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Abstract

Speech Emotion Recognition (SER) is an important task since emotion is a primary dimension in human communica-
tion and health. It has a wide variety of practical applications such as assessing the mood of callers to an emergency
call center and as a diagnostic tool for therapists. Since most of the SER models in the literature are trained with
clean noiseless data and non noise-robust input features, they are not very useful in real world conditions where noise
is almost always present. Although there are methods to reduce these adverse effects of noise, a systematic analysis
of these methods in the context of SER is lacking. In this paper several different methods to mitigate adverse effects
of noise on CNN based SER are developed and analyzed. The SER models trained on the Berlin Database of Emo-
tional Speech were tested with clean data and data mixed with 10 different noise types at different noise levels with
signal to noise ratios of 10,15,20,25,30 and 35. We show that the noise robustness of SER models can be improved
by combining the magnitude spectrogram with the modified group delay spectrogram, by including synthetic noise
in the training data, and by using an attention mechanism. When trained with noisy data, the models trained with
the combined input saw a 10% increase in average accuracy than the models using individual inputs and not trained
with noise. Adding the attention mechanism to the previous model further improved the accuracy by 5%. Finally, by
training and evaluating on the RAVDESS dataset, we demonstrated that the noise robust methods developed can be
generalized into other datasets and emotions. We achieved an average accuracy of 81% on RAVDESS dataset under
noisy conditions.
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1. Introduction

Emotion is a mental activity and can be expressed through voice, facial expressions, etc. These emotion expres-
sions form an important part in human communication and health. According to [1] emotions are a primary moti-
vational factor for humans. Emotions can affect a person’s perceptions, actions, brain, circulatory systems, health,
etc. For example strong anger or fear can raise heart rate by 40 to 60 beats per minute. Therefore, emotions are a
contributing factor for medical and mental health problems. Also, research suggests that if emotions like anger, fear
and guilt are not attenuated in time, they could cause various mental health problems. Fear or anxiety is accompanied
by changes in corticosteroid levels in the blood which is related to numerous physiological processes [1] such as stress
response and immune response.

Automatic emotion recognition (AER) can be used to understand emotions of people [2] and is necessary for
interaction between human and machines such as robot health assistants [3]. There are many applications for emotion
understanding in health such as diagnostic tools for therapists, helping caregivers of dementia patients, helping post
traumatic stress disorder patients, assessing the emotional state of callers to a emergency call center, and even outside
of health such as to assess emotional state of drivers in cars [3] and for media [4].

AER systems can be built around different modalities such as visual and auditory. Visual AER systems use
cameras and considers the visual aspects of human emotions (for example facial features). Auditory systems on the
other hand use microphones and try to determine the users emotional state from their voice. In this research we focus
on auditory systems which can be generally called Speech Emotion recognition (SER) systems. They can be applied
where cameras are not available and/or not appropriate (for example due to privacy reasons). For instance, when
assessing the emotional state of a caller to an emergency call center the visual modality is usually not available.



One of the weaknesses of the state-of-the-art SER systems is they are very sensitive to noise. These noises are
caused by other sound producing sources in the vicinity of the SER system which can corrupt the speech signal the
SER system is analysing. But only very limited amount of research was performed addressing this problem in the
context of SER. Therefore, in this paper, we develop, analyze, compare and propose several potential solutions to
solve this problem.

Convolutional Neural Network (CNN) models were used for SER since they have the state-of-the-art performance
in the literature. Several spectrogram based feature types as inputs to the CNN models were used, compared and
combined in this study. All of these spectrograms were obtained by performing Discrete Fourier Transformation
(DFT) on the speech signals. Traditionally, SER models use only magnitude spectrograms for audio classification.
But in this study we also use Modified Group Delay (MGD) spectrograms [5] and unwrapped phase spectrograms
obtained with python package scipy [6].

The main contributions of this paper are:

1. Majority of state-of-the-art SER models are CNNs and use magnitude spectrogram as the input. But perfor-
mance of these models degrade significantly with background noise. There are evidence from literature that
Modified Group Delay (MGD) may be robust under noise. We combine magnitude spectrogram with MGD
spectrogram and show that the Fully Convolutional Neural Network (FCNN) models trained with this com-
bined input is more robust to noise than just using magnitude spectrogram. We perform initial experiments on
the Berlin Database of Emotional speech. Using other techniques such as training with artificially added noise
and attention mechanism alongside the combined input we show that an average improvement of 15% accuracy
(F1 of 0.16) can be obtained under noisy conditions when compared to a traditional model which only uses
magnitude spectrogram as input.

2. We show that including synthetic noise in the training data improves the noise robustness of all the models
considered. Interestingly, the model with combined magnitude and MGD spectrograms as inputs saw a larger
improvement than those used individual spectrogram inputs. Doing this step improved the accuracy by 10%
(F1 by 0.11) over the model which used magnitude spectrogram alone and did not train with noisy data.

3. Including an attention mechanism to the FCNN model with combined input and training with noisy data also
improved the noise robustness by an accuracy of 5% (F1 by 0.05). We also provide evidence that attention
mechanisms can ignore noisy data sections of speech and pay more attention to important and cleaner sections
of the speech.

4. Our best model showed an average accuracy of 76% (F1 of 0.73) over all the noise levels (Signal to noise ratios
from 10 to 35 and clean speech) and all the noise types considered. If the performance under AWGN is consid-
ered our model had an accuracy of 76% over all the noise levels (including clean speech). This performance is
a significant improvement over the model mentioned in [7] which reports an accuracy of 56%.

5. The above results were obtained with the Berlin Database of Emotional speech. Next the best fine-tuned model
architecture, noise robust features and the hyperparameters chosen from those steps were used and trained on
the RAVDESS dataset [8]. This model obtained an accuracy of 91% (F1 - 0.91) under clean speech and 81%
average accuracy (F1 - 0.81) under all noise types and levels considered. This shows that our solution can be
generalized to other datasets and emotions.

The remainder of this paper is organized as follows. First we discuss some related work and preliminaries in
section 2. Next, we discuss the methods and solution framework that was used in Section 3. Then, we present the
experiments and results in Section 4. A discussion and conclusions are presented in Sections 5 and 6.

2. Related work and preliminaries

2.1. CNNs for SER
Deep learning has become the state-of-the-art of many audio classification tasks including SER [2]. Within the

deep learning domain, CNNs have become popular for computer vision tasks [4]. But if any set of features can be
represented as images or stack of images (multi dimensional arrays), CNNs can be used to classify them. Magnitude
spectrograms obtained via Discreet Fourier Transformation (DFT) of audio signals is commonly used as the input to
CNNs in audio classification solutions. Because spectrograms are 2D images, the audio classification problem may



be treated similar to a regular image classification problem using a CNN [4] [9] [3] [10]. [10] showed that CNNs
are better suited than Deep Neural Networks (DNN) and Long Short-Term Memory (LSTM) networks for the SER
problem. Although it is not straightforward to compare state-of-the-art models in SER due to the variety of datasets
and evaluation methods, CNNs seems to be performing better than other types of classifiers for SER.

2.2. Inputs for CNNs

In terms of CNNs various types of inputs qualify for the task of SER. [11] found evidence that frequency domain
features are better suited than time domain features for acoustic event classification using deep learning. Various
frequency domain inputs such as DFT components [11], magnitude spectrograms [12] [3] [13] [9] [14] [10] [15] [16]
[2] [17] and wavelet features [18] have been used in the literature. Spectrograms can retain more information than
most hand-crafted features and are low dimensional than raw audio [9] and are one of the most commonly used feature
types for audio related tasks.

Spectrograms are obtained by performing Discrete Fourier Transformation (DFT) on the audio signal. DFT of a
signal around the sample n can be represented by

Xn(ω) =

+∞∑
m=−∞

x(n)w(n−m)e−jωm (1)

Here the frequency of the component Xn(ω) is ω and w is a windowing function. Xn(ω) is a complex number and
can be represented in terms of magnitude and phase angle as.

Xn(ω) = |Xn(ω)|ejarg[Xn(ω)] (2)

Here arg[Xn(ω)] is the angle between imaginary and real parts.
If DFT of a signal was taken with sliding windows a distribution of frequency characteristics along time axis can

be obtained. This is called a spectrogram. If the magnitude part |Xn(ω)| from equation 2 is used, this is called the
magnitude spectrogram. If the part arg[Xn(ω) is used, it is called a phase spectrogram. To recreate the original signal
from the DFT components, both magnitude and phase parts of the signal should be used [19].

But traditionally only the magnitude spectrogram is used and the phase spectrogram is ignored [20]. This is mainly
due to the fact that the phase is discontinuous due to mathematical problems occurred when calculating the inverse of
trigonometric functions. A simple correction called phase unwrapping should be performed to mitigate this problem.
Researchers are beginning to explore the effectiveness of the phase based features for various tasks such as speech and
speaker recognition. They found that combining magnitude with phase spectrogram improves the performance [21] of
SER systems. [22] deals with detecting gunshots from audio data. They calculate statistical features from magnitude
and phase spectrogram of the audio signal and conclude that combining these features improves performance than just
including features from the magnitude spectrogram. [23] lists different phase representations those are being used in
literature. They are relative phase shift, time-frequency derivatives of phase, phase dispersion and phase distortion.

Modified Group Delay (MGD) is another quantity that has seen a recent rise in usage. It combines magnitude and
phase components of the signal. There exists some research that investigate the effectiveness of MGD for speech and
speaker recognition. But only a limited number of literature investigate this for emotion recognition. Research shows
that MGD performs better than traditional features for whispered emotion recognition [5]. Modified Group delay can
be calculated using the DFT. Let

y(n) = nx(n) (3)

Here x(n) is the nth sample of the speech signal. If X(ω) and Y (ω) are the Fourier transformations of x(n) and y(n)
at any given n
Define

τ ′(ω) =
XR(ω)YR(ω) +XI(ω)YI(ω)

|Sc(ω)|2γ
(4)

HereXR and YR are real parts ofX and Y . XI and YI are imaginary parts ofX and Y . To obtain Sc(ω), first squared
magnitude |X(ω)|2 of the signal x(n) is obtained and then it is cepstrally smoothed. Modified Group Delay (MGD)



can be obtained as follows.

τ(ω) =
τ ′(ω)

|τ ′(ω)|
(|τ ′(ω)|α) (5)

In these equations α and γ are parameters where (0 < α ≤ 1) and (0 < γ ≤ 1). These parameters should be tuned
depending on the application. Obtaining MGD with a moving window yields a MGD spectrogram.

Although many frequency domain feature types are being used in literature, their comparative performance and
the reason to choose a particular feature type is rarely studied [24]. But there is evidence that different features can
yield different performance levels. Even slightly changing the representation of features can change the performance.
For example, [17] use CNNs for snore sound classification. They input magnitude spectrograms obtained with 3
different color maps. Different color maps gave different performance.

Previous studies have considered combining different feature types as inputs to deep learning based audio classifi-
cation models. [14] [21] and [18] found that combining various frequency domain features improved the performance
of their audio classification models. There are different methods to combine feature types as inputs to CNN models.
[14], [25] and [26] combines each different spectrogram as a different channel when they are input to the CNN. This
is similar to the way R,G and B channels are treated in RGB images. Different from this method, [21] and [26]
concatenates two different spectrogram representations side-by-side to form a single image. Although it is intuitive to
assume that different methods of combining the features may yield different results very limited research is done in
this regard.

2.3. CNNs accepting variable input sizes
The height of a spectrogram depends on the range of frequency considered and the length depends on the time

interval considered. Since people may speak utterances of variable length, an emotion classification models should
have the capability to handle inputs with variable lengths. But traditional CNNs only accept a fixed size of input.

One method to overcome this is to combine a CNN with a Recurrent Neural Network (RNN) model [2] [4] [13].
In these studies the CNN acts as a feature extractor and the RNN (in this case it is a LSTM) layer learns the time
sequence relationships in these features. [2] showed that combining CNN with LSTM better performance can be
obtained than just using a CNN. This may be due to the fact that LSTM can model the sequential characteristics of
the input.

Another method to handle variable input lengths is to use a Fully Convolutional Neural Network (FCNN). A FCNN
does not explicitly model the sequential nature of the input. Instead it considers the whole input (of variable length)
and make inferences. A FCNN can be generated starting from a traditional CNN by replacing all fully connected
layers with convolution layers. This can also be beneficial because it reduces the number of trainable parameters in
the CNN. [27] uses FCNN for spoken emotion recognition task and saw that it outperformed a model which combined
CNN and LSTM.

2.4. Performance under noise
SER systems can be adversely affected by environmental distortions. Noise and reverberation are two main sources

of distortions that could degrade the quality of the audio signal. Reverberation depends on the characteristics of the
environment that the sound is produced. Noise is generated due to sound sources other than the one we are interested
in. When the distance form the speaker to microphone increases, increased noise relative to signal can be observed
[28]. Noise and reverberation can affect the original clean speech signal as shown in equation 6.

y(t) = h(t) ∗ s(t) + n(t) (6)

Here h(t) is the room impulse response between the microphone and the speaker. s(t) is the clean speech and n(t)
is the background noise. * is convolution operation. Note that reverberation is represented as convolution with the
original signal. Noise is represented as addition [29].

Studying both reverberation and noise for SER is important because both of these distortions can affect SER
systems in an adverse manner. Previous studies have attempted to study/reduce these effects from both noise and
reverberation. For example [30] studied the effects of reverberation and [28] studies the effects of both noise and
reverberation for SER. [16] use CNN with amplitude spectrograms as input and observed performance degradation
when noise is added to the inputs. [12] use magnitude spectrogram and provides reasoning for spectrograms may be



better for handling noisy data. [31] studies the effects of the distance to the microphone from the speaker on a SER
system because increasing the distance also increases the amount of noise with respect to that of the signal.

In this study we aim to find solutions for the adverse effects of noise on SER systems. Although the problem
of reverberation is also very important, certain solutions for that problem can be obtained easier than the problem
of noise. For instance, if we have prior knowledge that the SER system will operate in a certain environment (e.g.
living room of a house) it can be assumed that majority of the living rooms have similar reverberation characteristics.
Therefore if the SER system was trained with data recorded in living rooms, this SER may be able to solve the
problem of reverberation for operation inside similar living rooms. The problem of background noise on the other
hand is harder to solve. Although there are certain types of noises such as air conditioner which is present in most
of the house holds, there are many other unpredictable noises such as a noise of a vehicle outside the house or a ring
of an alarm. Therefore it is not realistic to assume that all the possible noise conditions can be known beforehand.
Therefore we focus on solving the problem of background noise in this study.

2.5. Methods to mitigate effects of noise

Several methods can be used to reduce the adverse effects of noise on SER systems. Some of these methods are
described below.

One method is to remove the noise from raw speech signal or calculated features. This is generally called speech
enhancement. Several main categories of speech enhancement can be identified from literature. They are spectral
subtraction based [13], subspace based, statistical-model-based, Wiener-filter based algorithms [32] and de-noising
autoencoders [33] [34]. The aim of this research is to find noise robust features, CNN architectures and methods of
training them. Once these are found, speech enhancement can also be applied on top of our solution to further improve
the performance. Future studies may be necessary to quantify these further improvements.

The second method is using features which are robust to noise. Some features are more robust to reverberate
and noisy conditions than others [28]. According to [35] different frequency domain features may have varying
robustness for noisy data for speech recognition task. The noisy environments they consider are background music,
white noise and reverberate environments. [35] use 1st and 2nd derivative of Mel-Frequency Cepstral Coefficients
(MFCC) features for speech recognition. They found that including the derivatives of MFCC features improves
performance in both noisy and quiet environments. [19] described MGD which is calculated using both magnitude
and phase of the Fourier transformation of the signal. MGD is analytically shown to be robust under additive noise
[36] [19] [37]. Practically, features calculated with MGD is shown to be robust under noise for speech recognition
[37] [19] and for voice activity detection [36]. We explore this dimension in this study. Only a very limited number
of research is done regarding noise robust features in the context of SER. We explore the noise robustness of several
DFT based features and their combinations.

The lack of performance of models under noisy conditions can be attributed to the difference between training and
testing data distributions. Researchers have tried to reduce this problem by trying to bring the training data distribution
closer to that of the testing data by artificially injecting noise or reverberations to the training dataset. [28] and [30]
utilize this method to improve model performance under reverberate conditions. The same methods can be applied to
noisy conditions. Limited number of research is done exploring this dimension with regard to SER systems. In this
study we explore the effect of adding synthetic noise to training data on the noise robustness of these models.

There are evidence that certain NN architectures are more robust to noise than others. For example [38] shows
that CNN with attention mechanisms could be more robust to noise compared to other types of models (e.g. LSTM).
Attention mechanism used with CNNs can be used to improve the model performance by teaching a model to explicitly
pay attention to important parts of the input and to ignore unimportant parts. [39] used attention mechanism with a
CNN for image captioning tasks and observed an improvement in performance. Similar models can be used for SER
[27]. [27] uses FCNN with attention mechanism and saw an improvement of performance compared to other models.
But a detailed analysis on the noise robustness of CNNs with attention mechanism was not performed in the literature.
In this research we implement an attention mechanism for a Fully Convolutional Neural Network (FCNN) and show
that adding the attention mechanism improves the noise robustness properties of the model.



3. Methods and solutions

The aim of this study is to find features, training procedures and model architectures that are robust to noise for
the task of SER. This section describes the methods used to achieve this, problems faced and solutions.

3.1. Data Sets
For the first sections of this study audio speech from the Berlin Database of Emotional Speech is used [40]. It

contains around 500 utterances spoken in German. The emotions happiness, anger, anxiety/fear, disgust, boredom,
sadness and neutral are present in the dataset. First the hyperparameters of the models were tuned and appropriate
input features were selected using the Berlin dataset. Afterwards the model with those hyperparameters and input
features were tested on the speech audio data from the RAVEDESS dataset [8]. This dataset contains two intensities
of emotion expression; strong and normal. Only the strong emotional expressions were used. For this study, the
emotions calm, happy, sad, angry, fearful and surprised were used from the RAVDESS dataset. 575 utterances were
present in the selected data from RAVDESS.

3.2. Noise
Noise types used. Different types of noise can affect the performance of a SER system. But an analysis of SER

performance under different noise types is not performed in an adequate manner in the literature. Therefore, a set
of 9 common indoor noises were selected for this study from the Freesound Dataset [41]. They are the sounds of
crickets, alarms, kettle whistling, rain, steps (person walking), thunder with rain, traffic noise, vacuum cleaner, and
air conditioner. In addition, additive white Gaussian noise (AWGN) was used.

These noise types are selected because they are very common sources of noises in indoor environments. For
example, air conditioner may be always on during summer. Also sounds with various characteristics were selected.
For example, unlike air conditioner hum, steps is of intermittent nature and alarm sound has a higher frequency.

Additive white Gaussian Noise. This kind of noise can be added (arithmetic element-wise addition) to the
signal. Also its mean value is zero (randomly sampled from a Gaussian distribution with mean value of zero; standard
deviation can vary). It contains all the frequency components in an equal manner. AWGN is easier to model and
easier to generate. Since AWGN contains noise equally in all the frequency bands, researchers (e.g. [42]) use it to
approximate different types of noises and to compare the performance of different models and features.

The SER models trained during this study were evaluated with all of these noise types. It is hypothesized that a
model which is competent under these noise conditions will be able to handle a wide variety of indoor noise types
which are not used here.

Signal to noise ratio. For the experiments in this study, one of the qualities that was evaluated is the performance
of a classifier under noisy conditions. Signal to noise ratio (SNR) is a method to quantify how much noise it present
in a signal. For the purposes of this study, signal is the speech. Noise is one of the noise sources described in the last
section. SNR can be defined as follows.

SNR = 10log(
RMS2

signal

RMS2
noise

) (7)

where RMSsignal is the RMS value of signal and RMSnoise is that of noise. log represents the logarithm of 10. In
the experiments performed, noise was added to the clean signal at different SNR levels and the performance of models
were observed.

3.3. Feature selection
Magnitude spectrogram is the most commonly used input type for CNN based SER systems. So, it will be included

in this study. Since there are evidence suggesting including phase information makes models perform better, we also
use unwrapped phase spectrogram as an input. Also, since modified group delay (MGD) was theoretically proven to
be robust to noise as described in section 2.5 we include MGD spectrogram in our study. All 3 of these input types
are Fourier transform based.

Different input types and their combinations may have different noise robustness characteristics. Therefore, mod-
els were trained taking each of these input types and some of their combinations as inputs and their performance under
noise is compared. This way, the best performing input types/input combinations can be selected.



3.4. Creating the FCNN architecture
To find the best CNN architecture for each feature type, the auto ML package Autokeras [43] was used. To build

the classifier with Autokeras, ImageClassifier class with max trials = 20 and fit function with epochs = 20 were
used. An interesting observation is that the optimum CNN architecture found by Autokeras was the same for all the
situations (Different input types and their combinations). After obtaining a CNN architecture, it was converted into
a FCNN by replacing all the fully connected layers with convolutional layers. The architecture is shown in Table 1.
Note that there are 7 filters in the last convolutional layer. These filters correspond to the 7 different emotion classes
in the Berlin dataset which is used in initial experiments.

Table 1: FCNN architecture

Layers
conv2D 32 3x3 1
Activation relu
Max Pooling 2x2 2
conv2D 64 3x3 1
Activation relu
Max Pooling 2x2 2
conv2D 16 3x3 1
Activation relu
Dropout 0.5
conv2D 7 3x3 1
Global Average Pooling
Activation softmax

3.5. Calculating spectrograms
First, start and end silence sections were removed from voice samples. All the voice samples were re-scaled so

they will be between [−1, 1]. Then features were calculated from these samples. Note that the length of these voice
samples varied since FCNN can handle variable length inputs. Note that MGD has the parameters α and γ from
Section 2.2. After some trial and error α = 0.6 and γ = 0.5 was selected and kept constant throughout this study.

The input types used are magnitude, MGD and unwrapped phase spectrograms. To calculate these, the voice
signal was broken into blocks of desired length (depending on the desired DFT window length) and then applied a
hamming window. Afterwards DFT was performed. From the DFT results, magnitude, MGD and unwrapped phase
were calculated. DFT was performed with python library scipy.

DFT window length. Different lengths for the blocks (this is called DFT window length in this study) were
chosen. The frequency and time resolution of the spectrograms depend on the chosen DFT window length. Larger
lengths results in higher frequency resolution and lower time resolution and vice-versa. Therefore different DFT
lengths may react to various noises in different ways. The noise performance of the models may depend on the DFT
window length chosen. These lengths are chosen to be 25 ms, 50 ms, 75ms and 100ms. A separate model for each of
these DFT window lengths were trained.

3.6. Combining Input spectrograms
The goal of this section is to find the effects of combining different inputs on noise robustness of SER. It is

hypothesized that different methods of combining different inputs may yield varying levels of SER performance and
combining inputs may provide better results than just using individual inputs. To test this some input types were
combined in two different ways and compared.

Two different methods of combining two feature types were used in this study. They are combining them as
different channels of an image (called comb1) and combining them side-by-side (called comb2). Figure 1 shows the
two methods of combining feature types. If both Feature 1 and Feature 2 are 2D arrays of dimension h ∗ w, the
dimension of comb1 would be h ∗ w ∗ 2 and dimension of comb2 would be h ∗ 2w. A CNN can be trained using
regular methods with both of these input types.



Figure 1: Combining Features

Figure 2: comb2 with AWGN
Figure 3: comb2 with noise at several frequency bands

3.7. Model training

All the FCNN models were trained with Keras deep learning library with the optimizer adam. The starting learning
rate was 0.001. To train all the FCNN models except under batch training in section 4.5 and when training on
RAVDESS in section 4.8 batch size of 1 was used because keras can only have fixed length inputs in the same batch.
For details on the batch training refer section 4.5. Learning rate was decayed by 1 ∗ 10−6 once every epoch. Class
weights were used while training due to the class imbalance. These class weights were inversely proportional to the
number of instances present in each class.

3.8. Model testing

In the initial experiments, for each feature and DFT window length 10 fold cross validation was performed on the
Berlin Database of Emotional Speech. First each model was evaluated under clean speech test set. In order to evaluate
the noise robustness of these models, they were evaluated under clean speech clips mixed with various noise types at
various noise levels (measured by SNR). SNRs used are 10, 15, 20, 25, 30 and 35. For example when evaluating a
model under noise of crickets, cricket noise was mixed to the original clean test data set at different SNRs. The same
procedure was performed for all the different noise types including AWGN. Afterwards the model accuracy and F1
score was obtained. F1 score is used to report most of the results because it is more useful for evaluating datasets with
class imbalance. For the RAVDESS dataset, train data was prepared with 80% of the data and testing was performed
on the rest. Procedure for testing under noisy conditions was identical to that of the Berlin dataset.

3.9. Training with noise

One reason that the models perform worse on the testing data is that the distributions of train and test data are
different. If models are trained with clean speech and used in real world noisy environments, the model performance
degrades because the test data contains noise which was not present in train data. To bridge this gap, noise may be
included in the training data. It is hypothesized that by injecting noise to training data, the performance of the model
on test data under noise can be improved.

To prepare the training data, 3 data sets were generated from the clean speech data. One is the clean speech data
itself. A second data set was prepared by injecting AWGN of SNR 40 to clean speech. Figure 2 shows one instance
of these samples. A third data set was created by injecting random noise at several random frequency bands. Figure 3
shows one of the samples with this type of noise. Note that Figures 2 and 3 show magnitude and MGD spectrograms
combined together with the method comb2.



Figure 4: Magnitude spectrogram with cricket noise
Figure 5: Magnitude spectrogram with alarm noise

3.10. Adding attention mechanism

Figure 6: Attention Mechanism

An attention mechanism was added as shown in the Figure 6. It func-
tions according to equations 8 and 9. This attention mechanism is influ-
enced by and modified from the one in [39]. [39] implements the attention
mechanism for a traditional CNN architecture with fully connected layers.
This had to be modified to fit FCNN which only contains convolution lay-
ers as feature extractors. A convolution layer is used for extracting attention
weights. There was no previous research done regarding combining FCNN
models with attention mechanism and evaluating its noise robustness. Al-
though [39] used both spatial and channel-wise attention this study only
uses spatial attention due to increased complexity involved in implementing
both types of attention at the same time. Due to the smaller nature of the
datasets used in this study, it can be imagined that increasing the number of
model parameters will increase over fitting.

B = sigmoid[conv2Datt(A)] (8)

C = A ∗B (9)

Attention mechanism can be used to teach the model in an explicit way to focus on relevant sections of the input
and ignore irrelevant parts in the time-frequency space. The motivation behind using attention mechanism to create
noise robust SER models is that certain noises affect localized regions in the time-frequency space. For example
Figures 4 and 5 show voice clips mixed with cricket and alarm sound. Majority of these noises are contained in some
particular frequency ranges. Alarm noise in this example corrupts a narrow frequency range around 2.1KHz. Cricket
sound has corrupted some lower frequencies and higher frequencies around 4-5KHz. If the model learns through
attention mechanism to focus on clean sections of the input and ignore the noisy regions it is hypothesized that the
model will be more robust to these types of noises.

4. Experimental Results

4.1. Training FCNN

The FCNN architecture shown in Table 1 was trained with spectrograms generated from voice recordings of
variable lengths. Figures 7, 8 9 and 10 shows the performance of the FCNN models under various levels of noise.
The SNRs used are 10,15,20,25,30 and 35 as mentioned in section 3.8. In Figures 7, 8 and 9 at each SNR, the average
performance of each model under all of the noise types mentioned in section 2.2 are shown. A separate model was
trained for each DFT window length and feature type. The DFT window length used is shown in the legend. Figure 10



Figure 7: Performance of magnitude models under average noise Figure 8: Performance of MGD models under noise

Figure 9: Performance of phase models under average noise

Figure 10: Comparative performance under all types of noises

shows the performance breakdown under different noise types for the best model trained under each feature. For each
of these noise types the average performance under the various SNR were taken.

Figure 7 shows the mean accuracy of the FCNN model trained with magnitude spectrogram as input. The model
trained with DFT window length of 75ms shows the best overall performance under noisy conditions. Under clean
speech, it shows an F1 score of 0.71. Interestingly the worst performing model under noise (25ms model) performs
best under clean speech. The performance levels of all the models drop significantly with the addition of noise.
Figure 8 shows the performance of the MGD model. 50ms model shows best performance under noise and clean
speech. It shows an F1 score of 0.75 under clean speech. Figure 9 shows the performance of the model which uses
phase spectrogram as input. The best overall performance was achieved when DFT window length is 75ms and was
0.42 under clean speech. Figure 10 compares the best models from each feature. Here the magnitude, MGD and phase
features were derived using DFT window sizes 75ms, 50ms and 75ms respectively.

From these plots it can be seen that different features may have different performance for clean speech and under
various noise levels. Also using different DFT window length may yield different performance both for clean and
noisy speech. The DFT window length which gives the best performance under clean speech may not be a good
choice for SER under noisy speech. From the features evaluated in this section, MGD shows the most significant drop
of performance going from clean speech to noisy speech. For example the performance of the 50ms MGD model
drops from 0.75 to 0.49 when going from clean speech to speech with SNR of 35. But its performance is very stable
around 0.50 until SNR is 15. From Figure 10 it can be seen that for certain noise types MGD performs better and for



Figure 11: performance of comb1 models under noise Figure 12: performance of comb2 models under noise

the others mag is better. MGD performs better under noise types air conditioner, rain, vacuum cleaner and white noise.
Note that these noise types are more similar to white noise and corrupts broad frequency bands when compared to
other types of noises used here. Phase always performs the worst under all the noise types. Therefore only magnitude
and MGD features were selected for further analysis. From this section it can be seen that not only magnitude but
also phase based features like MGD can be used for SER. MGD models perform better than magnitude spectrogram
models under certain types of noises.

4.2. Combining spectrograms

Next the effects of combining different input types to FCNN were studied. These input types were combined
according to two methods (comb1 and comb2) as discussed in section 3.6. From the previous section it can be seen
that the performance may depend on the selected DFT window length. So for each combination method different DFT
window lengths were used to train and validate the models.

From Figure 11 it can be seen that the DFT window length 50ms performs better for combination method comb1.
Under clean speech comb1 model with 50ms DFT window length yields a F1 score of 0.81. For comb2, 25ms is the
best DFT window length as can be seen from Figure 12. The performance of this model under clean speech is 0.8.

Next the best models for magnitude spectrogram, MGD spectrogram, comb1 and comb2 input types were com-
pared. Figure 13 and Figure 14 shows the relative performance of these models. Figure 13 was obtained by taking
the mean performance of the best magnitude, MGD, comb1 and comb2 models over different SNR under all the noise
types. Values in Figure 14 were obtained by taking the mean value of performance under all SNRs under individual
noise type.

Although the best performing model under clean speech is comb1 which gives a F1 score of 0.81 according to
Figure 13, it never performs the best at any noisy condition (see Figure 14). Also comb1 is very sensitive to noise
since its F1 drops to 0.51 under a little addition of noise having a SNR of 35. Therefore, we can safely eliminate
comb1 from further consideration. According to Figure 13, the mag model shows an F1 score of 0.71 under clean
speech. It has the best performance under noisy conditions among all the models until SNR drops to 20. But from
Figure 14 it can be seen that comb2 model performs the best when we take the mean performance over all the noise
types. Also a different kind of model may be the best one under a different noise type.

From the results of this section, it can be concluded that by combining phase based features such as MGD with
magnitude, models more robust to noise can be built (compared to model just using magnitude as input). Also different
methods of combining features can have different levels of noise robustness. Under these conditions comb2 method
seems significantly better than comb1 method of combining magnitude and MGD features.

4.3. Training with noisy data

Previously, all the models were trained with just clean data. In this section the effects of training with noisy data
is studied. Three best performing models from previous section (mag, MGD and comb2) were selected and retrained



Figure 13: comparative performance of models under noise

Figure 14: comparative performance of models under noise

Figure 15: Improvement when training under noise Figure 16: Mean performance when training under noise

with data mixed with artificial noise as mentioned in section 3.9. When trained with noise, mag, MGD and comb2
models were named noise mag, noise MGD and noise comb2. Figure 15 shows the improvement obtained by training
with noise for each model. This figure shows the average performance under all noisy conditions and all SNRs. All
the models saw an improvement when trained with noise. F1 score of magnitude model improved from 0.57 to 0.59.
MGD model improved from 0.53 to 0.61 and comb2 improved from 0.58 to 0.68.

Figure 16 shows the mean performance of models under all the noisy conditions under various SNRs. The model
trained with magnitude spectrograms perform the worst in general and noise comb2 performs the best. Figure 17
shows the performance of the models under all the different noise types. For each noise type, the average over all the
SNRs were taken. It can be seen that noise comb2 performs the best for each and every individual noise type.

From the results of this section, it can be concluded that training with artificial noise, the noise robustness of SER
models can be improved. Furthermore, the improvement is greater when the model takes both magnitude and MGD
inputs compared to just using one of them. One other interesting observation from Figure 17 is that noise comb2 is
the best model under all the different types of noises used. From experiments in previous sections it can be observed
that no model was performing the best under all the noise types like this. Therefore these results show evidence that
by training under noise and using both magnitude an MGD as inputs we can build SER models that are robust to many
different types of indoor noises.



Figure 18: Improvement when under attention model

Figure 19: Mean performance under attention

4.4. Incorporating attention mechanism

Figure 17: Performance when training under noise

To test the effectiveness of the attention mecha-
nism, several models from the previous section were
chosen and attention mechanism was added to them as
described in section 3.10. Magnitude was not consid-
ered in this section because it was the worst perform-
ing model from previous section. All the models in this
section are trained with noise as mentioned in the pre-
vious section. In addition to that, attention mechanism
was incorporated. The models with attention mechanism
are called att noise MGD and tuned att noise comb2.
These models use MGD and comb2 features respec-
tively. tuned att noise comb2 was fine tuned to increase
the performance. During the fine tuning process, sev-
eral filter sizes and number of filters were tried and the
fine tuning was performed with the validation accuracy
value of clean data. No such fine tuning was performed
on att noise MGD. The reasoning behind just choosing the com2 model for fine tuning is that from the previous
section it was seen that noise comb2 performs the best under all different noise types and levels. Therefore it was
assumed that com2 model will perform better with the added attention mechanism and fine tuning.

From Figure 18 it can be seen that the average F1 score of MGD model improves from 0.61 to 0.64 after adding
attention mechanism. tuned noise att comb2 performs the best. This comb2 model improved from 0.68 to 0.73. From
Figure 19 it can be seen that for clean speech, this model shows a F1 score of 0.85.

Figure 20 shows the per emotion performance of tuned noise att comb2. These values are taken by averaging the
F1 scores over all the different SNR levels and noise types per each emotion.

This section provides evidence that incorporating attention mechanism to CNN based SER systems can improve
its robustness to noise. This may be due to the ability of attention mechanism to focus on important sections of the
input and ignore the rest.

Figure 21 compares the performance of the model tuned att noise comb2 with the model W-WPCC from [7].
They use an importance-weighted support vector machine to classify features based on sub-band spectral centroid
weighted wavelet packet cepstral coefficients. [7] evaluates their model only under AWGN conditions. Therefore
Figure 21 shows the performance of both models only under AWGN. Our model performs better under both clean and
noisy speech. Note these results use accuracy instead of F1 score because [7] only reports accuracy. For clean speech,
tuned att noise comb2 performed at an accuracy level 86% and W-WPCC was 73%. Under speech of SNR of 20,



Figure 20: Per emotion performance Figure 21: Comparison with W-WPCC model from [7]

Figure 22: Comparison of batch training and instance wise training
Figure 23: Comparison of batch training and instance wise training

our model performed at 72% and W-WPCC performed at 52%. If the average performance under all the noise types,
SNR from 15 to 35 and clean speech is considered, W-WPCC performs at accuracy of 56% and our model performs
at 76%. Note that [7] uses noise robust features. But they do not employ other techniques such as training with noise
or attention mechanism.

4.5. Effects of batch-wise training

This section explains the effectiveness of batch training of the tuned att noise comb2 model. Here the model
batch tuned att noise comb2 was trained batch-wise. During earlier experiments, all the models were trained with
batch size of 1 since Keras does not allow variable input sizes in the same batch even with FCNN. During batch
training, for each batch the inputs were cropped into a randomly chosen length (along time axis). So all the samples
in a batch had the same size. The evaluation procedure is the same as before. After a few trail-and-error experiments,
a batch size of 16 was selected. Figure 22 and Figure 23 compares the F1 scores obtained via batch training and
instance wise training. From Figure 23 it can be seen that the average performance of batch training under lower
noise levels (SNR ≥ 20) is significantly better than that of the instance wise trained model. According to Figure 22
the mean performance improves from 0.73 to 0.76 when trained batch-wise. But interestingly the batch trained model
performs worse than the instance trained model in certain noise conditions such as white noise and kettle noise. Batch
trained model is much better than the instance model under some noise conditions such as thunder and traffic noise.
Therefore this batch trained model may be useful under certain noise conditions.



Figure 24: Improvement comparison of different methods Figure 25: Improvement comparison of different methods

Figure 26: comb2 with silence Figure 27: Attention map

4.6. Comparison of various methods on noise robustness
This section presents the effectiveness of various methods used to improve noise robustness and their comparison.

Figure 24 shows the accuracy levels of the models trained with just using magnitude (mag), comb2, com2 model
trained with noise and comb2 model with attention trained with noise. Taking mag model as a baseline, using com-
bined features (mag and MGD) improved the accuracy by 1%. Using combined features and training the model with
noise improved the accuracy by 10%. Using comb2, noise in training data and also incorporating attention mechanism
improved the accuracy by 15%. From Figure 25, these value in F1 score are 0.01, 0.11 and 0.16. From these results it
can be seen that combining magnitude and MGD spectrogram and training the model with noisy data have the biggest
impact on building a noise robust model.

4.7. Operation of attention mechanism
Attention mechanism explicitly instructs the CNN model to focus only on important sections of the input features.

This can be demonstrated by few examples. Figure 26 shows one example input to the classifier. There are silent
sections in this speech clip. The silent sections are not important for classification of emotions. Figure 27 shows the
attention map when the input is passed through the model tuned att noise comb2. It can be seen that the attention
mechanism has given less weights to the silent sections. Before training the models, the silent sections were removed
from start and end of the speech data. Therefore, the model did not have an opportunity to experience silent sections.
This might explain the model still paying some attention to silent sections.

Figure 28 shows another possible input to tuned att noise comb2 model. In this input, some sections are hidden.
These rectangular ’hidden’ sections contains random noise. When this input is passed through the model, the gener-
ated attention map is shown in Figure 29. It can be seen that the model pays less attention to the the corrupted sections
of the input. Furthermore, it can be seen that the MGD section does a better job of doing this. This gives evidence that
the attention mechanism may be capable of handling data with missing/corrupted sections. For example, imagine a
section of the input is corrupted with some noise. Certain noises are limited only to a certain range of frequencies and
times as mentioned in Section 4.4. These types of noises might create artifacts which can be approximated by rect-
angular sections in Figure 28. Figure 29 provides evidence that attention mechanism may be able to handle situation
similar to this.



Figure 28: comb2 with corrupted sections
Figure 29: Attention map

Figure 30: Per noise type performance on RAVDESS

Figure 31: Average F1 on RAVDESS at various SNR levels

4.8. Evaluation on the RAVDESS dataset

The model in which hyperparameters were fine tuned on the Berlin dataset was used to train and evaluate on the
RAVDESS dataset. The training was performed with batches as described in section 4.5. A subset of emotions were
selected as mentioned in section 3.1. Since we used 6 emotions, the FCNN architecture was modified to accommodate
that. Therefore, the last convolution layer of the FCNN had 6 filters instead of 7. All other hyperparameters were
kept unchanged. Figure 30 shows the mean performance of the model under all the different SNR levels, but under
different noise types. From this diagram it can be seen that the model has a mean F1 score of 0.81. This value is the
performance of the system under all SNR levels and noise types considered. It can also be seen that kettle noise has the
lowest level of performance which is 0.68. Alarms and steps noises have the highest performance which is 0.88. This
is similar to the results from Berlin data set as can be seen from Section 4.4. This provides evidence that disturbances
like alarms and step noises can be handled easily with our SER solution. But noises like kettle whistle noise are harder
to handle for these systems. Figure 31 shows the model F1 values under different SNR values. These values were
averaged over all the different noise types. The model shows F1 values of 0.91 under clean speech. Figure 32 shows
the same evaluation results in terms of accuracy. It shows an accuracy of 91% under clean speech. Figure 33 shows an
emotion wise breakdown of model F1 values. Here the average F1 was taken over all the SNR levels and noise types.
From Figure 33 it can be seen that sad is the lowest performing emotion while calm performs best. Although the
types of emotions used in training Berlin dataset if different from RAVDESS, certain common emotions are present
in both datasets. The performance on these emotions differ in the two models. This may be due to the difference in
the training data, difference in the emotions and randomness involved in the training process. Therefore, the we can
conclude that the performance of each individual emotion may depend on these conditions and should be taken into
consideration when using these models for practical applications.



Figure 32: Average accuracy on RAVDESS at various SNR levels Figure 33: Per noise performance on RAVDESS

5. Discussion

From the results of this study it can be seen that the attention mechanism is capable of handling data with corrupted
sections. But the training data consisted only of simple and artificial noise. If it contained other real noise types, the
attention mechanism may have learned to deal with noise/corrupted data in a better manner. This hypothesis is yet to
be tested.

The main motivation for using the attention mechanism is that it is capable of ignoring irrelevant sections of
input and focus on the important sections. So, if the input consists of large sections of irrelevant data, the attention
mechanism should pay less attention to this input. Thinking in this direction, it can be hypothesized that the attention
layer by itself may be able to predict the uncertainty of the model. This has to be tested during future studies.

From figures 18 and 30 which explains the noise type performance of the models trained on Berlin and RAVDESS
datasets, it can be seen that both of these models show their lowest performance under kettle noise. This may be
evidence that SER systems created by the procedure we described are affected adversely by noises similar to the
whistle sound of kettles. Figure 34 shows the kettle noise we used mixed with one of the speech samples from
Berlin dataset. The time frequency characteristics of kettle noise are different from other noises in that the dominant
frequency of the kettle noise shifts in time. But when our models were trained with noise, the artificial noises that
were used only occupied a constant frequency ranges as can be seen from Figure 3. The low performance under kettle
noise may be due to the fact that the models have not seen noises similar to this while training.

Referring to section 4.5 it can be seen that the performance of the model trained with batches decreased under
white noise. This is in contrast to the performance under most of the other noise types where batch training improved
performance over instance wise training. This may be due to certain characteristics of batch training. When training
batch wise, the mean error it calculated per batch and then back propagated to update the weights. As explained in
section 3.9 white noise was added to speech samples while training. Since white noise corrupts all the frequency
ranges and time intervals in an equal manner, batch training might have cancelled the effect of white noise. Further
analysis of this phenomena should be performed.



6. Conclusion

Figure 34: Speech with kettle noise

This study analyzes several ways to
improve the performance of SER sys-
tems under noisy conditions. Magni-
tude spectrogram is the most common in-
put feature for state-of-the-art CNN SER
systems. But these are very sensitive to
noise. We show that by combining mag-
nitude spectrogram with modified group
delay spectrogram as inputs to CNNs, the
noise robustness of SER systems can be
improved. Also it was observed that adding artificial noise during training can make models more robust to real world
noises. Also, using CNN architecture characteristics like FCNN and attention mechanism can improve CNN based
SER models. We first used the Berlin Database of Emotional Speech to find the noise robust features, training proce-
dures, CNN architecture, and hyperparameters which perform well under noise. Then, we use these features, proce-
dures, CNN architecture, and hyperparameters to train and evaluate a model on the speech section of the RAVDESS
dataset.

Using the Berlin Database of Emotional Speech we showed that our final model with attention mechanism im-
proved performance over other models considered. The 10 fold cross validation accuracy of the final model was
86% (F1 - 0.85) under clean speech and the average accuracy under all the noise types and signal to noise ra-
tios considered was 76% (F1 - 0.73). The model trained on the speech section of RAVDESS dataset achieved an
accuracy of 91% (F1 of 0.91) under clean speech and average accuracy of 82% (F1 of 0.81) under all signal to
noise ratios and noise types considered. These results show that the noise robust features, training methods and the
particular FCNN architecture with the attention mechanism that we obtained can indeed handle noisy data for the
task of speech emotion recognition. Models trained and code used to produce results in this paper can be found at
https://github.com/sleekEagle/noise emotion.git
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