
CityResolver: A Decision Support System for Conflict Resolution in Smart Cities

Meiyi Ma, John A. Stankovic, Lu Feng
Department of Computer Science,

University of Virginia,
Charlottesville, VA, 22903, USA

Email: {meiyi, stankovic, lu.feng}@virginia.edu

Abstract—Resolution of conflicts across services in smart
cities is an important yet challenging problem. We present
CityResolver – a decision support system for conflict resolution
in smart cities. CityResolver uses an Integer Linear Program-
ming based method to generate a small set of resolution options,
and a Signal Temporal Logic based verification approach to
compute these resolution options’ impact on city performance.
The trade-offs between resolution options are shown in a
dashboard to support decision makers in selecting the best
resolution. We demonstrate the effectiveness of CityResolver
by comparing the performance with two baselines: a smart
city without conflict resolution, and CityGuard which uses
a priority rule-based conflict resolution. Experimental results
show that CityResolver can reduce the number of requirement
violations and improve the city performance significantly.

Keywords-Conflict Resolution, Safety and Performance Re-
quirements, Signal Temporal Logic, Smart City, Smart Services

I. INTRODUCTION

Advances in technologies such as the Internet of Things
have transformed the way cities operate. For example, sen-
sors and actuators on streetlights are installed and used to
gather information about traffic, street parking and pollution,
to adjust LED streetlights to save energy, and to estimate
the size of crowds in responding to public disturbances [1].
Various smart services are built to improve the performance
and efficiency of smart cities across different domains (e.g.,
transportation, energy, healthcare). It is estimated that a
smart city can generate revenue and cost savings of $2.3
trillion globally through 2024 [2].

In our previous work [3], we identified different types
of conflicts among smart services and their severe safety
consequences. We also proposed CityGuard [4], a watchdog
architecture to detect and resolve conflicts. More recently,
we show some preliminary results [5] in the runtime mon-
itoring of smart city safety and performance requirements
using Signal Temporal Logic (STL). However, most of our
efforts so far have been focusing on conflict detection, while
conflict resolution remains an open problem. CityGuard and
other solutions [3], [6], [7] adopt a simple approach to
conflict resolution by only accepting actions with the highest
priority and rejecting others, which does not account for the
adaptive policies of action priorities and optimal resolution
for city requirements.

Nevertheless, resolution of conflicts across services in
smart cities is very complex. The requirements objectives in
smart cities are often expressed vaguely in natural language
and are potentially conflicting. For example, a resolution
that satisfies the requirement of reducing traffic congestion
may actually violate another requirement of maintaining
noise levels. There is often no best resolution and/or one
cannot satisfy all objectives, which implies that trade-offs
must occur. In addition, priorities of smart services and
actions may be adaptive to the current state of the city.
For example, resolving conflicts of traffic congestion may
be more urgent at rush hours than at other times. Moreover,
there are uncertainties in the state of the city, in human
behaviors, and the impact of the resolutions (in time and
space). The scale of smart cities and services also makes
it challenging to search for an optimal resolution from an
enormous solution space.

In this paper, we present CityResolver – a decision support
system for conflict resolution in smart cities. CityResolver
uses a novel Integer Linear Programming (ILP) based
method to generate a small set of candidate resolution
options. The ILP-based method makes it more efficient
to search for optimal resolutions from an exponentially
growing number of possible resolution choices, and it con-
siders adaptive policies of service priorities that change
as a function of context. CityResolver then checks these
resolution options’ impact on city performance using a
Signal Temporal Logic (STL) based verification approach.
Formalizing city requirements expressed in natural language
using STL specification helps to resolve the vagueness of
requirement objectives. The verification is performed on
predicted traces of future city states, which are generated
from the simulation of executing resolution options in the
smart city. The simulation also accounts for uncertainties
and disturbances in the city (e.g., weather and scheduled
events). Given a resolution option, the STL-based approach
verifies if the predicted city states violate city requirements.
It computes the degree of requirement violations based
on three different metrics: (1) the robustness value, (2)
the percentage of time when violations occur, and (3) the
integral of signal deviations. CityResolver provides a trade-
off analysis of different resolution options’ effects on various
city requirements. The results are plotted on a dashboard

to support decision makers to choose the best resolution.
We apply a prototype implementation of CityResolver to
a case study of a simulated smart city based on the map
of lower Manhattan, New York. We demonstrate the ef-
fectiveness of CityResolver by comparing the performance
with two baselines: a smart city without conflict resolution,
and CityGuard which uses a priority rule based conflict
resolution. Experimental results show that CityResolver can
reduce the number of requirement violations and improve
the city performance significantly.
Contributions. The major contributions of this paper are:

1) Design, implementation and evaluation of CityRe-
solver – a decision support system for conflict res-
olution in smart cities.

2) An Integer Linear Programming based method to
generate resolution options.

3) A Signal Temporal Logic based verification approach
to compute smart city requirement violation degrees
using three different metrics.

Paper Organization. The rest of the paper is organized as
follows. We introduce an motivating example of a smart
city and its services in Section II, and describe an overview
of CityResolver in Section III. Then, we present the ILP-
based method for generating candidate resolution options in
Section IV and a STL-based approach for computing option
trade-offs in Section V. We demonstrate the usefulness
of our proposed system via experimental evaluations in
Section VI. We survey the related work in Section VII and
draw concluding remarks in Section VIII.

II. MOTIVATING EXAMPLE

In this section, we describe an example of smart services
and their conflicts, based on a map of the lower Manhattan
district in the New York City (Figure 1). We assume that
there are 10 different smart services in this district, which
are overseen by a smart city operations center. We only
introduce four services here, and list all ten services in
Table I (see Section VI). S1 is a smart traffic service, which
can control traffic signals in street intersections to relieve
congestion and optimize or improve traffic performance. S2
is a smart emergency service, which can request green traffic
signals in order to transport patients in critical conditions to
hospitals as soon as possible. S3 is a smart accident service,
which can block a street where some accident occurs and
alert nearby vehicles to detour. S4 is a smart infrastructure
service, which can schedule infrastructure check-up and
repair appointments. The operations of these smart services
have to satisfy a set of safety and performance requirements
in the smart city. For example, R1 is an environment
requirement that the noise level in the school area should
always be less than 50db. R2 requires that the Carbon
Monoxide (CO) emission in an intersection should always
be less than 40mg. R3 is a requirement for transportation

Figure 1. A map of the lower Manhattan district in the New York City.
Red dots: street intersections with hypothetical smart sensors and services.
Blue dashed lines/circles: areas of interest (1: 1st Avenue, 2: East 4th Street,
3: The intersection of Greene Street and Grand Street, 4: Blocks around
the entry of Williamsburg Bridge, 5: Stuyvesant High School and Borough
of Manhattan Community College, 6: East Village).

domain, which requires that the waiting time of the traffic in
an intersection should not be greater than certain threshold
λ. R4 specifies that an emergency vehicle should not wait
in an intersection for more than 10 seconds. A complete list
of requirements considered in this paper can be found in
Table II in Section VI.

Conflicts may arise when different smart services request
contradicting actions on the same actuators at the same time,
or when the effects of service actions violate the smart
city’s safety and performance requirements. For example,
suppose that S1 requests longer green traffic signals on 1st
Avenue to relieve traffic congestion, while S2 requests green
traffic signals on East 4th Street to transport a patient in an
emergency. The requested actions by S1 and S2 contradict
each other on the traffic signal at the interaction of 1st
Avenue and East 4th Street (annotated as areas 1 and 2 in
Figure 1). In addition, the effects of actions requested by S1
and S2 may cause an increased traffic in nearby East Village
(area 6 in Figure 1), and thus violating requirements about
noise levels (R1) and CO emission (R2).

The smart city operations center detects such conflicts
and provides resolutions by accepting or rejecting smart
services’ action requests. However, it is very challenging
to find an optimal or even acceptable conflict resolution.
First, the feasible set of resolutions grows exponentially
with the increasing number of smart services and actions.
An exhaustive search over the entire solution space is not
efficient or even possible. Second, what does it mean by
optimal when considering multiple smart city requirements
that are expressed vaguely in English? For example, one
resolution may dramatically reduce traffic congestion, but
increase pollution levels. An ideal resolution should balance
the trade-off between multiple objectives. Third, the severity
of conflicts and the importance of service actions are often

Figure 2. Overview of conflict detection and resolution among smart
services in smart cities.

dependent on the current state of the city. For example,
during rush hour, resolving traffic congestion is more urgent
than maintaining noise levels and CO emissions. Thus, the
conflict resolution should consider an adaptive policy of
prioritizing smart services and requirements. Finally, there
are many uncertainties in the state of the city, including
disturbances that are predictable (e.g., weather, events) and
unpredictable events (e.g., accidents). To address these chal-
lenges, we propose a decision support system for conflict
resolution in smart cities as described in the next section.

III. SYSTEM OVERVIEW

We envision a watchdog architecture (e.g., CityGuard [4])
in which a city operations center would oversee all smart
services, detect conflicts among service requests, and pro-
vide resolutions. Such a city operations center could fol-
low real-world prototypes including IBM’s Rio de Janeiro
Operations Center [8] and Cisco’s Smart+Connected Oper-
ations Center [9], where real-time information about city
states (e.g., traffic, pollution) are collected from citywide
sensors and displayed on the command room’s monitors.
Figure 2 shows an overview of our envisioned architecture
that extends the functionality of a city operations center with
conflict detection and resolution. Smart services send action
requests based on real-time city states. The city operations
center intercepts these action requests and detects if there
is any conflict that would lead to contradicting actions or
violations of city requirements. If no conflict is detected,
all action requests are approved for execution in the smart
city. Otherwise, an optimal resolution is computed to resolve
the detected conflicts. We refer readers to our previous
papers [4], [5] for conflict detection methods, and focus on
addressing challenges of conflict resolution.

We present CityResolver – a decision support system for
conflict resolution in smart cities. An overview of CityRe-
solver is shown in Figure 3. Suppose one or more conflicts
between smart services’ action requests are detected. The
first step is to generate a set of resolution options, each of
which may accept a subset of action requests and reject the
others. The resolution options may also suggest alternatives
or delayed executions of requested actions. Thus, the number

Figure 3. Overview of CityResolver – a decision support system for
conflict resolution in smart cities.

of potential resolution options grows exponentially with the
number of action requests. We develop an Integer Linear
Programming (ILP) based method to select a small set of
candidate options, accounting for policies that define the
priorities of the smart services and their actions. These
policies are not fixed, but are adaptive based on current city
states (context). We will describe the ILP-based method in
Section IV.

The second step is to simulate the execution of these
resolution options in order to predict the effect of choices on
the city. Here, we use an off-the-shelf city simulator [10].
Multiple simulations may be instantiated in parallel to sim-
ulate the execution of smart city under different resolution
options. For each resolution option, the simulator starts with
the city states at the current time t (i.e., when conflicts
are detected) and simulates the city executing the resolution
option for a period of ∆t into the future. Traces (time series)
of city states from t to t+ ∆t are generated for verification
that an option does not violate safety and performance
requirements. The simulation also accounts for disturbances
in the city (e.g., heavier traffic during 5 to 7 pm, a 80%
chance of rainy day, or a big event is scheduled). We dis-
tinguish two types of disturbances or uncertainties in smart
cities: predictable and unpredictable. The simulation only
considers predictable disturbances. However, unpredictable
disturbances (e.g., accidents, device failures) are handled
in CityResolver due to a continuous feedback loop that is
monitoring city states in real-time (see Figure 2). If these
states change greater than associated set points then the
services themselves issue new actions which we intercept
and re-apply the detection and resolution actions.

The next step is to verify if the simulated traces of city
states of each option satisfy various city requirements. We
develop an approach to formalize smart city requirements
as Signal Temporal Logic (STL) specifications and compute
the trade-off between different resolution options on multiple
specification objectives via STL verification (see Section V).

The trade-offs between options are displayed in a decision

Figure 4. An example dashboard displaying the trade-off between three
resolution options in terms of the percentage of time violating R1-R4.
(Example 1 describes these options.)

support dashboard. The decision maker chooses a resolu-
tion, by comparing the performance of different options
on various city requirements. For example, Figure 4 shows
the trade-off between three options on requirements R1-R4.
We will describe these options and their generation later in
Example 1 in Section IV. The values in the trade-off display
represent the violation degree in terms of the percentage of
time when the requirement is violated. The zero value means
that the requirement is not violated. Figure 4 shows that
Option 3 satisfies the first three requirements but violates R4
most of the time, while Option 1 satisfies R2 and R4, but
violates R1 and R3. The human decision maker may choose
a resolution option based on individual preferences. To
reduce the human burden of selecting resolutions every time
a conflict occurs, CityResolver also allows the automatic
selection of optimal resolutions based on a set of rules
predefined by the human decision makers. Suppose that a
human decision maker thinks that R4 is more important than
other requirements and defines a rule that the optimal reso-
lution should not violate R4. Then Option 1 is automatically
selected based on the rule.

IV. GENERATING RESOLUTION OPTIONS

In this section, we present an Integer Linear Programming
(ILP) based method to generate a small set of resolution op-
tions, which corresponds to the “Option Generator” module
in Figure 3.

Suppose that there are m on-going smart service actions
executing in the smart city without any conflict. The city op-
erations center intercepts n new action requests from smart
services and detects that there are some conflict between
these m+n actions. One strategy to obtain resolutions is to
only accept some of the new actions while rejecting others
in a way that there are no conflicts. To achieve this it may
also be necessary to suspend some on-going actions. Thus,
the number of possible resolution choices is at least 2m+n.
If we consider a more complex resolution strategy, such as
suggesting alternative actions to the requested actions or

putting the rejected actions in a waiting list for delayed
execution, then the solution space of possible resolutions
becomes even larger. It would be very challenging, if not
impossible, to check all these resolution choices’ impact on
city states and requirements within the short time frame of
resolution decision making. Thus, we present a method to
select a small number of candidate resolution options based
on the intuition that a good resolution should (1) accept as
many actions as possible, (2) not allow contradicting actions,
and (3) account for priorities of services and actions.

We formulate the problem as an integer linear program.
Given a set A of smart service actions causing conflicts, we
define a binary variable µ ∈ {0, 1} for each action a ∈ A to
track if the action is chosen by a candidate resolution option.
Each action a is associated with a weight value w ∈ Z,
representing the action priority determined by current, state-
dependent importance policies. For simplicity, we assume
that action weights are given as constants at time t. We
denote a set C of contradicting action pairs and a set D
of dependent action pairs. We also group an action and its
alternatives into a set θ ⊆ A. The resulting ILP problem is

maximize
wi∈Z, µi∈{0,1}

∑
1≤i≤|A|

wi × µi (1a)

subject to
∀(ai, aj) ∈ C : µi + µj ≤ 1, (1b)
∀(ai, aj) ∈ D : µi − µj = 0, (1c)

∀ai ∈ θ ⊆ A :
∑

µi ≤ 1 (1d)

The objective function (1a) is to maximize the number of
accepting actions in the resolution based on their priority
weights. The constraint (1b) guarantees a resolution does
not accept a pair of contracting actions. The constraint (1c)
ensures that dependent actions are both accepted or rejected
at the same time. Finally, the constraint (1d) requires that at
most one action from a set of alternative actions is chosen by
a resolution. Transforming the problem to ILP and solving it
with the Gurobi tool do not necessarily find the best solution
when the number is very large, but it can give the solution
in polynomial time, which is very important for runtime
decision making system in cites.

We illustrate the usage of the ILP solution below.
Example 1: Suppose that smart traffic service S1 requests

seven traffic signals on the 1st Avenue to stay green for 5
minutes. The requested actions are denoted as {a1...a7},
corresponding to traffic signals drawn as seven red dots
(from south to north) on street 1 in Figure 1. If action
a3 is not accepted, the service also allows an alternative
action (denoted by a8) to keep the corresponding signal
green only for 3 minutes. Suppose that, at the same time,
the smart emergency service S2 requests three green traffic
signals on the East 4th Street for 3 minutes. The actions are
denoted as {a9, a10, a11}, corresponding to traffic signals

drawn as three red dots (from west to east) in street 2 in
Figure 1. Actions a9 and a10 are interdependent. Action a10

is contradicting with actions a3 and a8. Actions requested by
the emergency service S2 has a higher priority weight than
the traffic service S1. Let the weight value for S2 actions
be 2 and the weight value for S1 actions be 1. We write an
ILP as follows:

maximize
µi∈{0,1}

∑
1≤i≤8

µi +
∑

9≤i≤11

2× µi

subject to
µ3 + µ10 ≤ 1

µ8 + µ10 ≤ 1

µ9 − µ10 = 0

µ3 + µ8 ≤ 1

We rank solution results based on their objective function
values. The top 3 resolution options are as follows.
• Option 1: Reject a3 and a8, accept other actions.
• Option 2: Reject a3, a8 and a11, accept other actions.
• Option 3: Reject a8, a9 and a10, accept other actions.

A trade-off between these options is shown in Figure 4.

V. VERIFYING RESOLUTION OPTIONS

In this section, we describe how to compute the trade-
off between different resolution options via Signal Temporal
Logic (STL) based runtime verification of city require-
ments. We introduce STL and the formalization of smart
city requirements in Section V-A, and present methods for
computing requirement violation degrees in Section V-B.

A. Requirement Formalization

Signal Temporal Logic (STL) [11] is a formalism used
to specify real-time properties of discrete and continuous
signals. The syntax of an STL formula ϕ is usually defined
as follows,

ϕ ::= µ | ¬ϕ | ϕ ∧ ϕ | ♦(a,b)ϕ | �(a,b)ϕ | ϕU(a,b)ϕ.

We call µ a signal predicate, which is a formula in the
form of f(x) > 0 with a signal variable x ∈ X and a
function f : X → R. The temporal operators �, ♦, and
U denote “always”, “eventually” and “until”, respectively.
The bounded interval (a, b) denotes the time interval of
temporal operators and can be omitted if the internal is
[0,+∞). Formula �(a,b)ϕ is true iff ϕ is always true in
the time interval (a, b). Formula ♦(a,b)ϕ is true iff ϕ is true
at sometime between a and b. Formula ϕ1U(a,b)ϕ2 is true
iff ϕ1 is true until ϕ2 becomes true at sometime between a
and b. We refer readers to [11] for the formal definition of
STL semantics.

(a) (b)

(c) (d)

(e) (f)

Figure 5. An example of two options showing three metrics of violation
degrees for STL formula �(0,25) (Noise < 50). Blue solid curves
represent the signal (Noise− 50) under resolution option (i) and (ii). For
option (i), (a) the robustness value: ∆h2, (c) the percentage of violation
time: (t1 + t2)/25, and (e) the integral of deviation: S1 + S2; For option
(ii), (b) the robustness value: ∆h3, (d) the percentage of violation time:
t3/25, and (f) the integral of deviation: S3.

In our previous work [5], we provide a set of templates for
expressing typically safety and performance requirements in
smart cities as STL specifications. We find that most smart
city requirements can be specified using STL formula in the
form of �(a,b) (x < λ) where x is a signal about city state
and λ is a threshold.

Example 2: We translate requirements R1-R4 (described
in Section II) to STL formulas as follows.
• STL formula for R1: �(0,∆t) (Noise < 50).
• STL formula for R2: �(0,∆t) (CO < 40).
• STL formula for R3: �(0,∆t) (WaitTime < λ).
• STL formula for R4: �(0,∆t) (EmergencyTime < 10).

B. Computing Requirement Violation Degrees
We now describe how to compute the degree in which

a continuous signal about smart city state violates a city
requirement �(a,b) (x < λ). A notion of robustness value
for satisfying or violating STL formulas is formally defined
in [11]. The robustness value of a given signal x violating
�(a,b) (x < λ) at time τ is defined as

ρ = supt∈(τ+a,τ+b)(x(t)− λ). (2)

Intuitively, the robustness value indicates extremum points
of the signal. The robustness value is useful for telling the

worst-case performance, but it does not show the average
or overall performance. For smart cities requirements, we
are interested to know both. We use the following example
to illustrate why measuring the robustness value only is not
sufficient for finding optimal resolutions.

Example 3: Suppose that the noise level is between 50
db and 100 db for 12 min with option (i), and over 100 db
for 2 min with option (ii). We verify the city state against
requirement �(0,25) (Noise < 50). Figure 5(a) plots the
signal of (Noise − 50) under option (i) and indicates that
the robustness value of violating the requirement is ∆h2

– the maximum deviation from the threshold within the
time interval. Figure 5(b) plots the signal of (Noise − 50)
under option (ii) where the robustness value of violating
the requirement is ∆h3. Option (i) has a better performance
than option (ii) in terms of the robustness value of violating
the requirement, because ∆h2 = 50 and ∆h3 = 150.
However, a decision maker may actually find option (ii) a
better resolution, because the noise level only exceeds the
threshold 50 db for a shorter period of time (2 min instead of
12 min). Thus, smaller value of robustness violation degree
sometimes does not imply a better resolution.

To address this limitation, we present two new metrics for
measuring the degree of violating smart city requirements
specified in STL: (1) the percentage of time when a require-
ment is violated, and (2) the integral of signal deviations.
To start with, we define Equations 3 and 4 to calculate
the positive part (denoted by θ+(x)) and the negative part
(denoted by θ−(x)) of a function f(x), respectively.

θ+(x) = max(f(x), 0) =

{
f(x) if f(x) > 0

0 otherwise.
(3)

θ−(x) = min(f(x), 0) =

{
f(x) if f(x) < 0

0 otherwise.
(4)

We compute the percentage of time when a given signal
x violating �(a,b) (x < λ) as follows:

η =
1

b− a

∫ τ+b

τ+a

sgn(|θ−(x(t)− λ)|)dt. (5)

We use Equation 6 to compute the integral of signal de-
viations accumulated in a period when the requirement
�(a,b) (x < λ) is violated.

γ =

∫ τ+b

τ+a

(|θ−(x(t)− λ)|)dt. (6)

Example 4: Figure 5(c) and Figure 5(d) shows the per-
centage of time when requirement �(0,25) (Noise < 50) is
violated under option (i) and (ii), respectively. Option (ii)
has a better performance with this metric of requirement
violation degree, because (t1+t2)

25 < t3
25 .

Figure 5(e) and Figure 5(f) shows the integral of noise
level deviations when requirement �(0,25) (Noise < 50) is
violated under option (i) and (ii), respectively. The integral
value for option (i) is the sum of areas S1 + S2, while the
integral value for option (ii) is S3. It turns out that S1 +
S2 = S3 = 26. Thus, option (i) and option (ii) have the
same performance with this metric of requirement violation
degree.

These three metrics are useful to evaluate different smart
city requirements. Robustness value is more suitable for
requirements with hard constraints, such as the emergency
vehicle waiting time and the number of accidents. Most city
requirements are soft constraints, which do not require the
signal strictly within a threshold bound. In such cases, the
percentage of violation time is an important measurement,
especially for environmental signal like the pollution level.
The integral metric combines robustness and violation time.
Therefore, it helps to compare the overall performance be-
tween different signals. For example, calculating the integral
of violating requirements in the transportation domain (e.g.,
the waiting number and waiting time of vehicles) helps to
reveal the congestion degree.

VI. EXPERIMENTAL EVALUATION

A. Experiment Setup

We implement CityResolver and apply it to a case study of
a simulated smart city based on the lower part of Manhattan
in New York. The transportation state is generated from the
Traffic volume counts of New York city data [12]. This
data set contains the traffic volumes from 160 streets in
Manhattan during 2013-2014. Analyzing the data set, the
average traffic volume on all streets is 105,397 vehicles
and 658 vehicles per street per hour, making the in-coming
vehicle rate at 5.5 second per vehicle.

We implement a smart city simulator using the data set
and the Simulation of Urban MObility (SUMO) [10], a
transportation simulator which allows modelling of traffic
systems including road vehicles, public transport and pedes-
trians. We build ten smart services (see Table I) running
over 140 locations of lower Manhattan, New York, as
shown in Figure 1. We verify resolution options with the
same city safety and performance requirements in detection
component, which are listed in Table II. Different types
of requirements are suitable to different space ranges and
distributed over even more than 140 locations in the map.
We use CityGuard [4] to detect conflicts and CityResolver to
provide resolutions for those conflicts. To generate resolution
options, CityResolver uses the Gurobi optimization tool [13]
to solve integer linear programs.

The experiments are evaluated on a server machine with
16 core CPUs; each core is 3.1GHz. The operating system
is Ubuntu 14.04.5.

Table I
LIST OF SERVICES RUNNING IN SIMULATED MANHATTAN

Service Description
S1: Traffic Service It controls traffic signals in street intersections to relieve congestion and optimize or improve traffic performance.
S2: Emergency Service It requests green traffic signals in order to transport patients in critical conditions to hospitals as soon as possible.
S3: Accident Service It blocks a street where some accident occurs and alert nearby vehicles to detour.
S4: Infrastructure Service It schedules infrastructure check-up and repair appointments.
S5: Pedestrian Service It shortens the pedestrians’ waiting time by adjusting traffic signals when pedestrians wait in the intersection.
S6: Air Pollution Control It adjusts the traffic by adjusting traffic signal and sending speed request to vehicles when CO emission is high.
S7: PM2.5/ PM10 Control It adjusts the traffic when PM2.5/ PM10 emission is high by adjusting traffic signal and sending speed request to vehicles directly.
S8: Parking Service It directs the driver to the nearest parking lot.

S9: Noise Control When noise level exceeds its threshold, it controls the number of vehicles going through related streets and redirect vehicles on
the streets by adjusting traffic signals.

S10: Event Service It ensures operation of a city event by blocking the lanes nearby the event.

Table II
LIST OF REQUIREMENTS (THE CHECK MARK INDICATES THE SUITABLE SPACE RANGE OF THE REQUIREMENT IN PRACTICE.)

Requirement Intersection Street Block
R1: The noise level in the school area should always be less than 50db. X X
R2: The CO emission in an intersection should always be less than 40mg. X X
R3: The waiting time of the traffic in an intersection should not be greater than certain threshold λ. X X
R4: An emergency vehicle should wait in an intersection for more than 10 seconds. X
R5: No vehicle collision should occur. X X
R6: The number of vehicles in a street should never exceed its maximum vehicle capacity. X
R7: The traffic yield number in a street should not increase by certain threshold λ. X
R8: The number of pedestrians waiting in an intersection should not be greater than certain threshold λ. X
R9: Emergency vehicles should not be directed to a blocked lane or area. X
R10: The noise level in a street should always be less than 70 dB. X X
R11: The hydrocarbons (HC) emission in a lane should always be no more than 1 mg. X X
R12: The particulate matter (PMx) emission in a lane should always be no more than 0.2 mg. X X

B. Results on Option Generator

The total number of resolution options increases exponen-
tially with the number of actions. That is, given n actions,
there are 2n possible choices of resolutions. CityResolver
builds an ILP-based option generating model, which is able
to identify a set of optimal options regarding the sum of
action requests multiplied by their weights. We tested the
option generator for over 500 conflicts and where each
conflict has up to 100 actions. The computation time of
generating resolution options for each conflict is within 1
second using CityResolver.

C. Results on Computing Violation Degree

CityResolver provides the three metrics (see Section V.B)
for calculating the violation degree. For example, in this
study we measure the violation degree on 4 requirements
(R1 - R4) using the three metrics. The traces of each option
are generated from the city simulator. When predicting the
future city states, we incorporate the known disturbance
factors. For example, one of our results shown in Figure 6
considers that rush hour is coming, which will cause heavy
traffic. Therefore, in our simulation, we increase the traffic
volume at that future time to obtain a more accurate predic-
tion. We observe the following based on Figure 6.
• There are trade-offs between different options using all

three metrics. For example, in (a), Option 4 has the best
performance on R3 (i.e., the congestion requirement),
but has the worst performance on R2 (i.e., the noise

requirement). The other three options, though not best
on all requirements, have a more even distribution.

• Different metrics lead to different results: Option 4 is
the best in (a) and (b) regarding requirement R3, but is
the second best in (c).

• For the robustness metric (a) and integral metric (c),
it is difficult to compare the performance of the same
option on different requirements, because measurement
scales are not necessarily the same. However, it is
uniform using the percentage of time (b), where all
violation degrees are on scale of 0 to 1.

• All three metrics can help a decision maker to com-
pare the performance of different options on the same
requirement. They may choose the metric based on the
requirement type and the context.

• It is helpful to compare more than one metric, because
they represent different properties of the requirement.
For example, Option 4 has a worst performance on R2
measured by the robustness and integral metrics, but
does not have significant violation on the percentage
of time metric. The results also indicate that Option 4
exceeds the noise level threshold for only a few times
within this period, but each time the difference is large.

D. Overall Performance

We evaluate the city performance with CityResolver
across domains of transportation, environment and emer-
gency. Specifically, the performance evaluation uses metrics
including the number of violated requirements per conflict,

Table III
COMPARISON ON THE CITY PERFORMANCE WITH CITYGUARD AND WITH CITYRESOLVER

Case System
Number of

Violated Re-
quirements

CO (mg) Noise (db)
Emergency

Waiting
Time (s)

Vehicle
Waiting
Number

Pedestrian
Waiting
Time (s)

Case 1: None 20 53.12 67.73 21.00 23 65.00
[S1, S2] CityGuard 7 67.90 72.42 6.70 32 60.00

CityResolver 0 39.70 46.54 9.80 22 35.90
Case 2: None 28 55.20 49.00 31.20 19 83.00
[S1, S2, S3] CityGuard 18 54.20 62.00 11.00 21 88.00

CityResolver 2 44.30 48.90 8.70 15 63.50
Case 3: None 16 53.91 67.00 9.20 23 53.20
[S1, S8, S10] CityGuard 0 49.20 48.70 8.80 24 50.10

CityResolver 0 30.80 40.80 7.80 18 49.20
Case 4: None 15 48.30 59.00 14.50 42 79.20
[S6, S7, S9, S10] CityGuard 8 38.60 62.10 13.80 34 76.30

CityResolver 1 39.50 56.30 8.30 29 65.20
Case 5: None 39 87.30 45.00 7.40 39 68.30
[S2, S3, S4, S5, S9] CityGuard 32 90.30 46.00 7.80 39 65.70

CityResolver 4 62.70 43.00 6.70 28 59.60

emission of CO, noise, the waiting time for the emergency
vehicle, the waiting number of vehicles, and the waiting
time for pedestrians. The number of violated requirements
indicates that when detecting one conflict or verifying a solu-
tion, how many requirements are violated by this conflict or
option. The remaining metrics are calculated by the average
value at one intersection. For example, if the effective range
of one conflict is 3 blocks (i.e. involving 9 intersections),
then the value is the average value of these 9 intersections.

We compare the result with two baselines: (1) a smart
city without any controller for conflict resolution, and (2)
CityGuard. To the best of our knowledge, there is no
other existing solution for conflict resolution in smart cities.
CityGuard focuses on the conflict detection and implemented
a simple priority-based conflict resolver, i.e. when there
is a potential conflict between different action requests, it
only accepts the action with the highest priority. Also, it
does not verify the performance of selected actions. The
experiments are conducted on the lower Manhattan with 10
smart services running over 140 locations. The results from
5 cases are shown in Table III, from which we have the
following observations.

Case 1: Conflict happens between the S1 smart traffic ser-
vice and the S2 smart emergency service. Without resolution,
it violates 20 city requirements. With CityGuard, it detects
the conflict and accepts the actions of the emergency service,
which reduce the number of violated requirements and
improve city performance regarding the emergency vehicle
waiting time. However, it harms the performance on CO and
noise with a bias in favor of the emergency. Instead, CityRe-
solver finds an optimal solution, which reduces the number
of violated requirements to 0. Compared with CityGuard,
CityResolver also improves other metrics, for example, it
reduces the CO emission by 41.5%.

Case 2: Another conflict happens among S1 (traffic ser-
vice), S2 (emergency service) and S3 (accident service).

Similar to Case 1, both CityGuard and CityResolver propose
a resolution and improve the city performance. Two things
to be noted, 1) CityResolver has a better overall performance
than CityGuard, 2) CityResolver also does not find a resolu-
tion satisfying all requirements, but it reduces the violation
number by 13 times and 8 times compared to the none-
control system and CityGuard, respectively.

Case 3: It demonstrates a conflict among traffic, parking
and event services, where both CityGuard and CityResolver
find a resolution that satisfies all requirements. However,
CityResolver still has better performance, for example, it
beats CityGuard by 37.4% on CO and 25% on the vehicle
waiting number. The reason is that CityResolver accepts
more actions if possible, which as a result, benefits the city.

Case 4 and Case 5 evaluate cases under a larger number
of services and actions. CityResolver finds potential options
and verifies them within a reasonable time. In particu-
lar, it maintains a small number of violated requirements
comparing to baselines. By showing trade-offs between the
requirements that have to be violated, CityResolver gives
the city manager a chance to select a better choice based on
the context. Meanwhile, though not largely, CityResolver
improves performance regarding each domain by 6.5% to
30.6% comparing to CityGuard.

In summary, CityResolver reduces the number of viola-
tions significantly and improves the overall city performance
without sacrificing the performance on other metrics. How-
ever, to be noted, CityResolver does not always have the best
performance over CityGuard. For example, in Case 1 and
Case 4, its performance on the emergency vehicle waiting
time and CO emission are worse than CityGuard. The reason
is that the emergency service and air quality service have a
higher priority and so do their actions with CityGuard res-
olution. With this bias, it does not have good performances
on other metrics. On the contrary, CityResolver values high-
weight actions as well as optimizes other metrics.

(a) Metric: Robustness violation value

(b) Metric: Percentage of violating time

(c) Metric: Integral of signal deviations

Figure 6. Trade-offs of four options based on their performance on
requirements R1-R4

VII. RELATED WORK

A survey paper on the conflict detection and resolution
in smart home and building automation [14] categorizes
conflict resolution into four categories by its solvability
from high to low as conflict avoidance, conflict resolution,
acknowledge inability of resolving and acknowledge oc-
currence. Our approach focuses on the conflict avoidance
and resolution acknowledgement by predicting and detecting
conflicts, and showing the trade-offs among potential reso-
lutions. With effective cooperation, conflicts are prevented
with the best option.

The general problem of conflict detection and resolution

has been studied for applications such as smart homes,
buildings and multi-agent systems, in addition to smart
cities. DepSys [6] and SIFT [7] provide comprehensive
strategies to specify, detect, and resolve conflicts in a smart
home setting. To resolve the conflict, they categorize smart
apps into different priorities based on their domains, for
example, health apps have higher priority than energy apps.
Similarly, our previous work [3], [4] categorizes various
safety & performance requirements in smart cities, and
proposes the CityGuard architecture for conflict detection
and resolution. Focusing on the detection, CityGuard uses a
simple priority-based resolution, which improves the per-
formance in domains of transportation and environment.
However, in reality, the priorities of services are adaptive
to the context. A service important to one context is not
necessarily important to all the cases. In addition, action
requests can be independent from each other, so it is not
efficient to reject all actions from a lower priority service
under all circumstances. Comparing with above works, this
paper generates the resolution options based on the rela-
tionship between actions and their adaptive policies, which
considers the importance of an action with the real context
and optimizes accepted options.

Researchers also propose different ways for conflict res-
olution based on its conflict types [14]. For example, for
interest conflict, [15] considers the application’s demands
for quality of services and resource consumption, and uses
a client-server architecture model to select the conflict reso-
lution, which, however, can only deal with very small scale
clients. [16] builds a resource management method to resolve
the conflict in smart buildings. [17] builds an ontology-based
policy framework using an AI planner to detect and auto-
matically resolve policy conflict. However, these methods
focus on detecting and resolving direct conflicts. They do
not (1) consider the secondary effects on the environment,
which are where most of city conflicts arise, or (2) predict
and avoid conflicts. The environment of smart cities is so
complicated that the conflicts among smart services not only
include all the above conflict types, but also contain different
types of environmental conflicts. Rule-based or resource
management approaches are not sophisticated enough to
predict and prevent conflicts in smart cities. Our approach
uses a feedback control loop which monitors city states in
real time, and predicts the effects of actions and the potential
resolution options by predicting and verifying future city
traces.

VIII. CONCLUDING REMARKS

In this paper, we build CityResolver – a decision support
system for conflict resolution in smart cities. Using an
Integer Linear Programming based method, CityResolver
first generates a small set of potential resolution options
considering the dependency of actions and adaptive policies
of their services. It verifies the set of options with an

STL based approach and calculates the effects of options
on different requirements taking the disturbance factors
into account. Then it shows the trade-offs between reso-
lution options in a dashboard supporting decision makers
to choose the best resolution. The evaluation results show
that, CityResolver is able to reduce the number of viola-
tion requirements significantly comparing to the smart city
without a controller and with a priority based resolver. For
example, CityResolver reduces the number from 39 down to
4, while CityGuard reduces the violation number from 39
to 32. Moreover, CityResolver improves city performance
comparing to the baselines. For example, in our experiments,
it beats CityGuard on the CO emission up to 37.4% and the
congestion by 25%.

The future work includes the following directions:
Smart City Requirements. There are currently limited
number of smart city requirements available, most of which
are in the form of “(city state) always less than (threshould)”.
For example, “the noise level should always be less than 50
db”, “the emergency vihicle waiting time should always be
less than 10 second”. Thus, we only considered the compu-
tation of violation degrees for this type of requirements. We
plan to collaborate with smart cities to explore more variety
of city requirements. We are also developing tools for the
automated translation from natural language requirements to
temporal logic based formal specifications.
Option Generator. The ILP-based option generator uses an
objective function that considers the dependency between
actions and the adaptive weights of services. However, the
optimal set obtained from the generator does not necessarily
contain the corner case option, i.e. the option that has the
best performance on one or more requirements. The corner
case options can help decision maker to compare trade-
offs when selecting a resolution option. We will explore
heuristics to generate options that cover the best performance
on different requirements.
Disturbance Model. CityResolver accounts for known dis-
turbance factors (e.g., rainy weather, the rush hour, the big
event) when predicting future city states. We will develop
more comprehensive disturbance models that take into ac-
count the probability of a disturbance event and quantify
their effects on city conflict detection and resolution.

ACKNOWLEDGMENT

This work was funded, in part, by NSF under grants CNS-
1527563 and CNS-1319302.

REFERENCES

[1] WSJ, “The rise of the smart city,”
2017. [Online]. Available: https://www.wsj.com/articles/
the-rise-of-the-smart-city-1492395120

[2] Cisco, “The digital value of smart cities,” 2017.
[Online]. Available: https://discover.cisco.com/en/us/iot/
whitepaper/smart-cities-digital-value

[3] M. Ma, S. M. Preum, W. Tarneberg, M. Ahmed, M. Ruiters,
and J. Stankovic, “Detection of runtime conflicts among
services in smart cities,” in Proceedings of IEEE International
Conference on Smart Computing. IEEE, 2016, pp. 1–10.

[4] M. Ma, S. M. Preum, and J. A. Stankovic, “Cityguard: A
watchdog for safety-aware conflict detection in smart cities,”
in Proceedings of the Second International Conference on
Internet-of-Things Design and Implementation, 2017, pp.
259–270.

[5] M. Ma, J. A. Stankovic, and L. Feng, “Runtime monitoring
of safety and performance requirements in smart cities,” in
1st ACM Workshop on the Internet of Safe Things, 2017.

[6] S. Munir and J. Stankovic, “Depsys: Dependency aware inte-
gration of cyber-physical systems for smart homes,” in Pro-
ceedings of ACM/IEEE International Conference on Cyber-
Physical Systems, 2014.

[7] C.-J. M. Liang, B. F. Karlsson, N. D. Lane, F. Zhao, J. Zhang,
Z. Pan, Z. Li, and Y. Yu, “Sift: building an internet of safe
things,” in Proceedings of the 14th International Conference
on Information Processing in Sensor Networks, 2015, pp.
298–309.

[8] N. Y. Times, “Ibm takes ‘smarter cities’
concept to rio de janeiro,” 2012. [Online].
Available: http://www.nytimes.com/2012/03/04/business/
ibm-takes-smarter-cities-concept-to-rio-de-janeiro.html

[9] Cisco, “Smart+connected operations center.” [Online]. Avail-
able: https://www.cisco.com/c/en/us/solutions/industries/
smart-connected-communities/city-operations-center.html

[10] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz,
“Sumo–simulation of urban mobility: an overview,” in Pro-
ceedings of SIMUL 2011, The Third International Conference
on Advances in System Simulation. ThinkMind, 2011.

[11] A. Donzé and O. Maler, “Robust satisfaction of temporal
logic over real-valued signals,” in Proceedings of Interna-
tional Conference on Formal Modeling and Analysis of Timed
Systems, 2010, pp. 92–106.

[12] New York City Open Data, https://nycopendata.socrata.com/.

[13] “Gurobi Optimization,” http://www.gurobi.com.

[14] S. Resendes, P. Carreira, and A. C. Santos, “Conflict detection
and resolution in home and building automation systems:
a literature review,” Journal of Ambient Intelligence and
Humanized Computing, vol. 5, no. 5, pp. 699–715, 2014.

[15] R. B. S. Thais, B. R. Linnyer, and A. L. Antonio, “How
to conciliate conflicting users’ interests for different collec-
tive, ubiquitous and context-aware applications?” in Local
Computer Networks (LCN), 2010 IEEE 35th Conference on.
IEEE, 2010, pp. 288–291.

[16] P. Carreira, S. Resendes, and A. C. Santos, “Towards au-
tomatic conflict detection in home and building automation
systems,” Pervasive and Mobile Computing, vol. 12, pp. 37–
57, 2014.

[17] E. Göynügür, S. Bernardini, G. de Mel, K. Talamadupula, and
M. Şensoy, “Policy conflict resolution in iot via planning,” in
Canadian Conference on Artificial Intelligence. Springer,
2017, pp. 169–175.

