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Abstract—An effective and non-invasive audio monitoring
system needs to be capable of simultaneous real-time detection
of multiple audio events in many different environments, and
locally executable on resource constrained devices, such as, smart
microphones. A major challenge in this research domain is having
limited available annotated data. This paper presents a novel
framework to generate robust detection models of environmen-
tal and human audio events with limited available data. The
framework presents the generation of a large synthetic dataset
using limited data for any audio event, a novel computationally
efficient feature modeling technique, named Audio2Vec, that
is robust against environmental variations, and identifies and
exploits the syntactic relation between audio states represented
by the features and the targeted audio events. The presented
framework achieves 10.3% higher F1 scores compared to the
best baseline approaches. To demonstrate the effectiveness of the
framework we implemented a real-time audio monitoring system
that simultaneously detects 10 audio events on a Raspberry Pi
3B and evaluate it in real home and in-car settings, that achieve
F1 scores of 0.96 and 0.956, respectively.

I. INTRODUCTION

Automated event detection (AED) systems are becoming
increasingly popular and important both in private and public
environments. Most of the existing monitoring systems work
based on video information. Video monitoring systems are
not robust against conditions, such as, fog or low visible
conditions, or obstacles. Moreover, due to theie invasiveness
they are often not appropriate in private settings. While
thermal infrared sensors can be a less invasive alternative,
this technology is highly dependent on temperature, and
the separation between background and foreground objects
can be problematic. In contrast, audio as a monitoring or
event detection modality has the following advantages: (1)
needs fewer memory storage and computation requirements
compared to video streams, hence it is more appropriate for
executing on resource constrained devices; (2) unlike cameras,
microphones are omnidirectional with no angular limitations;
(3) audio event detection (AED) is robust against many
environmental obstacles; (4) AED is robust against illumina-
tion and temperature; (5) many events have distinctive audio
signatures, but little or no video counterpart; and (6) audio-
based monitoring systems that perform all the computations
locally are potentially more privacy friendly.

In recent years smart technologies such as smart homes,
smart cars, home health monitoring and surveillance systems,
have become popular among consumers. Smart speakers, such
as, alexa, google home, come with built in microphones. In
most modern cars a microphone already exists in the cabin.
Hence, a real-time AED system, capable of running locally
on resource constrained devices, such as, Raspberry Pi, can
be a great real-time monitoring solution, and can be added to
already existing smart home and smart car devices.

Fig. 1: Framework for real-time AED with limited data.

Though there are some available datasets [4], [20], [21]
which contain event level annotation for automated monitoring
systems, the amount of labeled event data is very small. Hence,
the majority of AED studies [6], [27] perform their evaluation
on small datasets. A limited dataset in training leads to lack of
robustness of the AED approach as they are used in different
environments (with noise and a large variety of extraneous
sound events).

This paper presents a novel framework for AED, which
generates robust models for audio monitoring applications with
limited available data. Moreover, the generated AED systems
are real-time executable on resource constrained devices. The
main characteristics and contributions of the framework and
its evaluation are:

• As shown in figure 1, for each of the audio events with
limited data, the framework generates a large synthetic
dataset with a large variation of background environ-
mental sounds, signal to noise ratios (SNRs), and rever-
beration effects. Theoretically, the presented automated
audio mixture synthesizer (section III) can generate an
infinite number of variations.

• To extract meaningful and effective feature representation
from the raw audio data, this paper presents a novel
computationally effective feature modeling technique,
named Audio2Vec (section IV-A & IV-B). The generated
representations by Audio2Vec are robust against envi-
ronmental noise, reverberation, and de-amplification of
sound due to distance. Moreover, it identifies and exploits
the inherent relation between audio states and targeted
audio events. As a result, Audio2Vec features can be
used with much shallower (less layers & network pa-
rameters) neural network classifiers, and achieves signif-
icantly higher accuracy compared to the baseline feature
representations typically used with much deeper neural
networks. Also, shallow networks (for classification) have
less execution time which makes them more suitable for
real-time AED systems on resource constrained devices.

• To demonstrate the extensive applicability of the pre-
sented AED framework, we applied the framework (figure
1) to develop and evaluate audio detection models for ten
environmental and human audio events: crying, laughter,
screaming, coughing, snoring, brushing teeth, sneezing,
baby crying, glass breaking, and gunshots. One example
of the value of detecting multiple audion events is that
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according to the Cohen-Mansfield Agitation Inventory
[3], detection of crying, laughter, and screaming are
important for monitoring agitation in dementia patients.
Also automated detection of coughing, snoring, brushing
teeth, sneezing have application in home healthcare and
hygiene monitoring. Detection of baby crying is impor-
tant for infant monitoring systems, and gunshots and
glass breaking have application in automated surveillance
and security systems. Our AED approach using the
Audio2Vec feature representation achieved on average
10.3% higher F1 score compared to the best baseline
approach for 10 targeted audio events (section V-B).

• To evaluate the applicability of our approach in realistic
scenarios, running on resource constrained devices (on-
device or local computations), we implemented an real-
time AED system (that simultaneously detects the 10
targeted audio events) on a Raspberry Pi 3B with a
MATRIX Creator development board (section V-C). We
evaluated the implemented system for two realistic appli-
cations: real homes and inside car monitoring. According
to the evaluation we achieved average F1 scores of 0.96
and 0.956 for AED in real-home and in-car settings,
respectively.

• An effective monitoring system needs to be real-time exe-
cutable. We experimentally evaluated the CPU runtime of
each component of our AED system and demonstrated its
real-time capability for a constrained device: Raspberry
Pi (section V-D).

II. RELATED WORKS

Several combinations of features and classifiers have been
investigated for AED tasks. From low level audio features,
such as Zero Crossing Rate (ZCR) [1], to middle level features,
such as Mel-Frequency Cepstral Coefficients (MFCC) and
Perceptual Linear Predictive (PLP) [17], [22], and to high
level feature descriptors, such as MPEG-7 [17], these different
features and their combination have been used to represent
acoustic events.

Clavel et al. [2] propose a Gaussian Mixture Model
(GMM) and Maximum A Posteriori (MAP) decision rule-
based gunshot detection approach using short-time energy,
Mel-Frequency Cepstral Coefficients (MFCC) and spectral
statistical moments as features. Vacher et al. [28] also adopt
a GMM classifier, with wavelet-based cepstral coefficients as
features, for the detection of screams and broken glass. Rouas
et al. [24] use MFCC features and a combination of the GMM
and Support Vector Machine (SVM) classifiers for detecting
screams in outdoor environments. Their method uses an adap-
tive thresholding on sound intensity for limiting the number
of false detections. Sharan et al. [25] evaluates the audio event
detection performance of classification techniques for multi-
class support vector machines in various noise conditions.

Peter et al. [27] present a car AED approach using MFCC
features that was evaluated on 100 audio clips for each of
the events with different signal to noise ratios. Hussein et
al. [6] introduce an AED for smart homes exploring energy,
pitch, ZCR, spectral features, MFCC features and K-nearest
neighbor (KNN) and SVM classifiers. Nandwana et al. [16],

utilized GMM, GMM mean super-vectors and the I-vector
framework for an in car AED. This work was evaluated on
100 audio clips for each of the audio events. Our evaluation
considers this I-vector representation as one of the baseline
feature representation approaches to which we compare. All
these works evaluate on limited acted datasets. Morfi et al.
[15] used weakly supervised learning to detect audio events
from weakly labeled training data. In contrast, the focus of this
paper is to use available strong labeled audio data to generate
a robust real-time AED solution.

Recently, research on audio event detection studies are
shifting from conventional methods to modern deep neural
network approaches [9], [13]. Several studies [8], [18], [26]
have used Convolutional Neural Networks (CNN) with a large
input field to identify the presence of an audio event in a large
audio clip. CNN learns filters that are shifted in both time and
frequency, hence can cover a large input field. Our evaluation
considers CNN as one of the baseline classifier approaches.

In recurrent neural networks (RNNs), information from
previous time steps can in principle circulate indefinitely inside
the network through the directed cycles, where the hidden
layers also act as memory. Hence, an RNN can capture com-
paratively long temporal context information. Parascandolo
et al. [19] propose an audio tagging approach based on bi-
directional long short term memory (BLSTM) and evaluate
60 different sound events detection in 103 real life recording
clips. Marchi et al. [11] and Wang et al. [29] also apply
an LSTM classifier on limited audio data for AED. Our
evaluation considers a bi-directional LSTM as one of the
baseline classifier approaches.

III. SYNTHETIC DATASET

A robust audio event monitoring system needs models that
perform well in various environments not introduced in the
training phase. Also, in real event monitoring scenarios input
audio signal to noise ratio (SNR) can be very low due to
variable source to microphone distances and presence of other
ambient noise sources. Additionally, in indoor settings, audio
data suffers from reverberation effects. Training a supervised
model robust against unknown environments, reverberation,
and low SNR requires sufficiently large dataset with variation
of environmental sounds, reverberation, and SNRs. One of
the challenges this paper addresses is having small available
audio event datasets. But there are larger environmental scene
datasets, where, background sound is collected from many
different environments, such as, cafes, train stations, or parks.
These sounds are easy to collect and do not need any labeling
of the data. This paper presents an audio mixture synthesizer,
that generates a large synthetic mixture of labeled isolated
audio event clips and various environmental audio clips. Using
this automated generalized approach, it is possible to generate
any number of well labeled positive and negative synthetic
data samples (this can be applied to any audio event with a
small available dataset).

Solution: Audio mixture synthesizer: We mix isolated
audio clips (from available small datasets) with environmental
background sounds to generate synthetic data samples. For the
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mixture synthesizer we used the pydub python toolkit. Syn-
thetic audio samples are generated in the following manner.

We randomly select 10s audio from a randomly selected en-
vironmental background audio clip. Additionally, we randomly
select one or more isolated (targeted and/or non-targeted) au-
dio event clips. Both the environmental background audio and
the isolated event audio clips are amplified or de-amplified to
generate a random event-to-background ratios (EBR) between
−6 to 6 dB. Then isolated audio event clips are overlaid on
the 10s background audio clips at randomly selected positions.
Random numbers are drawn from a uniform distribution, to
achieve maximum variation in background sounds, EBR, and
event positions.

In a 10s synthetic positive audio sample of a targeted audio
event (e.g., screaming), at least one (or more) isolated targeted
audio clips are overlaid/placed, and zero or more non-targeted
audio clips are overlaid/placed on the same 10s environmental
sound. In a 10s synthetic negative sample of a targeted audio
event, any other (except the targeted event) or none of the
isolated audio clips are overlaid/placed in the 10s audio.

There are different artificial reverberation effect parameters
to model how sound waves reflect from various types of
room size and characteristics. Our synthesizer introduces dif-
ferent combinations of reverberation parameters: wet/dry ratio,
diffusion, and decay factor in the generated audio samples.
These parameters generate different reverberated signal to the
original signal ratio, discrete echo effects, and reverberation
tails (decay factor of reverberation).

The generated synthetic data is highly imbalanced (due
to significantly larger number of non-targeted audio clips),
that can make the binary AED classifiers biased toward the
majority (i.e., negative) class. To address the data imbalance
issue, we perform cluster-based under-sampling [30] on the
negative (non-targeted) 10s audio clips to generate an equal
number of positive and negative synthetic data samples for
each of the targeted audio events, as well as to accommodate
the variations of the negative or non-targeted audio samples.

IV. AUDIO EVENT DETECTION

Our presented approach performs the AED task on 10s
audio clips. We developed a novel feature modeling approach
named Audio2Vec (section IV-B) to extract robust and effec-
tive feature representations of audio data. Binary classifiers for
each of the targeted events (section IV-C) take the Audio2Vec
features as input and perform the classification task.

A. Audio Features

Our approach segments the generated 10s audio clips into
overlapping windows (200ms with 20% overlap in our eval-
uation), and extracts a feature set from each window. The
extracted feature set, represents the inherent state of audio
from that window. Based on the previous studies on acoustic
features associated with targeted audio events (i.e., baby
crying, gun shots, glass breaking, screaming) we considered
low-level descriptor (LLD) features shown in left column of
Table I, as well as their delta and delta-delta coefficients. Each
window is segmented into overlapping 25ms frames with 10

TABLE I: Raw audio features

LLD Features High level features (functionals)
Zero crossing rate & ∆ (2-dim) Min, Max

Energy & ∆ (2-dim) std, skew, var
Spectral centroid & ∆ (2-dim) kurtosis, mean

Pitch & ∆ (2-dim) median
MFCC & ∆ (26-dim)

ms overlap, from which LLD features are extracted. Next the
8 functionals: minimum, maximum, mean, median, standard
deviation, variance, skew and kurtosis, are applied to extract
the audio window representation. In total 272 raw features are
extracted from each of the 200ms windows, where 10s audio
clips consist of 62 overlapping windows (200ms).

B. Feature Modeling

The modeling stage of an audio analysis system develops
a representation that reflects the audio information for that
specific task. Each segment of audio represents a state, and an
audio event is represented by the progression of audio signals
through various states. The following sections introduce a
robust novel representation of the audio state from a 200ms
window that takes into account the inherent notion of that state
with a particular targeted audio event.

1) Audio to Word: We use the Audio-Codebook model
[23] to represent the audio signal from windows with ‘audio
words’. The ‘audio words’ represent the state of audio in each
200ms window. In our context the audio-codebook words are
fragments of audio signal represented by features. We need
a robust feature descriptors to represent the audio state in
an audio window. Inspired by [7], we use a GMM based
clustering method to generate the audio codebook from the
functional representations mentioned in section IV-A.

In the codebook generation step, a GMM based model is
trained on randomly sampled data from the training set. The
resulting clusters form our codebook audio words. Once the
codebook has been generated, acoustic features within a cer-
tain range of the audio signal are assigned to the closest audio
words (cluster centers) in the codebook. In the experiments,
we have evaluated with different sizes of codebooks.

The raw audio features from section IV-A distort up to a
certain level with variance of environmental noise, audio de-
amplification, and reverberation. Our trained audio-codebook
places similar points in the feature space into the same code
words, which make the feature representation robust against
different environments, noise, and distance to the microphone.

2) Audio2Vec Approach: Audio words extracted from over-
lapping 200ms windows represent the states of the audio.
Since, audio signals from a particular audio event are different
from others, audio states representing that event would be
different from others. Also, some states occur more frequently
in a targeted audio event signal compared to other events.
Typical audio codebook word methods fails to convey this
state to an audio event representation.

To identify and exploit the inherent relation between audio
states and audio events, we developed a novel audio word to
vector conversion (Audio2vec) approach, that generates an N
dimensional vector representation for each of the audio words
(from the Audio codebook). Position of a generated vector in
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the N dimensional vector space, depicts the relation between
the state it represents and the targeted audio event.

Algorithm 1 shows our Audio2Vec conversion approach.
In the initialization stage audio words unique for a tar-
geted audio event are randomly assigned vectors near the
Positivecentre vector in an N dimensional vector space and
words which never occur in the targeted events are assigned
random vectors near Negativecentre. Other audio words are
randomly assigned vectors between them (Positivecentre and
Negativecentre). In the iteration stage, every time an audio
word wj occurs in the targeted event, the vector representation
of that audio word vj is modified according to equation 1,
which makes vj move closer to Positivecentre in the N
dimensional vector space. Otherwise vj is modified according
to equation 2, which makes vj move closer to Negativecentre
(line 18-24, Algorithm 1).

vj ← vj + (Positivecentre − vj)× δp (1)

vj ← vj + (Negativecentre − vj)× δn (2)

Algorithm 1 Audio2Vec Algorithm
w: audio word
v: Audio2Vec vector
C: audio codebook
A: audio clip represented as a sequence of n audio words; A =
{w1, w2, . . . , wn}
T: set of audio clips for training
δp: small constant used as parameter
δn: small constant used as parameter
m: dimension of generated Audio2Vec vector
iter: number of iterations
1: procedure AUDIO2VEC ALGORITHM(T, C, δp, δn, iter)
2: #Initialization:
3: Positivecentre ← [k1k2 . . . km] where k ∈ {0.8, 1}
4: Negativecentre ← [k1k2 . . . km] where k ∈ {0, 0.2}
5: for all audio word wi ∈ C do
6: if wi only appears in targeted audio event then
7: vi ← [k1k2 . . . km] where k ∈ {0.8, 1}
8: end if
9: if wi never appears in targeted audio event then

10: vi ← [k1k2 . . . km] where k ∈ {0, 0.2}
11: end if
12: if wi appears in targeted and other events then
13: vi ← [k1k2 . . . km] where k ∈ {0.4, 0.6}
14: end if
15: end for
16: loop: iter times
17: for all audio clip Ai ∈ T do
18: for audio word wj ∈ Ai do
19: if wj ∈ targeted audio event then
20: difference← Positivecentre − vj
21: vj ← vj + difference× δp
22: else
23: difference← Negativecentre − vj
24: vj ← vj + difference× δn
25: end if
26: end for
27: end for
28: end loop
29: end procedure

Since, the targeted audio events are only few seconds in
the 10s audio samples, the total number of audio words that
appear in the targeted audio event segments are significantly
lower compare to total number of audio words in other
audio event segments. To mitigate this bias, we calculate the
addition fraction parameter for negative samples δn according

to equation 3, where Np and Nn are the total number of audio
words in the targeted and other events, respectively.

δn ←
Np

Nn
× δp (3)

Figure 2 shows an example of the Audio2Vec approach,
where the vector dimension is N=2. In Figure 2 (a), black
points are the vectors (audio words) unique for targeted events,
white points are ones that never occur in the targeted events,
and the grey ones are common between two classes. Later,
in the iterative stage of Audio2vec, every time an audio
word occurs in the targeted event in training set, the vector
representation of that audio word is moved closer to the
targeted event clusters in the vector space, as shown in Figure 2
(b). Similarly, if an audio word occurs for any other events, the
vector representation of that audio word is moved further from
the targeted event clusters (figure 2 (c)). As shown in Figure 2
(d), the Audio2vec approach brings frequently occurring words
in the targeted events closer in the vector space compared to
others.

The advantages of the Audio2Vec approach:
Representational efficiency: Audio2Vec learns to map

audio data from each 200ms windows into a fixed-length low-
dimensional continuous vector space from their distributional
properties observed in training. Our evaluation has found that
the best Audio2Vec dimension is N=30. Hence, Audio2Vec
approach represents the audio windows by a significantly low-
dimensional distributed representation. Classifiers that take
lower dimensional input data can optimize their parameters
more effectively when training data is limited.

Mapping Efficiency: An interesting property of Au-
dio2Vec vectors is that they encode the syntactic relationships
between audio states and targeted audio events (classes).
Audio2Vec vectors are similar for audio states with similar
probability of occurring in targeted audio events. These char-
acteristics are similar to the output of convolution layers in a
CNN. Each convolution layer generates a successively higher
level abstraction of the input data, which preserves essential
yet unique information. Deep CNNs extract meaningful feature
representations (also in the form of vectors) from input data
by employing a deep hierarchy of layers. For example, the
best baseline CNN classifier (section V-B) has 4 convolution
layers, with, in total, 140501 network parameters. Training
such a high number of parameters needs a large training set.
One of the challenges of this study is having a small amount
of training data. The advantage of Audio2Vec approach is, its
vector generation process involves vector addition and subtrac-
tions observing the training examples and is not constrained by

Fig. 2: Example of Audio2vec approach in 2 dimensional space.
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number of training instances. Hence, the Audio2Vec approach
can generate effective feature representations for our targeted
application with limited training examples.

Execution efficiency: The Audio2Vec approach performs
the clustering operation (to calculate Audio-Codebook) during
training and stores the audio-words to Audio2Vec vectors
conversion maps in a dictionary. Hence, during execution,
converting raw audio from 200ms windows to Audio2Vec
vectors involves finding the nearest cluster centroid and a
dictionary lookup, which are linear in complexity and require
significantly fewer computations compared to the baseline
deep learning approaches.

C. Classifier

In this study we evaluated with Convolutional Neural
Network (CNN), Bi-directional Long Short-Term Memory
(BLSTM), and Deep Neural Network (DNN) (i.e., ‘vanilla’
Neural Network) as classifiers. For each of these classifiers we
performed a grid search on the network parameter values. For
each of the classifiers, our evaluation iterate on 1 to 10 layers,
with 50 to 500 neurons/filters (for convolution layers) for each
of the layers. Due to the limitation of space, each of the
classifiers with only the best iterated parameter combinations
on the training set is presented in the evaluation section.

V. EVALUATION

Our evaluation consists of three parts. First, section V-A &
V-B discuss our synthetic dataset generation for 10 targeted
audio events, and the performance of our Audio2Vec AED
approach on the generated data. Later in section V-C, we
evaluate our AED approach for two realistic applications: in-
home and in-car audio monitoring systems. And, in section
V-D, we evaluate the CPU runtime of each component of our
system to demonstrate it’s real-time capability.

A. Synthetic Data Generation

Our presented system detects ten audio events. We collected
160 isolated audio clips for each of these targeted events (100
for training, 30 for testing, and 30 for validation) from the
freesound dataset [5], the ESC environmental sound Dataset
[21], and the MIVIA audio event dataset [4].

To train a robust audio detection classifier, we need a
training dataset that contains a large variation of non-targeted
events that may occur in the real scenarios. Hence, we
collected isolated audio clips of 80 environmental and hu-
man events (40 clips for each category) from the freesound
dataset [5] and the ESC Dataset [21]. These events include
environmental events such as, rain, sea waves, birds, water
drops, wind, pouring water, car horn, helicopter, siren, engine,
train, bells, fireworks, and human sounds such as, clapping,
breathing, footsteps, drinking, sipping, dish washing, and
animal sounds such as a dog, rooster, cow, cat, insects, crow,
etc. Additionally, we collected 400 clips of human speech
with different emotions (happy, angry, sad) from the EMA
speech dataset [10]. We use this large variation of non-targeted
isolated audio clips to generate negative training samples.

Collected isolated sound clips (targeted and non-targeted)
have exact labels with sampling frequency 44.1 kHz or higher.
The duration of the audio clips varied from 0.5 to 4.3 seconds.

To introduce a large variety of environmental background
sounds we collected 1121 background audio clips from the
TUT Acoustic Scenes development dataset [14]. This environ-
mental scene dataset contains 15 acoustic scenes, including
audio clips recorded from bus, train, cafe, car, city center,
forest, store, home, beach, metro stations, office, park.

Using our mixture synthesizer (section III), we generate
2000, 10s audio clips (1000 for training, 500 for validation and
500 for testing), for each of the targeted audio events. Isolated
audio event clips and environmental background audio data
for training, validation, and testing datasets were disjoint. We
perform 10-fold cross-validations on the training and testing
sets to select the best models and model parameters that fit the
data. We use the validation set to report the AED performance
on the synthetic dataset.

Due to the highly imbalanced data in the evaluation phase
of the study, using accuracy as the evaluation metrics can
introduce an accuracy paradox. Hence, we used class-wise F1

score, the harmonic average of precision, and recall as the
evaluation metrics.

F1 =
2× precision× recall
precision+ recall

(4)

B. Evaluation Results: synthetic data

In this section, we describe the binary audio event detection
evaluation results on generated synthetic data (section V-A).
As mentioned in section IV-A, each 10s audio clips is seg-
mented into 62, 200ms windows and 272-dimensional feature-
set is extracted from each of these windows. Our Audio2Vec
feature modeling approach converts these 272 dimensional raw
feature-sets to N dimensional vectors. As the first step of
Audio2Vec approach, we generate 1000 GMM clusters from
randomly selected audio samples for each of the targeted audio
events. The resulting clusters form the generated audio words
(section IV-B1). The proposed Audio2Vec solution generates
30-dimensional vector representation for each of the extracted
audio words as described in Algorithm 1. We performed a grid
search over 500 to 3000 cluster sizes and 10 to 100 dimensions
to find the best values of cluster size (1000) and Audio2Vec
vector dimension (N=30) for our AED task.

Figure 3 illustrates the change of generated Audio2Vec
feature vector space, for the audio event: gunshot with the
increase of iteration number of Algorithm 1. PCA based visu-
alization approach is used here to visualize the 30-dimensional
feature space in 2-dimensions. In this figure, the blue points
represent the audio words unique for gunshot signals, red
points represent the ones that never occur in gunshot signals,
and green points represent the ones which are common. At the
initial step of Algorithm 1, green points are clustered in the
middle between red and blue points (Figure 3(a)). With the
increase of iterations, these points spread out, and as points
occur more frequently in gunshot signals they move toward
blue points’ cluster and the points that occur frequently in
other audio signals move towards the red points’ cluster. This
visualization demonstrates how Audio2vec approach brings
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Fig. 3: Iterations of Audio2Vec vector generation approach for gun
shots. Figure (a), (b), (c), and (d) show the generated vector feature
space after initial, 5,10 and 20 iterations of Algorithm 1.

Fig. 4: Evaluation of classifiers with Audio2Vec features.

frequently occurring audio words in the targeted event (gun-
shot) closer in the vector space compared to others.

Figure 4 shows the evaluation (class-wise F1 scores) on
different deep learning classifiers for our AED task. In this
evaluation all three classifiers take extracted 62 × 30 dimen-
sional Audio2Vec features (from 10s audio) as input. We per-
formed a grid search on the network parameters to identify the
best combination. The CNN implementation had 2 convolution
layers [60,60], each with 60 convolution kernels (temporal
extension of each filter 2), a ReLU activation function, 20%
dropout rate and max pooling (window size 2 and down-
scaling factor 2). Two fully connected dense layers [20,1]
with sigmoid activation function, were attached, which make
binary event presence decision. The CNN classifier achieved
an average F1 score of 0.948 for the ten targeted events.

The BLSTM implementation had two layers with [100, 100]
nodes, a 20% dropout rate, and two fully connected dense
layers [20, 1] with sigmoid activation function. The BLSTM
classifier achieved an average F1 score of 0.862 for the ten
targeted events. DNN implementation had four fully connected
layers with [500, 500, 300, 100] nodes and a ReLU activation
function, a 20% dropout rate, and one fully connected dense
layer [1] with a sigmoid activation function to make binary
decisions. The DNN classifier achieved an average F1 score
of 0.8039 for the ten targeted events.

Our targeted audio event duration varied between 0.5s to
4.3s. Hence, the BLSTMs ability to convey contextual infor-
mation in long audio sequence was not very advantageous. In
CNNs, the convolutional filters not only can generate mean-
ingful feature representations, moreover, they are translation
invariant. That means, during training the convolution filters
are being applied in a sliding window fashion on the entire 10s

audio. Hence, no matter where an audio event occurs in a 10s
audio clip, CNNs can detect it with limited training examples.

The CNN classifier achieved 9.9% and 17.9%, higher F1

scores compared to the BLSTM and DNN classifiers. Accord-
ing to this evaluation we achieved the highest F1 scores of
0.971 and 0.972, for events screaming and brushing teeth. The
detection of gun shots and sneezing were most difficult since,
different environmental sounds (from TUT Acoustic Scenes)
are very similar to them, especially after the de-amplification
and reverberation effects.

Fig. 5: Evaluation on features.

To evaluate the effectiveness of Audio2Vec representation,
we analyze the performance of AED with three different
feature representations: 1) Audio2Vec, 2) I-vector, and 3) raw
acoustic feature-set discussed in Section IV-A. We performed a
grid search on the three classifiers (CNN, BLSTM, and DNN)
parameters to identify the best classifiers. As shown in figure
5, raw feature-set with a CNN implementation achieved an
average F1 score of 0.8598. The CNN implementation had 4
convolution layers, each with 100 convolution kernels (tempo-
ral extension of each filter 4), a ReLU activation function, a
20% dropout rate and max pooling (window size 2 and down-
scaling factor 2). Two fully connected dense layers [100,1]
with a sigmoid activation function, are attached, which makes
the binary event presence decision.

The I-vector system is a technique to map the high-
dimensional GMM super vector space to low-dimensional
space called total variability space. The basic idea of using
I-vector representation is to represent each 200ms windows
using concatenated I-vector feature vectors extracted based on
audio event-specific GMM super vectors, and then to use these
in the classifier. However, the existence of noise and channel
variation can substantially affect the performance of i-vector
representations. Since, environmental background sounds for
training and validation data in our generated synthetic dataset
are disjoint and the EBR varied between -6 to 6 dB, the i-
vector representation fails to achieve a better AED perfor-
mance. I-vector features with a CNN implementation achieved
an average F1 score of 0.839.

According to this evaluation the AED with our Audio2Vec
features achieves 10.3% higher F1 score compared to the best
baseline features.

C. Evaluation on Realistic Applications

The MATRIX Creator [12] is an all-inclusive development
board that connects to the GPIO pins on the Raspberry Pi.
It has an 8-microphone MEMS array and an ARM Cortex
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Fig. 6: Realistic data collection.

Fig. 7: Evaluation in real home scenario.

M3 microcontroller and features built-in noise cancellation and
beamforming. We used the MATRIX Creator with Raspberry
Pi 3B, as our scalable AED device (shown in figure 6-A).

We evaluate our AED approach for two realistic applica-
tions: inside car and real home audio event monitoring. For
home event monitoring evaluation, we collected audio data
from a pseudo smart home (figure 6-B,C) setup in the Smart
Home Lab at the University of Virginia, and from a real
one-bedroom apartment. In both settings we placed the AED
device in center of the room. Since performing some events
in real home or car settings were not feasible (such as for
gun shots), we played sounds of targeted events through a
Sony SRS-XB10 Bluetooth speaker. The speaker was placed in
different places of the bedroom, bath, kitchen and living room.
We collected data for a single day where a single occupant
performed daily in-home activities, and different events were
played at random times from random places. In total, we
collected 50 audio examples for each of the 10 targeted audio
events from each of the home settings.

Figure 7 shows our evaluation on real home data. In this
evaluation the AED approach achieved an average F1 score of
0.96 for the ten targeted events, that is 1.2% higher compared
to our evaluation on the synthetic dataset (section V-B). This
is due to the significantly less noise and variations of non-
targeted audio events, compared to some challenging pseudo
scenarios (section V-A), such as, trains, cafes, city center.
According to the evaluation gun shot detection was most
difficult since, different in-home environmental sounds, such
as, knocking on the door, jumping, walking on a wooden floor,
are very similar to de-amplified gunshot sounds.

For the inside car event monitoring evaluation, we collected
audio data from a Toyota Corolla 2016 car for 3 different
speed ranges (below 25, 25 to 45, and above 45 MPH) with
2 different conditions, AC on and AC off. The AED device
was placed in the center of the car, and different sound events
were played from a Sony speaker placed in four passenger
seat positions. For each of the 6 conditions we collected 20
audio examples for each of the 10 targeted audio events from
each passenger seat positions. Additionally, we collected audio
samples without the presence of any of the targeted events.

All the audio examples of targeted and non-targeted events
used for this evaluation (in-home & in-car) were not included

TABLE II: AED evaluation in real car scenario.

Speed (MPH Condition) 0-25 25-45 45-65
AC on AC off AC on AC off AC on AC off

Cry 0.954 0.946 0.954 0.948 0.94 0.938
Laughter 0.971 0.971 0.967 0.951 0.952 0.951
Scream 0.986 0.986 0.983 0.974 0.98 0.964

Coughing 0.968 0.968 0.964 0.961 0.948 0.942
Snoring 0.991 0.991 0.991 0.98 0.971 0.971

Brushing teeth 0.983 0.983 0.98 0.98 0.976 0.976
Sneezing 0.942 0.93 0.938 0.926 0.91 0.895
Baby cry 0.944 0.942 0.94 0.924 0.928 0.901

Glass break 0.989 0.982 0.971 0.971 0.961 0.942
Gunshot 0.957 0.957 0.942 0.928 0.901 0.896

in the synthetic dataset (section V-A).
Table II shows our evaluation on real car. These results

are comparable to our evaluation in section V-B. At low car
speeds, the AED approach achieved an average F1 score of
0.9685. That is due to the significantly less noise and the
absence of de-amplification on event sounds (All passenger
seat positions are close to the AED device). Though at high
speeds, the AED performance drops to 0.946 and 0.937
average F1 scores on AC-on and AC-off conditions. The
humming sound of AC, reduce the effect of noises in the car,
hence, AC-on condition performed better for most of the cases.

D. CPU Time Benchmarking for Real Time execution

We did all our realistic application experiments on a Rasp-
berry Pi 3B having a Quad Core 1.2GHz Broadcom BCM2837
64bit CPU and 1GB LPDDR2 (900 MHz) memory. Our
program reads a 10s audio file at a time, and extracts 272-raw
features. For each of the (10) targeted events a process reads
the raw feature-set, converts it to an Audio2Vec representation,
and performs classification through the CNN implementation
described in section V-B. We performed the multiprocessing
tasks through Python multiprocessing package.

We benchmark the computation time for (1) extracting 272-
dimensional raw feature-set from 10s audio, (2) combined
time for 10 processes to convert raw features to respective
Audio2Vec representations, and (3) combined time for 10
processes to perform classification, as shown in table III.
Moreover, we implemented the best baseline approach from
section V-B: Raw audio features with a 4-convolutional layer
CNN implementation in the Raspberry Pi 3B, with the similar
multiprocessing approach. As shown in table III, for the
baseline approach we benchmark the computation time for (1)
extracting 272-dimensional raw feature-set, (2) combined time
for 10 processes to perform classification taking raw features.
Computation time is the time spent running the particular task
plus running OS code on behalf of the task.

According to table III, reading audio files and extracting
raw feature-set takes high CPU execution times, since they in-
volve I/O operations. Audio2Vec vector conversion takes only
0.022s. The 2-convolutional layer CNN implementation used
in our AED approach has 38, 561 parameters, and cumulative
classification time takes 0.215s. Hence, the cumulative time
taken by the 10 processes is 0.237s. And end-to-end total
AED system time for one 10s audio is 4.557s. Given the AED
window is 10s, the real-time system is extendable to including
many more audio events. The baseline CNN implementation
has 150, 601 parameters, and cumulative classification time
takes 0.338s. Hence, the cumulative time taken by the 10
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TABLE III: Computation time for various system tasks

Audio2Vec AED approach

Task Reading audio and
extracting raw features

Audio2Vec
conversion

(cumulative)

Classification
(cumulative) Total time

Time (sec) 5.32 0.012 0.215 5.547
Baseline: Raw features+CNN

Task Reading audio and
extracting raw features

Classification
(cumulative) Total time

Time (sec) 5.32 0.338 5.658

processes (one for each events) in the baseline implementation
is 42.6% higher compared to the Audio2Vec AED approach.

According to this evaluation, our presented AED approach
is capable of real time execution on a resource constrained
device. Note that CPU times reported in table III are when
only the audio event detection program is running. Running
additional programs will effect/change these times.

VI. CONCLUSION

This paper presents a novel framework for robust AED
models generation using limited available data. The framework
uses a novel audio mixture synthesizer to generate a large
synthetic dataset, that contains a large variation of background
environmental sounds, noise, SNR, and reverberation effects;
a novel robust and computationally effective feature represen-
tation technique, named, Audio2Vec. Due to the meaningful
syntactic characteristics of the extracted feature representa-
tions, AED with Audio2Vec, performs significantly better with
shallow network models, compared to much deeper models
with baseline features. To demonstrate the applicability of the
framework, we implemented a real-time AED system in a
Raspberry Pi 3B and evaluated its performance in real home
and in-car settings, that achieved F1 scores of 0.96 and 0.956,
respectively. Moreover, we experimentally evaluated the CPU
runtime of the AED system to demonstrate its on-device real-
time capability for a constrained device. Our framework is
extendable to any other audio events and the real-time AED
system is extendable to include many more audio events.
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