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Abstract. Accurate and reliable detection of activities of daily living
(ADL) is extremely difficult and it becomes even harder due to sensor
node failures caused by hardware degradation, node displacement, inac-
curate readings, and environmental changes. Once a fault is detected, we
propose to evaluate its severity by using data replay analysis to deter-
mine if this fault could have caused errors in the past. This approach
significantly decreases the number of necessary sensor repairs and main-
tenance dispatches.

1 Introduction

It is extremely difficult to guarantee continuous and reliable activity detection
in wireless sensor network (WSN) applications. A major challenge with activity
detection is that there are numerous sensors which are likely to move or exhibit
failures due to hardware degradation, inaccurate readings, and environmental
changes. These problems will be even more important in the future, as sensors
built into objects become more ubiquitous. As the numbers of sensors increase,
even a large mean time to failure (MTTF) per sensor can translate to small
MTTF for large groups. In addition, because of the inherent redundancy of
these systems, not all failures will be equally severe.

In this paper, we propose an approach to help maintain sufficient activity
detection accuracy in the presence of sensor failures. The key insight behind our
approach is that only those sensor failures that affect the high-level application-
level behavior of the system need to be repaired. The main difference between our
approach and others, such as [1–3], is that it uses a top-down failure detection
mechanism. Therefore, instead of detecting and reporting low-level hardware
faults, our approach relies on application semantics to determine the severity of
application-level faults. In addition, bottom-up approaches like those described
above that rely on analysis of the raw data, are not easily applicable to binary,
event-triggered sensors, such as motion sensors or reed switches.
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The basic approach is to constantly monitor the accuracy of activity detec-
tion at run time. If a failure occurs, we assess the severity of that failure by
determining its impact on the activity detection accuracy. If the detection ac-
curacy remains above a predefined threshold, a repair is not necessary. If the
detection accuracy deteriorates significantly, the system needs to react in one of
two ways: 1) It can update the existing classifier so that it no longer depends
on the failed sensor nodes, 2) If the accuracy still remains below the specified
threshold, maintenance should be performed.

We have performed preliminary evaluation using a publicly available dataset
[4]. Our results show that our approach significantly decreases the number of
node repairs and maintenance dispatches. We also compare the activity detec-
tion accuracy of different classifiers, such as naive Bayes, hidden Markov model
(HMM), and hidden semi-Markov model (HSMM), under node failures.

The expected main contributions of our work are that we would be able to
i) determine which nodes have failed, ii) maintain high ADL detection accuracy
even under node failures, and iii) substantially reduce the number of repairs and
maintenance dispatches. In this paper, we only discuss the last two contributions.
To the best of our knowledge, this is the first work to study the accuracy of
activity detection algorithms in the presence of sensor node failures.

2 Approach

We use the data set presented in [4]. This data set consists of sensor events and
activities for 28 days of a 26-year-old man living alone in a three-room apart-
ment where 14 switch sensors are installed. There are a total of 2120 sensor
events and 245 activity instances. The subject himself annotated seven differ-
ent activities that include Leave House, Toileting, Showering, Sleeping, Prepare
breakfast, Prepare dinner, and Taking a drink. We use this annotation as the
ground truth. Each day is divided into fixed-length timeslots and the activity
performed in each timeslot is classified based on the sensor firings within that
particular timeslot.

To calculate the accuracy of a classifier, we divide the entire data set into
training and testing sets, and train the classifier with the training set. We use
the trained classifier to label the activity during each timeslot of the testing
data. Then we calculate the M ×M confusion matrix C where M is the number
of different activities and Cij represents the number of timeslots that belong to
activity i (as specified in the ground truth) but are classified as activity j. From
this table, we calculate number of True Positives (TP), False Positives (FP), and
False Negatives (FN) for each activity. We define Precision = TP/(TP+FP) and
Recall = TP/(TP+FN). Finally, similarly to van Kasteren et al [4], we calculate
the F-Score using Equation (1). We use the F-score of each activity to measure
the accuracy of the classifier in detecting that particular activity.

F-score =
2 ∗ Precision ∗Recall

Precision + Recall
(1)
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After training a classifier, while using it for detecting an activity, we may
detect that one or more sensors are broken. In this work, we assume that we
can detect each sensor failure and our goal is to calculate the minimum number
of sensor repairs and maintenance dispatches so that the detection accuracy
remains acceptable. If we continue to use the same classifier when one or more
sensors fail, then the accuracy of the classifier may deteriorate, because we have
trained the classifier with data that includes events from the failed sensors. Our
approach is to dynamically update the classifier by re-training it with an updated
training set after detecting that n sensors have failed. We update the training set
by removing events from all of the n sensors that are currently broken. Then we
use this re-trained classifier for detecting the activity. When calculating accuracy
for n sensor failures, we construct training and testing sets for each of the

(
N
n

)
(N is the total number of sensors) combinations of n sensors being removed.
Then we calculate the F-score for each testing set and use it to evaluate the
accuracy of the classifier in detecting this activity when n sensors have failed.

If the accuracy for n sensor failures is within x% of the actual accuracy, we
consider this event of n sensor failures as insignificant to the classifier. Therefore,
we do not need to repair any sensor. Otherwise, at least one sensor needs to be
repaired. For such cases, for each of the

(
N
n

)
cases described above, we calculate

the minimum number of sensor repairs r (1 ≤ r ≤ n) so that after repairing r of
the n sensors, i.e. after including sensor events from these r sensors, the accuracy
rises within x% of the actual accuracy for this activity. For lack of space, we do
not describe the algorithm we use to efficiently calculate the number of minimum
repairs. We calculate r for each of the

(
N
n

)
combinations.

3 Experimental Results

Figure 1 shows a preliminary evaluation of our approach. We monitor the detec-
tion accuracy degradation of the Prepare breakfast activity when node failures
occur and determine the minimal number of necessary repairs. For this exper-
iment, we assume that nodes fail in a detectable way. We chose the Prepare
breakfast activity because of its complexity, as its detection is influenced by
seven sensors: microwave, cups cupboard, fridge, freezer, pans cupboard, and
groceries cupboard. We consider node repair to be necessary if the detection
accuracy drops below x% of the actual accuracy. In this experiment x = 30%.

When the baseline repair technique is used, a repair is necessary every time
a sensor node fails. Figure 1 shows the number of repairs when our approach is
applied. We can see that when we use a naive Bayes classifier, if one node fails,
we need to perform a repair in only 43% of the cases. This means that the failure
of only 3 of the 7 nodes affects the application behavior and it therefore con-
sidered severe. The number of necessary repairs gradually increases when more
nodes fail, but always remains smaller that the number of repairs required by the
baseline approach. For example, when all 7 sensors fail, our approach determines
that only 3 nodes should be repaired instead of 7. Figure 1 can also be used to
reason about the decrease in maintenance dispatches. A maintenance dispatch
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Fig. 1. Distribution of minimal number of repairs for activity Prepare breakfast. We
use three classifiers - naive Bayes (NB), hidden Markov model (HMM), and hidden
semi-Markov model (HSMM). Compared to a baseline, where a repair is necessary
every time a node failure occurs, our approach shows decrease in the number of repairs
and maintenance dispatches.

can be avoided when our approach determines that no repairs are needed. There-
fore, with a Naive Bayes classifier, the number of dispatches is decreased by 57%
when one sensor has failed, by 29% with two failed sensors, and so on.

Another observation we make is that there is a significant difference in the
number of repairs when different classifiers are used. The detection accuracy
degradation is worse with a naive Bayes classifier. HMM and HSMM show very
similar behavior and tend to perform better than Naive Bayes. The difference in
the performance of the classifiers changes with changing the threshold x. When
x is small, the performance gap between naive Bayes and the Markov models is
small, and they require comparable number of node repairs. With the increase
of x, the performance gap also increases.
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