
(e.g., send an alarm, shut down the IoT device, correction) will
be taken by the smart button, in case an attack is discovered.

III. PROPOSED SOLUTION: SMART BUTTON

In this section, we present our proposed smart button as
hardware and software patches for added security of IoT.

Fig. 1: Overview of the smart button building blocks.

A. Security Attack Models

The IoT has an extremely broad and diverse attack surface,
and it is changing all the time. New attacks are expected to
appear over time, i.e., the proverbial arms race in computer
security. There have already been many attacks that often
remain undetected or unpatched over a long time. For example,
the railway and electricity power industries in Ukraine were
attacked by BlackEnergy crimeware [4], and nuclear uranium
facilities were attacked by Stuxnet [10].

For IoT, we can consider security attacks at three layers:
physical, communication, and application. This paper primar-
ily focuses on physical attacks. Physical attacks: include that
an attacker can physically re-point a camera, can tamper with
a device such as covering a sensor; can set up actions in the
environment to fool sensors, e.g., broadcast the sound of a
voice to activate an app when not appropriate, can use side
channels based on resonance [6], [7], and can trick sensors,
delay/speed up / distort data in real-time streams. For more
information on attack models see [17].

B. Smart Button Building Blocks

An HW/SW patch (a smart button - See Figure 1) [17]
combines sensors, actuators, processors, and memory with
associated software to protect IoT devices against one or
more specific security attacks. In some cases, it also includes
wireless communications to report the attack. It is meant
to be used in IoT systems where the physical world and
smart devices are key components. It is important to note that
software patches alone cannot provide a redundant sensor or a
correlated sensor modality to support a better security solution.

To date, we have built a prototype of the smart button and
used it for several attacks. Our smart button basically consists
of a Raspberry Pi and a set of sensors connected to it. For
a general prototype design, we used a Raspberry Pi 3 Model
B+ and a Matrix Creator board (see Figure 2). These two
components interface with each other through GPIO pins. The
Matrix Creator includes different types of sensors (e.g., light
sensor, accelerometer, gyroscope, and temperature), wireless



communications, and an FPGA. Matrix Hardware Abstraction
Layer (HAL) is an open source library that consists of C++
drivers, allowing access to the components of the Matrix
Creator. Using Matrix HAL, we created a program for the
Raspberry Pi to continuously take sensing data from the Matrix
Creator and perform computations. It is important to note that
our smart button building blocks can be flexible, depending
on the host device and the security requirements.

(a) Raspberry Pi (b) Matrix Creator

Fig. 2: Example of a Smart button generic prototype.

C. Protecting IoT at Various Layers

Before presenting the implementation and experiments (in
the next section) with the smart button, in this section we
briefly describe how smart buttons can protect the IOT at the
physical, communication, and application layers.

1) Physical Layer: Our approach for the physical layer is to
create a set of modularized, extensible smart buttons designed
to provide generalized security features related to different
attack types on the physical world and physical devices. The
buttons themselves will support button-button and button-IoT
node interaction using interfaces that can be updated in future
HW/SW revisions, supporting back compatibility. We assume
that buttons and blankets interact with a higher layer ”hub”
that is much more capable and OTA upgradeable (note that
communication channels are assumed to exist, as indicated
by the IoT deployment, but their security is itself a target
for attack and protection by blankets). It is not possible to
exhaustively address all attack types, so instead it may be
necessary to characterize broader attack categories, and then
demonstrate physical layer button solutions that both address
the specific attack example and also portray the flexibility of
the button attributes. For example, smart buttons can provide
physical layer redundancy to an IoT system to detect attacks by
flagging undesirable behavior, regardless of the specific attack
source. For example:

1) Perform redundant sensing to detect alterations to sensed
values, such as adding a temperature-based button to
measure temperature in the same environment as existing
IoT temp sensors.

2) Perform sensing with complementary modality to IoT
sensor - same purpose as above.

3) Detect movement of a device that is not supposed to move
(e.g., if someone re-points a fixed video camera).

4) Detect tampering to physical packaging (e.g., by sens-
ing motion or sound, or by measuring changes to the

response of a package to a stimulus as used in structural
monitoring).

5) Detect erroneous physical world signals injected by at-
tackers.

Upon detection of a potential security attack, the button or
blanket, if deployed, must sometimes notify other buttons or
blankets and higher layers to enable Response and Recovery
actions. Other sensor-based types of buttons can thus offer the
functions to further protect existing deployments (of IoT nodes
and/or previously deployed blankets) against or respond to the
results of both known and unknown attack models.

2) Communication Layer: Since the IoT will rely heavily
on wireless communications, addressing security attacks in this
area are paramount, including those in Table 3.

Fig. 3: Sensor network layers and denial-of-service defenses.

In general, it is necessary to consider communications at-
tacks on both the original IoT systems and on the smart buttons
and blankets. Capabilities can be added to smart buttons to
support attacking the attacker and to create notifications.

For our solution at the communications layer, the general
capabilities based on the redundancy of wireless devices and
supportive software (i.e., a hardware/software patch) of the
buttons include:

• Overhearing.
• Ability to detect jamming of various types.
• Use of multiple frequency channels.
• Capability to provide burst alarms.
• Continue to operate when jamming occurs.

Details on these solutions are outside the scope of this paper,
but the solutions found in the paper [20] can be added to a
collection of smart buttons.

3) Application Layer: IoT systems will provide many smart
services. Big Data and associated machine learning and an-
alytics will be a core ingredient of these systems. In these
situations smart buttons/blankets can provide an extra layer of
security by avoiding bad data being passed to the application
layer. Note that much of the data used by applications and
its processing will reside in the Cloud or other servers. We
are not proposing to improve the security of the Cloud or
internal security mechanisms of the smart services themselves.
Rather, our approach for applications focuses on the added
data protections that buttons and blankets can provide.

For example, since we are dealing with the physical world,
physical attacks can affect the application layer such as when



attackers modify camera pixels of a stop sign to fool a self-
driving car’s image processing algorithm, thereby causing a
crash.

IV. ATTACK SCENARIOS AND DEFENSE RESULTS

In this section, we describe the physical layer results of
using our smart button solution to address two attack scenar-
ios: fixed-position camera re-positioning and LiDAR attacks
on robots.

A. Fixed-position Surveillance Camera

Consider a fixed-position surveillance camera. Assume that
a smart camera was installed in the front door of a house, and
it is supposed to remain fixed in position. In this case, any
movement of the camera that is not made by the legitimate
user, such as physically re-pointing or relocating the camera, is
considered malicious. To detect this attack, it may be possible
to install a software-only patch on the camera that relies on
the camera’s capabilities such as image and video capture of
background and detecting that the background is moving to
detect attacks. However, leveraging such capabilities requires
a lot of computational power that the camera may not have
enough resources to provide or the internals of the camera
software may be proprietary. In this scenario, if a smart button
is used (e.g., adding an accelerometer and associated software
to detect movement and send an alarm if necessary), there are
no changes to the camera, and this attack can be detected.
The button provides acceleration sensing capability from an
accelerometer, which the camera does not have in the first
place, to detect any malicious movement of the camera.

Our smart button prototype for this scenario consists of a
Raspberry Pi connecting with a Matrix Creator board (see
Figure 2). The two components interface with each other
through GPIO pins. The Matrix Creator includes different
types of sensors (e.g., light sensor, accelerometer, gyroscope,
and temperature), wireless communications, and an FPGA.
However, to address this scenario, our smart button only needs
to consider the acceleration readings.

Since the button is attached to the camera, re-positioning
the camera will lead to the motion of the button. We write a
function for the button that utilizes the acceleration readings
from the Matrix Creator’s accelerometer to detect motion. This
program acts as a utility service that continually runs in the
background. If there is an abnormal change in the acceleration
readings that exceed the threshold value set by the user, the
button will consider it to be a re-position event. For this
experiment, we first place the prototype in a stationary position
and activate the program. We then re-point the prototype in a
different direction. As a result, we get an alarm sent from the
button to our server, notifying that there has been a re-position.

Note that this solution is representative of many similar
situations. For example, there can be many other attacks that
move a smart sensing device or that corrupt its sensors. Here
we can apply the same strategy except we utilize redundant
or complementary sensors such as temperature, vibration,
gyroscopes, etc. As one example, if an attacker has infiltrated

the control software for keeping the temperature of a chemical
process below a threshold, that attacker can cause overheating.
A new HW/SW patch that is independent of the previous sys-
tem can be added that monitors temperature or even monitors a
complementary metric such as pressure can detect this attack.

B. Robot with LiDAR-based Navigation

Even without special-purpose equipment, an adversary can
easily exploit physics to manipulate the outputs of sensors,
causing unexpected behaviors of the systems that rely on
those sensors [6]. LiDAR has been shown to be vulnerable to
physical attacks that exploit the characteristics of light sensing
[12], [15]. Petit et al. [12] show that they could generate fake
dots that are far away in the laser scan readings of the IBEO
Lux 3. As a follow-up work, Shin et al. [15] presented LiDAR
saturating attack and an improved version of spoofing attack
on the Velodyne VLP-16.

In this experiment, we employ the TurtleBot3 robot model
equipped with a 2D laser scanner LDS-01 [13]. We consider
the scenario that an adversary physically attacks the LiDAR
on a robot to compromise its laser scan readings to affect the
robot’s behaviors, such as obstacle avoidance or navigation
planning. We first craft an attack on the LiDAR of the robot.
Then, to launch the attack, we use another robot of the same
model to act as an attacker. As a result, there are abnormal
values in the front angle readings of the victim’s LiDAR when
the attack happens (see Figure 4).

We design a prototype of the smart button with LiDAR
sensing capability to provide redundant sensing to the robot.
Our smart button with separate LiDAR readings helps to detect
the abnormal laser scan readings caused by the attack on the
original LiDAR of the robot. Our smart button prototype for
this scenario consists of a Raspberry Pi connecting with a
LiDAR. The two components interface with each other through
a USB interface. The LiDAR sensor readings are given as an
array of distance-to-obstacle values. The array’s indexes are
scan angles of the LiDAR, and the values are the distances to
the obstacles (if any). Let L be the array of readings from the
LiDAR and α be the scan angle at which the LiDAR detects
an obstacle. We have L[α] as the distance to the obstacle at
angle α. Note that we need to calibrate the readings because
the original LiDAR of the robot and the smart button are
different in position. To be more specific, the smart button
is placed next to the original LiDAR, pointing in the same
direction (see Figure 5). In our robot system with the smart
button attached, we have L1[α] as the distance to the obstacle
at angle α measured by the robot’s original LiDAR (LiDAR 1)
and L2[β] as the distance to the obstacle at angle β measured
by our smart button (LiDAR 2). We also have d as the distance
from LiDAR 1 to LiDAR 2. We can calculate β, d2 from α,
d1, and d. Then, we compare the calculated β, d2 with the
actual sensor readings of our smart button. When there is a
noticeable mismatch between readings of two LiDARs, the
button detects an attack.

For this experiment, we first implement a LiDAR-based
navigation module, which includes obstacle avoidance, for



(a) Normal Scenario

(b) Attack Scenario

Fig. 4: Front angle LiDAR readings in normal and attack
scenarios. Note that the surrounding environment remains the
same in both scenarios.

Fig. 5: Redundant sensing for LiDAR using smart button.

the benign robot and have it move in a predefined path. The
benign robot is expected to recognize obstacles and navigate
to avoid them. We then place the attacker, which is another
robot with the same model, at a point in this path. When the
benign robot moves to this point, it crashes into the attacker.
To defend against this attack, we rerun the experiment with
our smart button prototype installed onto the benign robot. As
a result, the benign robot was able to recognize and avoid the
attacker. We also get an alarm sent from the button to our
server, notifying that there has been an attack.

V. DISCUSSION

A. Interfacing

A key research challenge is interfacing the smart buttons
to the IoT devices and to each other. The challenges vary

depending on the situation. While open questions remain and
are beyond the scope of this paper, to illustrate the complexity
we briefly describe 5 categories of interfaces. See [17] for
more information.

Indirect: In some situations a button will be mounted upon
a ”smart thing/device” and need only monitor it in indirect
ways. For example, a smart button can be attached to a smart
camera that has fixed orientation and the smart button can
monitor if the camera is moved (via an accelerometer in the
smart button).

Direct without much knowledge: Since a button is an
HW/SW entity, it can attach to IoT devices and applications
in various ways. For situations where the button designer is
not aware of the details of devices and/or applications, we
propose to treat the smart button as an I/O device with a driver.
The driver may be specific to a given IoT device and/or OS,
so this abstraction allows buttons to connect to any existing
device with a known interface with minimal new development
beyond the driver that bridges the button API to the existing
interface.

Direct with knowledge: In some situations, the smart
buttons deployment team might be aware of the internals
of the smart IoT devices. If the smart button is aware of
these details and can directly access the data (via a direct
with knowledge interface), then more sophisticated security
detection and actions can be possible.

Button to button: Since smart buttons are created by the se-
curity team, their interfaces to each other can be standardized.
An open challenge is to develop a button-to-button communi-
cation interface with the following characteristics: wirelessly
communicates, can reach at least 100 feet, encrypts data and
control signals during communication, can utilize different
frequencies, can detect and mitigate jamming, and supports
transferring (exchanging) of security intrusion detection, attack
information, and blanket control commands.

Blanket to blanket: Our hypothesis is that once a smart
blanket is added to a system, it can be considered as an integral
part of the original system, so adding yet another blanket
should be no different than adding the first. However, various
optimizations may be possible across blankets.

B. Future Work

Designing smart buttons is one step towards HW/SW solu-
tions to protect the IoT. Many interesting research questions
remain. In the following, we discuss some challenges and
future directions.

Collections of smart buttons forming the smart security
blanket for a given security attack will communicate among
themselves (with anti-jamming support) and offer various re-
dundancies and diversity modalities. For example, the buttons
can communicate with each other with security properties
similar to those discussed above for protecting the commu-
nications of IoT services. They can form a consensus on both
sensor readings and control actuations by the redundancy they
provide. They can also use alternative sensing (orthogonal)
modalities to avoid various physical attacks. Many consensus



schemes can be implemented. Blockchain [19] is an open,
decentralized digital ledger technology that creates a secure
way for the exchange of data. It is being applied to IoT at the
application layer. It is necessary to investigate if a lightweight
blockchain can be developed for smart blankets. Hashing,
proof-of-work, and a consensus found in blockchains may be
too costly in time and energy to be an effective smart blanket
mechanism.

Scaling is a very difficult issue. We have developed some
preliminary ideas. Solutions must be developed that do not
require EVERY device (sensor/actuator) to have a button
attached to it. For example, if there are 10,000 smart devices
in the subway system of New York City and there is a new
attack requiring smart buttons, solutions are needed that can
protect the system WITHOUT attaching a button to EVERY
one of the 10,000 devices. In this case new solutions must be
created where individual buttons can protect sets of devices.
One approach might be: (i) creating smart buttons that act
as HW/SW patch hubs; the hubs (analogous to routing hubs)
will aggregate information from sets of devices and detect and
protect based on the cumulative properties of those devices,
(ii) consider the criticality of a device when needing to install
a button to protect it, and (iii) create smart buttons that act
as part of the fog, typically executing on a more powerful
machine to provide local processing rather than sending the
information to the cloud.

VI. CONCLUSION

In this paper, we present a novel design of HW/SW patches
to handle security attacks in the era of IoT. Our solution
approach is based on adding integrated hardware and software
patches as a security monitoring and protection layer to the
existing devices (things). One important lesson learned from
this work is that software-only patches can solve many security
issues in IoT, but not all of them. Software-only patches
cannot detect many security issues due to missing hardware
capabilities in the device. Thus, we introduce the smart button
and smart blanket solution to fill these gaps. Although being
an effective solution, smart buttons and blankets still have
many open research challenges such as protecting themselves
from attacks, synergistic interaction between different types
of buttons in the form of a blanket to protect against complex
security scenarios, and smooth interfacing with existing IoT
devices. With new solutions for these issues, security defenses
for the future IoT can be significantly improved.
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