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Abstract—Ubiquitous positioning for pedestrians in adverse en-
vironments has been a long standing challenge. Despite dramatic
progress made by Deep Learning, multi-sensor deep odometry
systems still pose a high computational cost and suffer from
cumulative drifting errors over time. Thanks to the increasing
computational power of edge devices, we propose a novel ubiq-
uitous positioning solution by integrating state-of-the-art deep
odometry models on edge with an EKF (Extended Kalman
Filter)-LoRa backend. We carefully select and compare three
sensor modalities, i.e., an Inertial Measurement Unit (IMU),
a millimetre-wave (mmWave) radar, and a thermal infrared
camera, and implement their deep odometry inference engines
to run in real-time. A pipeline for deploying deep odometry on
edge platforms with different resource constraints is proposed.
We design a LoRa link for positional data backhaul and project
aggregated positions of deep odometry into the global frame. We
find that a simple EKF backend is sufficient for generic odometry
calibration with over 34% accuracy gains against any standalone
deep odometry system. Extensive tests in different environments
validate the efficiency and efficacy of our proposed positioning
system.

I. INTRODUCTION

POSITIONING systems play a key role in human-centric
technologies. However, prevailing positioning systems,

such as satellite navigation and radio positioning, depend on
elaborate infrastructure as a prerequisite. Fingerprint-based
localization requires expensive site-survey yet is restricted to
a specific area. Recently, more research interests are drawn
to ubiquitous positioning that is environment-agnostic. Search
and rescue operation, underground inspection, and subter-
ranean environment exploration will all benefit significantly
from such positioning systems with limited or no access to
preinstalled access points.

The use of sensors has witnessed an outburst in the past
decade, such as the use of Inertial Measurement Units (IMU).
The IMU is a particularly low-cost, low-power motion sensor
which lends itself as a ubiquitous candidate in modern active
devices. Nevertheless, owing to its ego-centric nature the
IMU incurs a large amount of noise and intrinsic biases.
For instance, state-of-the-art Inertial Navigation Systems (INS)
which only rely on the IMU suffer from large drifting errors.
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Visual cameras, on the other hand, create rich visual data
from the surroundings. Visual Odometry (VO) based on either
feature points or direct tracking has demonstrated strengths in
ubiquitous positioning [11]. With the aid of Deep Learning
and visual-inertial data fusion, a sub-meter precision has been
achieved. However, VO faces challenges posed by visual
degradation such as smoke, glare, and darkness. For instance,
VO performs poorly in smoky environments. Emerging sensors
in conjunction with complex Deep Neural Networks (DNN)
are recently proposed to tackle these problems, namely ther-
mal infrared camera [16] and mmWave radar [18]. Thermal
infrared cameras are able to detect radiation of objects so
as to gain vision even in darkness. On the other hand,
mmWave radar generates sparse point clouds that can penetrate
smoke. Those sensor modalities make appealing alternatives
for positioning in adverse environments.

Despite the capabilities to infer position in adverse environ-
ments, sensor-aided positioning systems may have to process
the sensor data on the edge, especially when cloud or server
off-loading is not possible [9]. Conducting complex posi-
tioning algorithms of DNN on resource-constrained devices
remains non-trivial. Few studies have investigated the real-time
performance of applying these deep odometry systems [10].
Specifically, on-device computing is often confronted by a lack
of processing power, a lack of memory space, and a high
power consumption.

Odometry systems often find severe drifting problems be-
cause positions are aggregated based on relative positional
changes. To project a deep odometry positioning module to the
global coordinate system, a reference positioning mechanism
is needed. We propose to use a LoRa backend for not only ref-
erence positioning, but also wireless communications. LoRa,
a low-power wide-area-network modulation scheme, stands
out for its long range and easy deployment. Existing wire-
less technologies, such as Wi-Fi, LTE [1], Ultra-Wide Band
(UWB) [12] etc., require a mammoth project to setup base
stations. A LoRa access point (AP) can be a gateway or simply
another LoRa node. Time of Flight (TOF) or Angle-of-Arrival
(AOA) may be difficult to extract for positioning purposes
as synchronisation and hardware setup can be costly [2]. We
argue a device-free metric, the Received Signal Strength Indi-
cator (RSSI), is all one needs for positioning calibration [15].
The RSSI reading which comes with every received packet
can be used to reveal the range. Given excellent positioning
accuracy delivered by deep odometry systems in a short term,
we propose a generic EKF fusion of RSSIs to constrain the
odometry drift. The basic hypothesis is that with sparsely
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deployed LoRa APs, the coarse range estimates will be able
to calibrate the odometry in the long run.

In this work, we put forward a novel ubiquitous posi-
tioning solution, which integrates deep odometry on edge,
LoRa, and an augmented EKF, to pedestrian localization in
visually-degraded environments. We compare state-of-the-art
deep odometry systems in various aspects. We evaluate their
performance on edge platforms under resource constraints, and
propose a universal pipeline for deployment. Thereafter, we
propose a LoRa-EKF backend for positional data backhaul
as well as drifting error calibration. Our contributions are:
(1) We evaluate embedded multi-modality deep odometry
models for real-time positioning and propose best practices
for deployment under different resource constraints; (2) We
propose an EKF-LoRa backend for wireless backhaul and
positioning calibration projected in the global frame; and (3)
We validate the performance of the proposed solution on
various edge devices in different environments.

II. DEEP ODOMETRY ON EDGE FOR UBIQUITOUS
POSITIONING

Deep learning-based odometry systems have demonstrated
great potential in ubiquitous positioning [6]. However, their
high computational costs draw concern for real-time, real-
world feasibility. In this work, we encapsulate state-of-the-
art deep odometry models using emerging sensors that work
well in adverse conditions, namely IMU only, mmWave radar
+ IMU, and a thermal camera + IMU. We implement these
DNNs on edge computing platforms with different resource
constraints. In doing so, we design a pipeline of deploying
these models. We develop a generic EKF-LoRa backend
for positional data backhaul and projecting the ego-centric
positioning of odometry into the global coordinate system. We
find an augmented EKF fusion module, taking the odometry
and LoRa RSSIs only, are sufficient for positioning calibration.

A. Sensors and Deep Odometry

Ubiquitous positioning in adverse environments requires
sensors that persist in swift body motions, darkness, glare,
smoke, and extreme temperatures. We shortlist emerging
multi-sensor-aided deep odometry candidates with proven
capabilities in adverse environments, including IMU only
(IONet [3]), mmWave radar with IMU (milliEgo [14]), and
thermal camera with IMU (DeepTIO [16]). We design a
handheld device to hold these sensors as shown in Fig. 1. It
coaxially aligns a TI AWR1843 mmWave radar, a Flir Boson
640 thermal camera, and an Xsens MTi 1-series IMU (and
an RGB-D camera for reference). The IMUs are pervasive
in modern active devices to provide ego-motion sensing for
they are compact, low-power, and environment-agnostic. The
IONet [3] is a particularly light-weight learning-based DNN to
reconstruct 6-DoF translation and rotations, ỹ =

[̃
t, r̃

]
, ỹ ∈ R,

from raw IMU data.
The mmWave radar uses Frequency Modulated Continuous

Wave (FMCW) in which a linear chirp signal allows dis-
tance estimation from reflectors. State-of-the-art milliEgo [14]

Fig. 1: A 3D printed handheld device (could be mounted on a
helmet) to hold a mmWave radar, a thermal camera, an RGB-
D camera, and an IMU.

exhibits decent capability in estimating ego-motion, whilst
immune to visual degradation.

Thermal infrared cameras capture the radiation emitted from
objects in the Long-Wave Infrared (LWIR) portion of the spec-
trum. The strength of a thermal camera lies in its immunity to
illumination conditions allowing perceiving the object’s profile
under poor visibility. The state-of-the-art DeepTIO [16] model
incorporates motion, thermal, and RGB features to generate
robust positioning estimation.

We take the above deep odometry models as front end
candidates for our ubiquitous positioning system for their
demonstrated capabilities in ubiquitous positioning. These
deep odometry models, with proven robustness in different
adverse conditions, have drastically different computational
complexity. The next step is to deploy these deep odometry
candidates on edge devices for real-time inference.

B. Edge Deployment

DNNs are computationally expensive. For instance, there
are over 33 million parameters in milliEgo [14]. Its peak
RAM usage exceeds 2GB running in Keras with a TensorFlow
backend. Careful attention to the inference engine is vital to
success. The core of this is to create a pipeline of sensor
data fusion, synchronization, and the inference engine which
should be systematically optimized with a stable throughput.
Meanwhile, deep odometry models based on different sensors
could be developed in any Machine Learning framework to be
embedded in a variety of edge devices. Common deployment
methods are yet limited to a one-off network minimization
upon a specific piece of hardware, such as knowledge dis-
tillation [4]. Model compression methods, e.g., quantization,
compromise accuracy which hinders their usability in position-
ing systems. To facilitate a universal and lossless deployment
process, it is imperative to establish a pipeline that maximizes
interoperability for the deep odometry models.

We explore an existing toolbox provided by Machine Learn-
ing frameworks to deploy the deep odometry models on the
edge. We note the combination of Open Neural Network
Exchange (ONNX) [13] and TensorRT [5] makes an ideal
model compression pipeline. ONNX is a universal Deep
Learning framework that represents DNN in a universal format
initiated by Microsoft and Facebook. We integrate ONNX as
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Fig. 2: A high-level architecture of the proposed positioning
system. Sensor fusion and inference are performed on edge.
A server conducts post-processing, data storage, and visual-
ization.

an intermediate layer in our deployment pipeline to transfer
deep odometry models originally developed in other frame-
works such as Pytorch, TensorFlow etc. We use TensorRT,
an NVIDIA proprietary frameword, as the inference engine
vendor. TensorRT applies graph optimizations, layer fusion,
and finding the fastest implementation of a given DNN model.
This allows the deep odometry frontend to make full use of
the computational power on the edge if a GPU or a Deep
Learning Accelerator (DLA) is available.

Online sensor fusion and synchronization are accomplished
via ROS, a de-facto robotic framework which allows simple
system integration. A high-level diagram of the system inte-
gration via ROS is displayed in Fig. 2.

C. EKF-LoRa Backend

There is need to send pedestrian’s positional data back
to the server. We utilize LoRa for its long range in NLOS
transmission and a highly configurable bandwidth [7]. The
RSSI that comes free with each received LoRa packet provides
a means to render deep odometry positions to the global frame.
Thereby, it is of great importance to first derive a path loss
model to determine range from RSSI. We measured LoRa
RSSIs as a function of distance using SF from 7 to 11 in
an open area. We recorded over 1.1k LoRa packets per SF
in various LOS and NLOS scenarios. We find that SF 7 has
a larger gradient, ∂RSSI

∂d , implying a better range-indicative
sensitivity compared to SF 11. We also measured their average
air times in LOS condition when transmitting a 240-byte
message as shown in Table I. Large SFs come with longer
delays as well. As a result, we configure SF 7 for our LoRa
link.

Since a ubiquitous positioning system does not make a-
priori assumption of the environment, we adopt a generic
path loss model with an attenuation factor, n. The path loss

TABLE I: LoRa Air Time Benchmark

SF 7 8 9 10 11
Air Speed (Kpbs) 62.5 19.2 9.6 4.8 1.2

Air Time (s) 0.447 0.551 0.674 0.86 1.708

Fig. 3: LoRa path loss model at SF 7. Blue line shows the
regression result based on measurement; Light blue area marks
regression samples within the standard deviation; Dashed
green line shows an empirically scaled path loss model for
NLOS transmission.

model as a function of transmitter-receiver distance, d, can be
expressed as;

PL(d) = PL(d0) + 10n · log
(

d

d0

)
+ C (1)

where d0 is the reference distance, PL(d0) is assumed the
free space path loss at the reference distance in dB, and C
is a constant to calibrate bias. We take d0 = 1m as reference
and obtain a mean RSSI of −8.483 dBm. Given a transmitting
power of 22 dBm, it is determined PL(d0) = 30.483 dB.
The attenuation factor and bias are derived through polynomial
regression as shown in Fig. 3, in which the standard deviation
equals 4.887dB. To extract range from measurement, the RSSI
can be directly expressed as a function of distance as below;

RSSI(d) = −28.5737× log10(d)− 5.06 (2)

It is fair to assume the RSSIs are log-normally distributed.
The same applies to range. As a result, the measurement
standard deviation may also be used as RSSI observation error
in positioning fusion.

We argue that an EKF backend is sufficient in fusing the
deep odometry poses and LoRa RSSIs. EKF is not only robust
in handling non-linear motion modelling [8], but extremely
lightweight, thus, suitable for real-time systems. A rigid trans-
formation Tk,k−1 ∈ R4×4 of two consecutive deep odometry
poses from time k − 1 to k can be expressed as:

Tk,k−1 =

[
Rk,k−1 tk,k−1

0 1

]
(3)

where Rk,k−1 is the rotation matrix at time k, and tk,k−1 is
the translation matrix. Given a set of poses from the starting
position C0:k = {C0,C1, . . . ,Ck}, the current pose at time
k can be written as;

Ck = Ck−1Tk,k−1 (4)

Hence, the role of deep odometry is to calculate Tk

according to the inertial and exteroceptive sensors in order to
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Fig. 4: An overview of online data flow and integration of the
augmented EKF.

restore the path C0:k [11]. To this end, the goal of the EKF-
LoRa backend is to minimize the disparities, ε, of ranges from
M anchors and the deep odometry pose by deriving a posterior
Ĉ. For time k, this can be written as:

εk = argmin
Ĉk

M∑
m=1

|∥Ck − pm∥ − dm| (5)

where pm is the pose of the m-th anchor, and dm is the
distance from the m-th anchor denoted in Eqn. 1.

In this work, we consider the positioning fusion in the
2D domain for simplicity. We specify the current pose as
system state and RSSIs as observation with respect to the EKF.
The system state is constantly updated by new observations.
The schematic diagram is shown in Fig. 4. The system
state, comprising 2D coordinates (x, y) and azimuth heading
direction θ, can be represented by x = [x, y, θ]T . The state
transition and measurement equations can be expressed as:

xk = f (xk−1) + ωk−1 (6)

zk = h (xk) + νk (7)

where ωk−1 is the process noise with covariance Q, zk is the
measurement vector, and νk is the measurement noise. Given
the 6-DoF deep odometry pose represented in a 4-by-4 affine
transformation matrix, Ck, at time k, the initial pose can be
defined as, I4×4, with a starting position (i1,4 = x0, i2,4 = y0).
The aggregate pose follows Eqn. 4.

As a result, the prior state which can be extracted from Ck

contains relative 2D position, current yaw angle, and the RSSIs
from M anchors, denoted as ξx, ξy , ξθ, and γi, respectively:

We assign a large initial error covariance, P0 =
diag [10, 10, 1], to allow convergence from an unknown start-
ing position. We specify the error covariance of observation
as δ = 4.887, derived from LoRa measurements, which holds
for all observations.

We note that deep odometry errors are correlated with a
high body turning speed [6]. Since σx and σy are associ-
ated with translation only, we assign small error covariances,
σx = σy = 0.15, to minimize error from experiments. On
the other hand, the error covariance of heading is correlated
to turning velocity. We augment the EKF by associating the

error covariance of heading, σ2
θ , to current angular velocity at

time k;

ωk =
dRk,k−1

d△t
(8)

where △t is the frame interval. Hence, we make the error
covariance of the heading as a function of ωk;

σ2
θ = 10 ·

(
1− e−0.2·∥ωk∥

)
(9)

In doing so, we realize stable accuracy gain in real-time tests
with various turning speeds. Since RSSIs are noisy, we apply
a weighted average filter to smooth the RSSIs so as to stabilize
range estimates. Given a series of RSSIs observed at time k,
γ, the filter can be written as:

γk =

λ∑
i=0

γk−i ·
1

λ
(10)

where the window size λ = 4. An RSSI can be expressed as
a function of range according to Eqn. 2;

γi = α·log
(√

(x− xi)
2
+ (y − yi)

2
+ (0− zi)

2

)
+β (11)

where α = −28.5737 × C, β = −5.06, and pi = [xi, yi, zi]
are the i-th known anchor coordinates. Thereafter, the Jacobian
matrix can be derived from H = ∂h

∂x

∣∣
x̂k

.

III. EVALUATION

For a fair comparison, we collected 8 hours of synchronized
thermal, mmWave radar, and IMU data to train the three
candidate odometry models, respectively. A 10% split is used
for validation, and another 20% is used for testing. We
labelled the multi-sensor data based on a Vicon system and
a Velodyne HDL-32E LiDAR which delivers sub-decimeter
accuracy. We trained IONet, milliEgo, and DeepTIO, at 10
FPS for 200 epochs according to the authors’ suggestions to
get their optimal models. We setup six SX1262 LoRa modules
with Raspberry Pi 4s as transceivers. Whenever receiving a
packet, a LoRa receiver node predicts an RSSI, in dBm with
1dB resolution. We carried out a series of tests in uncharted
environments to validate the proposed positioning system.

A. Accuracy and Robustness

To evaluate the performance, three experiment scenarios are
chosen including a square-shape corridor, an office with no
light on, and an outdoor car park in which the experimenter
walked in and out of a ground-floor apartment at night. Four
to five LoRa anchors were deployed surrounding the walking
paths.

The Root-Mean-Square Errors (RMSE) of the aforemen-
tioned experiments are shown in Table II, Table III, and Ta-
ble IV, respectively. Without EKF-LoRa backend, i.e., ‘Anchor
= 0’, IONet incurs large drifting errors; MilliEgo and DeepTIO
remain resilient in all three testing scenarios. It indicates that
standalone milliEgo produce decent accuracy comparable to
DeepTIO.
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Fig. 5: Trajectory of a two-round search along corridors and
entering and exiting a dark room. The ground-truth path is
marked in grey; Blue path indicates using milliEgo only; Red
path indicates fusion of milliEgo and LoRa RSSIs; Light green
circles specify range estimates derived from the path loss
model.

Fig. 6: Trajectory of a search in a ground-floor apartment
and an outdoor car park; The ground-truth path is marked
in grey; Blue path indicates using milliEgo only; Red path
indicates fusion of milliEgo and LoRa RSSIs; Light green
circles specify range estimates derived from the path loss
model.

An EKF-LoRa calibrated trajectory in comparison to using
milliEgo alone in the office test is shown in Fig. 5. The
calibrated and original trajectories using DeepTIO in car
park test are shown in Fig. 6. Notice the accuracy finds
decent increment with even one anchor which verifies our
hypothesis. As more RSSIs from different LoRa anchors are
taken into positioning fusion, better accuracy is generally seen
for all deep odometry candidates. Given three anchors IONet,

milliEgo, and DeepTIO see an average of 69%, 34%, and 36%
accuracy gains, respectively. This demonstrates the efficacy
of our proposed positioning system in different environments
based upon any deep odometry frontend. When there are more
than three anchors, the benefit of having more LoRa anchors
becomes more and more marginal.

B. Edge Platform and Latency

Common low-power edge platforms are single-board com-
puters that are CPU-only and constrained in computational
power. In contrast, latest higher-end edge devices have on-
board GPU and deep learning acceleration with the capability
of a desktop workstation. We take the selection of device into
consideration and investigate runtime performance of three
different edge devices: Raspberry Pi 4, NIVDIA Jetson TX2,
and NVIDIA Jetson AGX Xavier. The latency benchmark
results are shown in Table V. It can be seen the Jetson AGX
Xavier delivers the lowest latency overall. It makes 10 FPS
achievable for complex DNNs such as DeepTIO. The Jetson
AGX Xavier is also the only platform currently supporting
TensorRT framework. The Jetson TX2, with fewer GPU cores
and no deep learning acceleration, poses moderate latency.
Despite a resource-constrained device, Raspberry Pi 4 realizes
possibilities to run IONet at 5 FPS which sheds light on low-
cost ubiquitous positioning solutions.

C. Odometry Selection and Frame Rate

Lightweight deep odometry systems are more desirable for
real-time applications on edge. Similarly, a low frame rate
linearly reduces the computational burden. We investigate the
effect of halving the original training and inference frame rate
of the deep odometry candidates. The results are shown in
Table VI. We repeat the corridor and car park tests using
gapped sensor data stream recorded. It can be seen the
accuracy of either deep odometry model deteriorates at 5 FPS.
Nevertheless, milliEgo at 5 FPS pertains a decent tracking
accuracy which lends itself a power-efficient choice under
extreme resource constraints. Overall, we believe mmWave
radar with IMU makes an optimal positioning solution in
adverse environment in terms of both accuracy and efficiency.
Note the DeepTIO results at 5 FPS are not presented since it
does not converge well with a lower sample rate.

IV. CONCLUSION

This paper presents a novel edge-deployable ubiquitous
positioning system based on deep odometry and an augmented
EKF-LoRa backend. We reveal the feasibility of utilizing deep
odometry to infer position in real-time under various resource
constraints. We design a universal pipeline of deploying an
arbitrary deep odometry model on the edge. To bring odometry
positions to the global frame and mitigating drifting errors,
we propose a generic EKF-LoRa fusion module. We find a
consistent accuracy gain, over 34%, across all deep odometry
tests conducted.
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TABLE II: RMSE (m) among IONet, MilliEgo, and DeepTIO on three-round search along a square-shaped corridor

RMSE (m) Anchor = 0 Anchor = 1 Anchor = 3 Anchor = 4 Anchor = 5Test i Test ii Test i Test ii Test iii Test iv Test i Test ii
IONet 17.603 12.87 13.975 6.741 5.679 9.559 9.04 5.731 6.024 4.03

MilliEgo 3.202 2.628 3.033 2.067 2.437 2.15 3.768 2.687 2.404 1.959
DeepTIO 3.517 3.461 2.977 2.024 2.858 1.95 2.146 1.713 2.052 1.612

TABLE III: RMSE (m) among IONet, MilliEgo, and DeepTIO on entering and exiting a dark office

RMSE (m) Anchor = 0 Anchor = 1 Anchor = 3 Anchor = 4Test i Test ii Test Test i Test ii Test iii Test iv
IONet 15.237 12.674 12.835 8.979 9.956 8.33 10.031 6.231

MilliEgo 3.574 2.798 2.634 2.394 3.203 3.142 2.312 2.617
DeepTIO 3.122 3.223 2.841 2.034 2.676 3.055 2.971 2.629

TABLE IV: RMSE (m) among IONet, MilliEgo, and DeepTIO on wandering in a ground-floor apartment and a car park at
night

RMSE (m) Anchor = 0 Anchor = 1 Anchor = 3 Anchor = 4Test i Test ii Test Test i Test ii Test iii Test iv
IONet 20.609 15.882 13.09 13.214 16.348 14.653 14.484 12.477

MilliEgo 3.789 3.012 3.116 3.385 2.849 2.826 3.48 3.063
DeepTIO 3.682 3.598 3.746 2.411 2.586 2.71 2.542 2.346

TABLE V: Inference latency benchmark

Mean Latency (ms) NIVDIA Jetson AGX Xavier NVIDIA Jetson TX2 Raspberry Pi 4
IONet Keras with TensorFlow backend 21.9 75.3 110

MilliEgo
Keras with TensorFlow backend 25.8 57.9 379

ONNX-Runtime 10.4 141 N/A
TensorRT serialized engine 3.5 N/A N/A

DeepTIO Keras with TensorFlow backend 71.9 237 10676
TensorRT serialized engine 21.1 N/A N/A

TABLE VI: Effect of Frame Rate to Deep Odometry

RMSE (m) Corridor Apartment and Cap Park

IONet 5 FPS 21.04 35.464
10 FPS 17.603 20.609

milliEgo 5 FPS 6.277 4.483
10 FPS 3.202 3.789
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