
Bundle: A Group Based Programming Abstraction for Cyber
Physical Systems

Pascal A. Vicaire
pascal.vicaire@gmail.com

University of Virginia

Enamul Hoque
eh6p@virginia.edu

University of Virginia

Zhiheng Xie
zx3n@virginia.edu

University of Virginia

John A. Stankovic
stankovic@cs.virginia.edu

University of Virginia

Abstract
This paper describes a novel group based programming

abstraction called a ‘Bundle’ for cyber physical systems
(CPS). Similar to other programming abstractions, a Bun-
dle creates logical collections of sensing devices. However,
previous abstractions were focused on wireless sensor net-
works (WSN) and did not address key aspects of CPS. Bun-
dles elevate the programming domain from a single WSN
to complex systems of systems by allowing the program-
ming of applications involving multiple CPSs that are con-
trolled by different administrative domains and support mo-
bility both within and across CPSs. Bundles can seamlessly
group not only sensors, but also actuators which constitute
an important part of CPS. Bundles support heterogeneous
devices, such as motes, PDAs, laptops and actuators accord-
ing to the applications’ requirements. They allow different
applications to simultaneously use the same sensors and ac-
tuators. Bundles facilitate feedback control mechanisms by
dynamic membership update and requirements reconfigura-
tion based on feedback from the current members. The Bun-
dle abstraction is implemented in Java which ensures ease
and conciseness of programming. We present the design
and implementation details of Bundles as well as a perfor-
mance evaluation using 32 applications written with Bun-
dles. This set includes across-network applications that have
sophisticated sensing and actuation logic, mobile nodes that
are heterogeneous, and feedback control mechanisms. Each
of these applications is programmed in less than 60 lines of
code.

1 Introduction
In the future, cyber physical systems (CPS) will become

widespread, include heterogeneous sensing and actuation de-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

vices, support intra and inter network mobility, permit mul-
tiple applications to execute simultaneously, and be accessi-
ble and controllable via the Internet. Ubiquitously deployed
wireless sensor networks (WSNs) enhanced with actuators
will create a new CPS infrastructure, and along with body
networks and sensor-based cell phones will create a situation
with many interacting systems of systems. For this vision
to become commonplace new abstractions are required that
support ease of programming, grouping sensors and actua-
tors of different kinds from different networks and adminis-
trative domains, and dynamically managing these groups in
the presence of mobility and feedback control.

To better illustrate these requirements, we consider the
following scenario. John and Mary are two neighbors who
have separate WSNs set up in their houses for activity moni-
toring. They also run a collaborative surveillance application
that notifies both of them if an intruder tries to steal some-
thing from any of the two houses in their absence. The no-
tification is done by ringing sounders that are worn in their
bodies. Some important features to consider for this appli-
cation are: 1) The application spans multiple systems and
uses heterogeneous devices. 2) It groups sensors from both
houses and actuators on their bodies. 3) It supports both intra
and inter network mobility. Because they move from room
to room when in house and also go out for work. 4) The
application only notifies them if they are not in the house
and someone tries to steal something. So the actuation of
sounders depends on feedback from the sensors.

Existing group based abstractions employ a distributed
architecture in order to ensure energy and bandwidth effi-
ciency. They group the nodes based on geographic loca-
tion or radio connectivity ([19], [18]) or some higher-level,
application-defined notion of proximity ([14], [8]). But there
are certain limitations in using them for CPS. They have been
designed mainly for applications that run in a single network.
They cannot group sensors from different networks or sen-
sors having inter-network mobility. New applications need
to reprogram the sensors manually. Besides, writing appli-
cations with them is not straightforward. Moreover, none
of them supports grouping of actuators. A Bundle extends
the previous group based abstractions by addressing these
limitations. It focuses on keeping the resource constrained
sensors and actuators simple, i.e., application logic is shifted

from them to the centralized base station. No matter how
many applications use a sensor, the logic on them remains
the same. A Bundle is a Java class that provides a pow-
erful abstraction with the following main features: a) ease
of programming that facilitates writing applications for CPS
concisely; b) grouping sensors and actuators from different
networks and users; c) support for intra and inter network
mobility of sensors and actuators belonging to a Bundle by
dynamic update of their membership; and d) enabling mul-
tiple applications to use the same sensors and actuators con-
currently.

The main contributions of this paper are: a) a new cen-
tralized group based abstraction called a Bundle which is
an extension to existing group abstractions, but with impor-
tant capabilities for across system programming, mobility,
automatic dynamic updates, and support for actuators; and
b) an evaluation with 32 single and multi network applica-
tions to illustrate the ease and conciseness of programming
with Bundles, its effectiveness of supporting mobility andits
acceptable energy overhead.

Note that the Bundle abstraction is implemented on top
of the Physicalnet middleware [17]. While the Bundle is an
important part of the Physicalnet framework, it is an orthog-
onal concept. In this current paper, we fully describe the
Bundle as a group based abstraction, discuss how it is dif-
ferent from existing group based abstractions, and evaluate
its conciseness and energy consumption. A previous paper
([17]) discusses the features of Physicalnet including thede-
tailed description of its middleware architecture, its access
right control mechanism, how it is different from other ex-
isting middleware, and an evaluation of its performance and
concurrency degree. So these two papers are fundamentally
different with minimal overlap.

The paper is organized as follows. Section 2 describes
related work and compares Bundles with other similar ab-
stractions. Section 3 explains the Bundle abstraction in de-
tail. Section 4 describes its implementation details. Section
5 presents evaluation results. We conclude in section 6.

2 Related Work
Existing group based abstractions have several shortcom-

ings that limit their applicability in cyber physical systems.
Bundle has been designed to overcome these shortcomings.
Table 1 summarizes some of the important differences be-
tween Bundles and other abstractions. We discuss the details
in this section.

Hood [19] is a neighborhood programming abstraction
that allows a given node to share data with a subset of nodes
around it, specified using parameters such as the physical
distance or number of wireless hops. Hood cannot group
nodes that belong to different networks or that use heteroge-
neous communication platform. If a mobile group member
moves to another network, then it no longer belongs to that
group. Additionally, all nodes must share the same code,
actuators are not supported, group specification is fixed at
compile time, and each instance of a Hood requires specific
code compiled and deployed on the targeted nodes.

An Abstract Region [18] is an abstraction similar to a
Hood: it allows the definition of a group of nodes accord-

Abstraction Bundle Hood Abstract Logical Scope
Region Neighbors

Language Used
to Write

New Applications Java nesC nesC SPIDEY C
Sensors can be

Reprogrammed for
New Applications

Dynamically Yes No No No No
Concurrent
Applications
Using Same

Devices Supported Yes No No No Yes
Span Multiple

Networks Yes No No No No
Heterogeneous

Devices Supported Yes No No Partially Yes
Inter Network

Mobility Supported Yes No No No No
Actuator Supported Yes No No No No
Centralized Group

Management Yes No No No No

Table 1. Comparison of Bundle with other Abstractions

ing to geographic location or radio connectivity, and permits
the sharing and reduction of neighborhood data. Abstract
Regions provide tuning parameters to obtain various levels
of energy consumption, bandwidth consumption, and accu-
racy. But, each definition of a region requires a dedicated
implementation, therefore each region is somehow separated
from others and cannot be combined. Like Hoods, Abstract
Regions also cannot group sensors from different networks,
actuators, heterogeneous or mobile devices. If we need to
write new applications, motes need to be reprogrammed.

Logical neighborhood [14, 2] is a higher level abstraction
that replaces the physical neighborhood provided by wire-
less broadcast with a higher-level, application defined notion
of proximity. It has support for heterogeneous nodes, but
heterogeneity means different communication costs for dif-
ferent nodes for this case. It does not support actuators or de-
vices with heterogeneous communication platform. Logical
neighborhoods cannot cross multiple networks. With logi-
cal neighborhoods, we cannot write new applications using
existing devices without reprogramming them. Also they do
not support mobility.

Scopes [8] is another abstraction that is used to structure
a WSN in groups and sub-groups. Scopes use a declarative
language to specify properties that have to be fulfilled by a
node participating in a scope. As properties, static and dy-
namic values are supported just like in Bundles, but it needs
more resources on a single node to fulfill its tasks. Scopes
support multiple concurrent tasks that have to be installed
over-the-air on the nodes. Scopes also do not support actu-
ators and spanning over different networks as supported by
Bundles, however heterogeneous nodes in the WSN are pos-
sible. Mobility of nodes from one network to another is also
not supported.

sChat [16] is a group communication service that allows
groups of mobile entities to communicate over a WSN. Each
group has a leader that needs to keep track of all the mem-
bers’ locations. A central registry keeps track of all the
groups and their leaders. But this design does not support
across-network applications and we need to reprogram the

devices for new applications. It does not have support for
actuators as well.

Spatial Views [15] and Spatial Programming [1] have
only been implemented on powerful PDAs and not on re-
source constrained sensor nodes. Spatial Views create a
group of nodes defined in terms of location and service in-
terfaces, and make it possible to iterate over the members of
this group. Heterogeneity, actuators, multiple networks or
mobility of nodes are not addressed in this approach. Spatial
Programming provides an abstraction similar to spatial views
with an emphasis on spatial node reference consistency, and
reference timeout. Applications use a mobile agent approach
which is executed in a modified JavaVM. Mobility is an im-
portant paradigm, but as with Spatial Views, heterogeneity
or multiple networks are not supported.

3 Design
In this section we describe the main design principles of

the Bundle abstraction, its underlying architecture and how
Bundles work.

3.1 Design Principles
The main design philosophy of a Bundle is keeping the

resource constrained devices minimally engaged in group
management. This is why we choose a centralized approach
for designing the Bundle abstraction. All the existing sim-
ilar abstractions use distributed group management. Dis-
tributed design helps in reducing message transmission be-
tween nodes and the base station. It also facilitates in net-
work aggregation. But there are also some problems using a
distributed scheme described as follows:

1) In cyber physical systems, it is necessary to allow the
formation of dynamic sets of services provided by heteroge-
neous devices. Membership in a group is specified by arbi-
trary predicates which can involve any number of application
variables. If the application variables vary over time, then the
membership changes accordingly. For instance, a first group
can be created to compute and update the average tempera-
ture in a building, and then a second group can be created to
refer to all the ventilators that are in a room where a greater
than average temperature is detected. In this case, when the
average temperature changes, the selected set of ventilators
changes.

Implementing such an arbitrary abstraction in a com-
pletely distributed fashion so that power consumption and
latency are optimal is extremely challenging. The frame-
work has to upload binary code, bytecodes, or scripts to the
resource constrained nodes. It would have to move code
around when nodes move, making sure that each piece of
code is transferred reliably. It would have to provide specific
routing mechanisms allowing nodes to talk to one another
even if they are located in different networks.

2) Memory and communication costs directly depend on
number of groups a node is part of. This is because, the
nodes need to store membership information and states in
memory and also need to communicate this information to
group members. This limits the number of groups a node
may join.

3) Different sensors use different communication plat-
forms. So it is impossible for all of them to communicate

Figure 1. Physicalnet Architecture.

with each other directly and maintain a group. We need
some powerful devices that can communicate using differ-
ent protocols and thus facilitate group management. So the
sensors will communicate with each other via these powerful
devices.

To solve these problems, we believe some centralized
component is necessary in the architecture. The Bundle pro-
gramming abstraction is centralized. Rather than decompos-
ing code and shipping it to remote, unreliable, and resource
constrained nodes, the Bundle brings the state of remote ser-
vices, as well as the remote sensor streams to the application
process. In a way, a Bundle works as a complement to the
existing group based abstractions. Current implementation
of Bundles is purely centralized, but it can be extended to in-
clude various distributed computing benefits. For example,
a Bundle supports predicate pushdown ([13, 12]), because
only members of a Bundle send data to the base station, oth-
ers send control packets only.
3.2 Architecture

The Bundle is designed as part of Physicalnet [17],
a lightweight service oriented architecture middleware for
wireless sensor networks. Detailed description and evalua-
tion of Physcialnet are provided in [17]. Here, we briefly
outline the implementation of Physicalnet only at the level
of detailed required to understand the implementation sup-
port for Bundles.

There are 4 tiers in Physicalnet as Figure 1 shows.
1) Service Provider Tier: A provider node can be run-

ning TinyOS or Java and may include several services. For
example, a service can be the temperature sensor of a MICAz
node, a light actuator, or the display screen of a PC. This
layer also contains localization anchor nodes. A provider
registers its services to one and only one negotiator, and ex-
ecutes the commands issued by this negotiator.

2) Gateway Tier: A gateway collects the control or data
messages from the service providers and forwards them to
the negotiators. Similarly, it forwards commands in the other
direction. The communication between the gateways and
the service providers is through multi-hop wireless proto-
cols (e.g. collection and dissemination protocols), whilethe

communication between the gateways and the negotiators is
through TCP/IP. The gateway tier could consist of either Java
nodes or more powerful PCs. There has to be at least one
gateway per network.

3) Negotiator Tier: A negotiator is a repository of ser-
vices, a database of service states and application require-
ments. A negotiator contains all the services that registeron
it and are available at that time. Applications can discover
and operate on those services through the negotiator. A ne-
gotiator allows multiple applications to access the same ser-
vice concurrently. It is important to note that negotiatorsare
not tied to a particular WSN, and that they can manage nodes
located in multiple WSNs. Each administrative domain con-
sists of one negotiator, all the service providers registered to
the negotiator and a set of users.

4) Application Tier: It contains applications that period-
ically generate and cancel requirements for remote sensors
and actuators by reevaluating the membership of their Bun-
dles. Multiple applications can simultaneously access the
same negotiator and a single application can involve multi-
ple negotiators.

The main advantage of this 4-tier architecture is that the
resource constrained sensor nodes have minimal functional-
ity and most of the complexity of the applications is pushed
outside the WSN on remote and more powerful computers
(similar to Tenet [5], Essentia [6], and Atlas [9]). The gate-
way tier ensures that heterogeneous devices can be grouped
together as long as it can communicate with them using their
communication protocol. They are more powerful than sen-
sor nodes, so they are placed in a different tier. The negotia-
tor tier communicates with different gateways and vice versa.
Devices that move from one network to another, only need
to communicate to the gateway of a network and the gateway
communicates with the appropriate negotiator which may be
in any part of the world. So having a different negotiator
tier enables us to group devices from different networks and
also to support inter network mobility. Having a different
application tier ensures that applications can connect to the
negotiators from anywhere in the world and use the services
provided by them. Note that, for a particular WSN, the gate-
way needs to be physically at the same place as the providers.
But the negotiator and application tiers can be anywhere and
they can be separate from each other as well.
3.3 The Bundle Abstraction

The Bundle programming abstraction includes two parts:
the definition of a group of sensors and actuators and the
specification of what these devices should do. The Bundle
abstraction allows the definition of a group to be arbitrarily
complex, which means the definition of the Bundle member-
ships can involve any number of operators and application
variables including, but not restricted to, constants, locations,
sensor/actuator states, sensor streams, application parame-
ters, user input, and numerical results computed by other
Bundles. For instance, a Bundle can contain all the nodes
that are temperature sensors, that are in the living room, that
have more than half their energy remaining, that sense a tem-
perature either greater than the average temperature in the
room plus ten Fahrenheit degrees, or greater than a threshold
that can be dynamically changed by the user. The second

public interface Bundle<T extends Service>
 extends BundleParent, Iterable<T>{

 boolean rule(T t);
 void foreach(T t);

 boolean contains(T t);
 int index(T t);
 int size();
}

Figure 2. Bundle API

public class SamplingOneSensorPerRoom extends Application{

 public SamplingOneSensorPerRoom(){
 this.add(new Negotiator(HOST,PORT,USER,PASSWORD));
 this.execute(1000/*milliseconds*/);

 // For each room...
 for(final Zone z:this.getZones().getByType("Room")){

 // Creates the bundle of all the temperature sensors in that room.
 final Bundle<Temp> temps=new Bundle<Temp>(Temp.class,this){
 public boolean rule(Temp t){

 return z.contains(t);
 }
 public void foreach(Temp t){
 return;
 }
 };

 // Creates a bundle with a single temperature sensor in that room.
 // Temperature sensed by those sensors is displayed periodically.
 new Bundle<Temp>(Temp.class,temps){
 public boolean rule(Temp t){
 if(temps.index(t)==0){
 return true;
 }
 else{
 return false;
 }
 }
 public void foreach(Temp t){
 t.period.set(1000l/*milliseconds*/);
 t.sense.set(true);
 t.sense.whenNewSample(new Task<Long>(){
 public void run(Long l){
 System.out.println(z.getName()+": "+l);
 }
 });
 }
 };
 }
 }
}

Figure 3. The SamplingOneSensorPerRoom Application
Written using Bundles

part is specification of what the members of a group should
do which can depend on arbitrary operations involving com-
plex functions that can execute only on powerful comput-
ers that can involve any application variables, including the
Bundle member itself. For instance a Bundle of temperature
sensors can be configured to be sensing at a rate specified by
the user, and a Bundle can be configured so that the LEDs on
a given node indicate the current intensity of noise sensed by
the node.

Figure 2 shows the Bundle API. A Bundle is a generic
set of sensors and actuators of type specified using the pa-
rameterized type T. By specifying T, programmers can for
instance create a Bundle of temperature sensors, light actua-
tors or cameras. A Bundle implements the typeBundlePar-
ent, which means that a given Bundle can be used as a su-
perset to define a Bundle containing a subset of its members.
A Bundle implements the typeIterableso that the practical
Java operatorfor can be used to iterate over the members.
The programmer overrides therule (T t) method to define

the conditions of membership of a Bundle. The programmer
overrides theforeachmethod to specify the state in which
the members of the Bundle should be.

An important feature of the Bundle abstraction is its dy-
namic aspect. The Bundle membership is updated periodi-
cally so as to respect the membership specification. Figure 3
shows an example applicationSamplingOneSensorPerRoom
that reports the temperature in each room using a single sen-
sor per room. For each room, first, the application creates the
Bundle of all the temperature sensors in that room. Then, it
creates for each room a second Bundle that contains a single
temperature sensor. This sensor is configured to sense the
temperature every second and the temperature samples are
displayed on the standard output along with the name of the
room. Because of the periodic update of the membership,
sensors that start satisfying membership rules (has to be a
temperature sensor and has to be in a particular room) dur-
ing application execution join the first Bundle for that room,
and sensors that stop satisfying membership rules (leave the
room) during application execution leave the first Bundle for
that room. Note that if a temperature sensor, that leaves the
first Bundle of a room, is that Bundle’s first member, then
the second Bundle for that room gets a new temperature sen-
sor and that sensor is configured accordingly. Here, each
room is a different network and the application is written us-
ing sensors from multiple networks. Similarly, inter network
mobility can be supported. If a node leaves a room, then as
soon as it enters another room, it is connected to the nego-
tiator through the new gateway and joins the first Bundle for
that room. Now based on availability of other temperature
sensors in that room, it may become a member of the second
Bundle for that room.

4 Implementation
We now detail how the Bundle programming abstraction

is implemented. First we describe how Bundles are managed
in the application tier, then we explain the synchronization
mechanism between the negotiators and the providers and
finally we discuss how actuators are controlled.

4.1 Application Tier
Periodically, the application process, running on a remote

PC, connects to the set of negotiators specified in the ap-
plication code. Each negotiator has a global address of the
form negotiator IP address+ TCP port. From each negotia-
tor, the application acquires the list of providers (e.g., motes,
cameras, cell phones), the list of services for each provider
(e.g., temperature, light and accelerometer sensor valuesfor
a mote), and the list of states (e.g., on/off status of a light
actuator, sensing interval) for each service. The application
downloads all service states when it first connects to a given
negotiator. Then, it only downloads the differences from pre-
vious download.

Once all service data is downloaded, the previous appli-
cation requirements for each state are transferred to a vari-
able namedpreviousRequirement. Then, the membership of
all Bundles is recomputed by applying the overloadedrule
method. After that, the new application requirements are
computed by applying the overloadedforeachmethod to all
the services that are member of the Bundle, and stored in a

variable namednewRequirement. Finally, newRequirement
is uploaded to the negotiator for each state wherenewRe-
quirementis not equal topreviousRequirement. The cycle of
download, re-computation, and upload repeats itself accord-
ing to a configurable period.

Bundles can span multiple networks and administrative
domains. An application can connect to several negotiators
and each Bundle is a subset of all the services from all the
negotiators. Each negotiator manages a set of providers per-
taining to one or more users. Note that, multiple applica-
tions can use the same service provider and have conflicting
requirements (e.g., one application may want the light to be
on and other to be off). In that case Physicalnet uses conflict
resolution mechanisms that are discussed in detail in [17].
The providers are free to move from one remote WSN to
another. Whichever WSN it is currently in, the remote ser-
vice provider always keeps the same global identifier of the
form negotiator IP address + negotiator TCP port + local
identifier, which allows the gateway of the current WSN to
communicate with the appropriate negotiator and thus appli-
cations can uniquely identify a provider at any time.
4.2 Synchronization

The goal of the synchronization process is for the provider
to forward its location and its data samples to the negotiator,
and for the negotiator to reconfigure the state of the provider.
The service provider periodically sends a control message
to its gateway using a multi-hop wireless collection proto-
col. By default the provider sends one control message every
p maxseconds. However, when a provider generates sensing
samples, the period is decreased so as to forward these sam-
ples to the negotiator as fast as possible. Nevertheless, the
period with which control messages are sent is not allowed to
be smaller thanp min. Both p maxandp min are specified
when the Physicalnet binary is installed on the provider. The
control message contains the global identifier of the provider,
the last timestamp received from the negotiator (or 0 if no
timestamp was received), the longitude and latitude of the
provider, and a data section containing provider specific data
samples.

When the gateway receives a control message, it reads
the global identifier of the provider and infers the address
of its negotiator. The gateway then stores the control mes-
sage in a buffer dedicated to the inferred negotiator. Peri-
odically (the period is configurable), the gateway forwards
all the messages contained in the buffers to the appropri-
ate negotiator using TCP/IP. When the negotiator receives a
batch of messages, for each message, it queries its database
to check whether the provider is registered. If the provideris
not registered with the negotiator, the message is dismissed.
If the provider is registered, the negotiator updates the ad-
dress of the gateway, and the location of the provider in the
database. The negotiator then extracts the sensor samples
from the data portion of the control message. Once the sens-
ing samples are extracted from the control messages, they
are stored in the database so that they can be later forwarded
to the requesting applications.

To maintain synchronization, the negotiator reads the
timestamp field of the control message, compares it with the
timestamps stored in the database and thus infers whether

the provider is up to date or not. If the provider is not up
to date, the negotiator creates a configuration message that
will configure the remote provider according to the latest ap-
plication needs and send it to the appropriate gateway. This
configuration message contains the global ID of the targeted
provider, a new timestamp and configuration information for
the provider. Upon reception, the gateway stores the con-
figuration message in a queue. The gateway forwards the
configuration messages one after the other to the appropriate
provider using a multi-hop wireless routing protocol. Upon
reception of a configuration message, the provider stores the
new value for the timestamp, modifies the state of its actua-
tors according to the negotiator desires, and initiates tasks as
required by the modified values of its states.
4.3 Controlling the Actuators

In CPS, we often deal with unreliable actuators. This
may cause major drawbacks if programmers remotely call
(by Remote Procedure Call (RPC) or Remote Method In-
vocation (RMI) mechanism) these actuators to change their
states. Consider an application that turns a light on and then
desires to turn it off. Assume that when the application sends
an RMI invocation to turn the light off, the actuator is un-
reachable. This may occur because of a temporary obstacle
that significantly affects the wireless communication around
it. So, the RMI call will fail and return an exception. As
a consequence, a light actuator remains on even though it
should be off. This problem is even more difficult to solve if
the application controls the state of a large number of actua-
tors.

To resolve such problems, Bundles use the concept of
state for each actuator. Manipulating actuators using states
is very different from manipulating it using RMI. Consider
the example of turning a light on. An RMI call directly con-
nects the application to the remote light actuator and turnsit
on. By contrast, in our design, the application only gener-
ates a requirement for the light to be on and sends it to the
negotiator by RMI. The negotiator of the light actuator then
tries to fulfil this requirement by turning the remote light ac-
tuator on. If from the actuator’s next periodic update, the
negotiator finds that the requirement is not yet fulfilled, then
it retries until being successful. Note that the state of theac-
tuator does not change in the negotiator until the requirement
is actually fulfilled. Here, our assumption is that as long as
the actuators are reachable, the requests from the negotiators
and the periodic updates from the providers are never lost in
the communication channel. The negotiator stores this re-
quirement as long as the application does not cancel it (or
terminate). Furthermore, the negotiator may store several
such requirements and decide, according to rules specified
by the node owner, which requirement should be satisfied.
The programmers can check at any time whether his require-
ments are being satisfied or not and take appropriate action.

Consider the same application that turns a light on and
then desires to turn it off. Now, if the light actuator is un-
reachable when the application desires to turn it off, the ne-
gotiator reattempts to turn the light off until it succeeds.Sup-
pose, a programmer uses a bundle to specify that all the light
actuators in a room should be turned on. When a new light
joins the bundle, the bundle sets the requirement for the state

Figure 5. TheTracker Application

of the light to be turned on. When a light leaves the bundle,
the bundles sets the requirement for the state of the light to
null.

5 Evaluation
In this section, we provide an evaluation of our key re-

search contributions. We evaluate the conciseness and mo-
bility support of 32 applications coded using the Bundle pro-
gramming abstraction. We also evaluate the energy con-
sumption of Bundles.

5.1 Conciseness and Mobility
To show programming conciseness and a wide variety of

applications, many of which involve mobile nodes, we im-
plemented 32 applications. They are summarized in Fig-
ure 4. They include environmental monitoring applica-
tions (e.g., AcousticDetector, AverageHumidity and Flood-
Warning), tracking applications (e.g., SpyBug, LowEner-
gyAlert), control automation applications (e.g., Illuminator,
Tracker, TempRegulator, AutoLocks and OnlyWhen), and
monitoring and alarm applications (e.g., PhotoAlarm, Park-
ingSpacefinder, FireAlarm, NeighborhoodWatch and An-
tiThiefTags). Each of them is programmed in less than 60
lines of code.

Now we provide description and Java code for 2 of the
above applications. The first application,Tracker, is inter-
esting in that it demonstrates how seamlessly Java service
providers and TinyOS service providers can interact. The
second application,NeighborhoodWatch, is a more com-
plex application involving multiple sensing modalities. Both
of these applications contain actuators which are controlled
based on feedback from the sensors.
5.1.1 The Tracker Application

Figure 5 shows theTracker application. This appli-
cation has been chosen to demonstrate how TinyOS ser-
vice providers can seamlessly interact with Java service
providers: the end-user does not need to have any knowledge
about the platform that implements the services. Tracker as-
sumes that a user moves around his home with two MICAz
nodes. One is called the mediaTag, the other the lightTag. If
the mediaTag is on, Tracker turns on the televisions that are
in the same room as the user. If there is no television in a
room, Tracker turns on all the music players that are within
a specified distance of the user. If the lightTag is on, Tracker
turns on all the lights that are in the same room as the user.

Some interesting features of this application are that:
a) The user can turn the mediaTag off to automatically turn
off all televisions and music players. b) The user can turn
the lightTag off to automatically turn off all lights. c) If new
televisions, music players, and lights are introduced in the
network, they automatically start satisfying applicationre-
quirements as long as they run the Physicalnet provider plat-
form specific software. d) If users, lights, televisions, music
players move from one room to another, their state is au-
tomatically modified to satisfy application requirements i.e.
state constraints based on location and distance to the medi-
aTag and lightTag. e) As service providers are not tied to a
particular gateway and can communicate with their negotia-
tor through the Internet, the application still works if network
nodes are moved from one building to a another one, as long
as each building possesses Physicalnet gateways.

Note that in our implementation, we use the yellow LED
of MICAzs as room lights as we do not have real light ac-
tuators. The music player service is implemented using a
Java service provider that runs on a PC and that turns a mp3
player on or off. The television service is implemented us-
ing a Java service provider that runs on a PC and that turns a
video player on or off.

In the Tracker code of Figure 5, we first connect to two
negotiators. The Tracker application runs over the nodes of
the two buildings that report to those negotiators. We create
a reference to the MICAz used as the mediaTag and to the
MICAz used as the lightTag by specifying their global iden-
tifier. For each zone of type room, we create the bundle of
all the televisions in that room if the room contains the me-
diaTag. This bundle has no members if the room does not
contain the mediaTag. The televisions that are member of
the bundle must be turned on and display the favorite chan-
nel of the user. For each room, we then create the bundle of
all the music players that are within a specified distance of
the mediaTag, if there is no television turned on in that room.
This bundle has no members if the room contains a television
that is on. The music players that are member of the bundle

Figure 6. TheNeighborhoodWatch Application

must be turned on and play the favorite playlist of the user.
Finally, for each room, we create the bundle of all the lights
that are in the same room as the lightTag. These lights must
be on.

5.1.2 The NeighborhoodWatch
Figure 6 shows theNeighborhoodWatchapplication. This

application has been chosen to demonstrate multimodal
sensing.NeighborhoodWatchis a collaborative surveillance
application that alerts a set of neighbors if an intruder is de-
tected in one of their houses. In our implementation, we
consider two neighbors (Mary and John) that wear MICAzs
equipped with sounders. We refer to those MICAZs as the
security tags. If there are no security tags in one of the
houses, all the accelerators in that house are turned on. If any
of those accelerators triggers, the sounders of Mary and John
ring for ten minutes so that they are informed that an intru-

sion may be in progress. Accelerators can be triggered when
an intruder tries to steal a television on which it is placed.
Also, if there are no security tags in one of the houses, all
the light sensors are turned on. If a difference in measured
light intensity is detected while Mary and John are away, the
sounder of Mary and John ring so that they are informed of
the intrusion. A difference in measured light intensity can
occur when the intruder opens a closed cupboard in which a
MICAz is placed.

In the NeighborhoodWatchcode shown in Figure 6, we
first connect to two negotiators contained in the house of
Mary and John. We create references to the sounders of the
security tags of Mary and John. For each building, we create
the bundle of all the accelerometers that are in that building,
if neither Mary nor John sounders are in that building. This
bundle does not contain any member if the sounder of either
Mary or John is in the building. The accelerometers that are
members of the bundle are turned on and marked as triggered
if their acceleration levels exceed a specified threshold. For
each building, we create the bundle of all the photometric
sensors in that building, if neither Mary nor John sounders
are in that building. This bundle does not contain any mem-
ber if the sounder of either Mary or John is in the building.
The photometric sensors are turned on and the samples are
recorded. Periodically, we check the number of accelerom-
eters that have been triggered within the last minute and
the number of photometric sensors that have detected light
anomalies. If either number is greater than 1, the sounders
of Mary and John are triggered. One interesting feature of
the NeighborhoodWatch application is that it is easy to ex-
tend it to many neighbors and many houses.

Lack of space precludes full descriptions of all 32 appli-
cations, but from these 32 examples we see that Bundles can
concisely specify the logic of a variety of applications. These
applications are proof to our previous claim that Bundles
can: 1) group heterogeneous types of sensors and actuators;
2) handle both intra and inter network mobility; 3) support
applications that group sensors and actuators from multiple
remote WSNs; 4) support multiple users and multiple appli-
cations to use the same sensors and actuators concurrently
(because many of these applications are using the same de-
vices and they can run concurrently).

To further illustrate ease and conciseness of programming
with Bundles, we compare the code of a very simple appli-
cation,ParkingSpaceFinderusing nesC [4] and our design.
The nesC code can be found in [10] and our code is shown in
Figure 7. The nesC code has 42 lines of code and our code
has 20 lines of code. The nesC code needs to implement ex-
plicit mechanisms to prevent one car to be reserved multiple
times for the same user, and to make sure that the chosen
parking space is the closest one. By contrast, Bundles relay
all the necessary data in a central process which can eas-
ily check the nodes and reserve one within a synchronized
method, thereby resolving the consistency issues that make
the coding of application that execute in a distributed man-
ner more difficult. As applications become more complex,
the percentage improvement in code size between Bundles
and nesC will grow.

public class ParkingSpaceFinder extends Application{

 private Bundle<ParkingSpace> spaces;
 public ParkingSpaceFinder(){
 this.add(new Negotiator(HOST,PORT,USER,PASSWORD));
 this.execute(100/*milliseconds*/);

 // Creates the bundle of sensors that detect whether parking
 // spaces are free or occupied. This sensors also have a
 // state that indicates whether their space is reserved.
 spaces=new Bundle<ParkingSpace>(ParkingSpace.class,this){
 public boolean rule(ParkingSpace p){return true;}
 public void foreach(ParkingSpace p){
 p.period.set(1000l/*milliseconds*/);
 p.senseOccupied.set(true);
 }
 };
 }

 // Get the location of the closest parking space
 // according to current location.
 synchronized public ParkingSpace getParking(Gps location){
 List<ParkingSpace> spacesCopy=spaces.copy();
 if(spacesCopy.size()==0) return null;
 ParkingSpace closest=spacesCopy.get(0);
 for(ParkingSpace p:spacesCopy){

if(p.senseOccupied.getLastSample()==false &&
p.reserved.get()==false && location.distance(closest.gps()) >
location.distance(p.gps())){

 closest=p;
 }
 }
 closest.reserved.set(true);
 return closest;
 }
}

 Figure 7. TheParkingSpaceFinder Application

5.2 Energy Conservation
While there are many benefits for Bundles, by using a

centralized architecture, Bundles are expected to consume
more energy than using the traditional distributed approach.
To quantify the energy performance of Bundles, using simu-
lation we compare the energy consumptions of a target track-
ing application by using the Vigilnet [7] design and the Bun-
dle design. The reason we choose Vigilnet is: Vigilnet uses
TinyOS [11] to program each individual node in a distributed
way. It allows in-network data aggregation and node-to-node
communication, which is used to optimize the energy con-
servation. By contrast, Bundles use a centralized solution, in
which in-network data aggregation and node-to-node com-
munication are not allowed.

The goal is to compare the lifetime of the entire network
which is defined as the number of days for which the detec-
tion probability of target, which is defined as the percentage
of successful detections among all targets that enter the net-
work area during one day, remains greater than 90%. The
simulator is based on XSM platform [3] and its empirical
power consumption model. We suppose that a mote dies
when it has used 85% of its available energy and the sens-
ing range of sensors is 10 meters. This simulator randomly
distributes 10,000 nodes within a square of edge 1000 me-
ters. In this simulator, a target enters and exits the network
area at random points on the edges of the network. The tra-
jectory of the target is a straight line with a constant speed.
There is at most one target within the sensor field at any point
in time.

Figure 8. Average Detection Probability for Sentry Selec-
tion with Duty Cycle Scheduling

In our simulator, both the designs use TinyOS collection
tree protocol. We assume that there is one base station (gate-
way) for every 100 nodes. Nodes self-organize into a collec-
tion tree rooted at their closest base station in term of num-
ber of communication hops. The base stations are connected
through TCP-IP to a central computer (which acts as both the
negotiator tier and application tier) to report detections. The
simulator assumes that Vigilnet uses a flooding protocol to
reconfigure the nodes. A distributed algorithm is used to se-
lect which nodes should be awake and which node should be
asleep to save power while maintaining appropriate sensing
coverage of the field. On the other hand, Bundles use a uni-
cast protocol for reconfiguration. In our first experiment, we
assume none of the designs employ any energy conservation
technique and in the second experiment we assume both of
them employ an energy conservation technique called sentry
selection [7], which is implemented in conjunction with duty
cycle scheduling. In case of Bundles, this technique is imple-
mented in such a way that sentry selection is performed by
the base stations and duty cycles of the nodes are configured
by the base stations by control messages.

When no power management techniques are used, both
the designs present the same power consumption patterns. In
case of sentry selection with duty cycling, Figure 8 presents
the detection probability, as a function of the duration for
which the network has been deployed. We observe that the
network lifetime (defined as the number of days for which
the detection probability of a target remains greater than
90%) using Bundles is only 83.9% of the lifetime using
Vigilnet (the lifetime is 73 days for Bundles and 87 days for
Vigilnet). The reasons that Bundles consume more energy
than Vigilnet are: first, Vigilnet uses node to node communi-
cation, while in our design, all operations involving multiple
nodes go through a central process; second, Vigilnet uses
data aggregation, while in case of Bundles, all nodes report
directly to the central process through the base station; third,
during the daily rotation, Vigilnet floods a single message to
initiate the sentry selection, while we must send several uni-
cast messages to each node, one by one. Although Bundles
consume more energy than the traditional distributed appli-
cations as in this example, the achieved lifetime is still ac-
ceptable.

6 Conclusion
In this paper, we present a group based abstraction called

Bundle for cyber physical systems. Characteristics of Bun-

dles include easy and concise across networks programming,
support for both intra and inter network mobility and mul-
tiple applications using same sensors and actuators concur-
rently. Evaluations show that application programming is
concise and energy consumption is also acceptable. Memory
usage for each device is constant regardless of the number of
concurrent applications. In the future, we hope to extend
Bundle design to support in network aggregation and local
processing within Bundles.

7 Acknowledgements
This work was supported, in part, by NSF Grants CNS-

0626632 and IIS-0931972.

8 References
[1] C. Borcea, C. Intanagonwiwat, P. Kang, U. Kremer, and L. Iftode. Spatial pro-

gramming using smart messages: Design and implementation.In ICDCS, pages
690–699, 2004.

[2] C. Curino, M. Gianni, M. Giorgetta, A. Curino, A. L. Murphy, and G. P. Picco.
Tinylime: Bridging mobile and sensor networks through middleware. InPer-
Com, pages 61–72, 2005.

[3] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler. Design of a wireless
sensor network platform for detecting rare, random, and ephemeral events. In
IPSN, pages 497–502, 2005.

[4] D. Gay, P. Levis, R. V. Behren, M. Welsh, E. Brewer, and D. Culler. The nesc
language: A holistic approach to networked embedded systems. InPLDI, pages
1–11, 2003.

[5] O. Gnawali, K.-Y. Jang, J. Peak, M. Vieira, R. Govindan, B. Greenstein, A. Joki,
D. Estrin, and E. Kohler. The tenet architecture for tiered sensor networks. In
SenSys, pages 153–166, 2006.

[6] T. He, J. A. Stankovic, R. Stoleru, Y. Gu, and Y. Wu. Essentia: Architecting wire-
less sensor networks asymmetrically. InINFOCOM, pages 1184–1192, 2008.

[7] T. He, P. Vicaire, T. Yan, Q. Cao, G. Zhou, L. Gu, L. Luo, R. Stoleru, J. A.
Stankovic, and T. F. Abdelzaher. Achieving long-term surveillance in vigilnet.
In INFOCOM, pages 1–12, 2006.

[8] D. Jacobi, P. E. Guerrero, I. Petrov, and A. Buchmann. Structuring sensor net-
works with scopes. InEuroSSC, 2008.

[9] J. King, R. Bose, H.-I. Yang, S. Pickles, and A. Helal. Atlas: A service-oriented
sensor platform: Hardware and middleware to enable programmable pervasive
spaces. InLCN, pages 630–638, 2006.

[10] N. Kothari, R. Gummadi, T. Millstein, and R. Govindan. Reliable and effi-
cient programming abstractions for wireless sensor networks. SIGPLAN Not.,
42(6):200–210, 2007.

[11] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler. Tinyos: An operating system for
sensor networks. InAmbient Intelligence. SpringerLink, 2005.

[12] S. Madden, R. Szewczyk, M. J. Franklin, and D. Culler. Supporting aggregate
queries over ad-hoc wireless sensor networks. InWMCSA, pages 49–58, 2002.

[13] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb: an ac-
quisitional query processing system for sensor networks.ACM Trans. Database
Syst., 30(1):122–173, 2005.

[14] L. Mottola and G. P. Picco. Logical neighborhoods: A programming abstraction
for wireless sensor networks. InDCOSS, pages 150–168, 2006.

[15] Y. Ni, U. Kremer, and L. Iftode. Spatial views: Space-aware programming for
networks of embedded systems. InLCPC, pages 258–272, 2003.

[16] F. Sun, C.-L. Fok, and G.-C. Roman. schat: A group communication service
over wireless sensor networks. InIPSN, pages 543–544, 2007.

[17] P. A. Vicaire, Z. Xie, E. Hoque, and J. A. Stankovic. Physicalnet: A generic
framework for managing and programming across pervasive computing net-
works. InRTAS, 2010.

[18] M. Welsh and G. Mainland. Programming sensor networks using abstract re-
gions. InNSDI, pages 29–42, 2004.

[19] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood:a neighborhood
abstraction for sensor networks. InMobiSYS, pages 99–110, 2004.

Application Name Application Description NLC
(1) TempSensorCensus
(2) TempSampler
(M)

These applications find (1) all temperature sensors or (2) a particular temperature sensor of a remote network. (1) 12
(2) 10

SpyBug
(M C)

This application tracks the location of a list of tags and records it 20

LowEnergyAlert
(M C)

This application makes sensor nodes that lack energy ring when a staff member (who wears an identifying tag)
responsible for changing batteries wanders within 50 meters.

22

AcousticDetector
(M)

This application stores the location of all the acoustic sensors of a network, as well as the amount of noise they sense. 18

Illuminator
(A)

This application turns on all the lights of a remote network. 9

OneSensorPerRoom
(C)

For each room of a building, this application shows the name of the room and the temperature sensed by a single
temperature sensor in that room.

22

(1) AverageTemp
(2) AverageHumidity
(3) AverageNoise
(M C H)

Compute and show average (1) temperature or (2) humidity or (3) noise in a remote network. For the second case, it
sends an alert to the user if there are less than 10 sensors available for computing the average. For the last case it uses
two types of sensors having different interfaces manipulated seamlessly by a reusable adapter.

(1) 13
(2) 14
(3) 18

BimodalOccupancy
(M)

This application checks whether a remote hangar is occupied. By default it uses motion sensors but if the number of
motion sensors available is less than a specified number, it uses acoustic sensors instead.

32

(1) RoomTemp1
(2) RoomTemp2
(3) RoomTemp3
(M C)

These applications show the temperature sensed by the nodes contained in the room where a specified tag is placed.
The displayed temperatures are always (1) the ones in the same room as the tag or (2) the ones in that particular room
or (3) the ones that were initially in that room. In all these cases the tag and the sensors can be mobile and new sensors
can be added in the system.

(1) 18
(2) 19
(3) 20

ConsiderateSensing
(M)

This application shows the temperature sensed in a remote area using only nodes that have sufficient energy reserves. 22

FloodWarning
(H)

This application monitor water levels and displays alerts on nearby road message boards in case of a flood. 24

(1) OnlyWhenInRoom
(2) OnlyWhenEnergy
(3) OnlyWhenIdle
(4) OnlyWhenAtHome
(5) OnlyWhenDark
(6) OnlyWhenNoTV
(7) OnlyWhenWClose
(M U H)

These applications can dynamically change reading rights (1) to the acoustic sensors so that they can be accessed only
when in a conference room, (2) to the temperature sensors so that they can be sampled only when there is enough
energy left, (3) to the accelerometers of a set of laptops so that they can only be read when idle, or (4) writing rights of
the light actuators so that they can be modified only by users at home, or (5) only when the average light intensity is
less than a threshold, or (6) can resolve conflicts between radio and TV so that radios within 200 meters of a TV can be
turned on only is the TV is off, or (7) between air conditioners and open windows so that air conditioner vents can be
opened only when window is closed.

(1) 17
(2) 19
(3) 17
(4) 17
(5) 19
(6) 16
(7) 16

(1) PhotoAlarm
(2) FireAlarm
(M A)

This application turns on (1) all the sounders in a room if the average light intensity or (2) temperature in that room
exceeds corresponding threshold.

(1) 21
(2) 21

ParkingSpaceFinder
 (A)

This application finds a free parking space in a parking lot, and reserves that space. 20

RoomOccupancy
(M)

This application uses acoustic sensors to infer whether remote rooms are occupied. A room is considered occupied if at
least two acoustic sensors have been triggered in the last 10 minutes.

31

Tracker
(M U H A)

This application turns on television sets, music players, and lights wherever the user of a tag goes near, it also resolves
possible conflicts.

30

NeighborWatch
(M U C H A)

A set of neighbors contribute to a neighborhood watch and wear tags. If not tags are in a given house, all the
accelerometers, and light sensor in that house are turned on. A buzzer on all the tags is turned on to alert all the
neighbors in case accelerators are moved or light intensity changes are detected.

56

AntiThiefTags
(M H A)

In each room of a building, this application records the position of tagged objects when it starts. If any object is moved,
all the alarms in that room are raised until the object is returned to its place.

26

AutoLocks
(A)

This application automatically opens locks when any authorized users is within 1 meter of the lock and closes them
when no authorized user is within one meter of the lock.

17

TempRegulator
(A H)

This application automatically configures an air conditioned unit according to the current average temperature of a
building. Also, it closes and open vents according to the average temperature in each room.

33

 Figure 4. Examples of Applications Written Using Bundles with Corresponding Number of Lines of Code (NLC). The
meaning of the tags are defined as follows: M–mobility aware,A–includes actuators, C–across network programming,
U–multiple users, and H–heterogeneous devices.

