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The rapid development of machine learning on acoustic signal processing has resulted in many solutions for detecting
emotions from speech. Early works were developed for clean and acted speech and for a fixed set of emotions. Importantly,
the datasets and solutions assumed that a person only exhibited one of these emotions. More recent work has continually
been adding realism to emotion detection by considering issues such as reverberation, de-amplification, and background noise,
but often considering one dataset at a time, and also assuming all emotions are accounted for in the model. We significantly
improve realistic considerations for emotion detection by (i) more comprehensively assessing different situations by combining
the 5 common publicly available datasets as one and enhancing the new dataset with data augmentation that considers
reverberation and de-amplification, (ii) incorporating 11 typical home noises into the acoustics, and (iii) considering that in
real situations a person may be exhibiting many emotions that are not currently of interest and they should not have to fit
into a pre-fixed category nor be improperly labeled. Our novel solution combines CNN with out-of-data distribution detection.
Our solution increases the situations where emotions can be effectively detected and outperforms a state-of-the-art baseline.
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1 INTRODUCTION
Many research papers from the field of psychology [31], [15] [32], [9] have shown that emotional health is
a crucial part of one’s well-being. The rapid development of machine learning in the field of acoustic signal
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processing has resulted in a surge of interest in detecting emotions from speech. Recent publications [36], [24],
[16], [55] have classified emotions based only on acoustics with no visual images. These acoustics-based emotion
detection algorithms have the potential to monitor people’s emotions 24 hours a day and consequently play a
vital role in maintaining people’s emotional well-being. For example, in one important application, family or
informal caregivers for persons with dementia can benefit from these algorithms. These caregivers are twice
as likely to experience emotional difficulties compared to the caregivers of patients living with diseases other
than dementia [27]. Because long-term untreated emotional difficulties are linked to mental health disorders,
helping the caregivers of persons with dementia become aware of their emotions is of paramount importance.
However, it is impractical to appoint a human professionally trained to detect the onset of various emotions in
the household of each pair of dementia caregiver and care recipient dyad. Therefore, in this application area, the
need for emotion detection algorithms is pressing. It is also well known that many other in-home and in-office
applications can also benefit from detecting emotions.

The development of machine learning in the field of speech-based emotion recognition has produced solutions
such as [2], [50], [53]. The early works in speech-based emotion detection were developed for clean and acted
speech and for a fixed set of emotions such as happiness, anger, sadness, and neutrality. One caveat with using
such datasets to develop an emotion detection algorithm is that the datasets and algorithms assume that people
only exhibit one of those emotions. Recent works have considered the reality of speech-based emotion recognition
by taking into account the effect of environmental distortions such as de-amplification, background noise, and
reverberation caused by sound signals bouncing on objects. However, these solutions often consider one dataset
at a time and consider that all emotions are accounted for in the model developed on that one dataset.

In spite of the progress made on emotion detection from speech, challenges remain to more accurately handle
in the wild situations and to identify emotions of interest among the vast array of human emotions exhibited by
individuals in every day life. Out of the state-of-the-art algorithms published on emotion recognition [35], [6],
[28], [47], [54], [48], in Table 2, only three of them deals with environmental distortions such as deamplification,
background noise, and reverberation. Out of the three works that deals with environmental distortions, there
is no evaluation on how their algorithm fares when different combination of reverberation factors, such as the
decay factor and diffusion, are combined.
Based on the state-of-the-art in this field, Key Challenges for speech-based emotion detection are:
• Many speech-based emotion detection algorithms are developed on datasets of either clean speech or
speech that are environmentally distorted in various degrees, but they assume that people will only exhibit
one of the emotions accounted for in the dataset.

• The effect that environmental distortions has on the classification of different emotions is not well studied,
because, despite that there exist works [48], [54] that take environmental distortions into account, they
don’t study to what extent does each environmental distortion affect the classification of different emotions.

The main contributions of this paper are:
• We created a combined CNN and out of data distribution (OOD) solution that performs in the range of
90% accuracy even in the presence of non-targeted emotions, 11 realistic home noises, deamplification due
to distance from the microphones, and reverberations due to different room types. This is a significant
improvement over a state-of-the-art model, the hierarchical classifier described in Section 5.2 whose
accuracy over the same testing set (that includes environmentally distorted samples and samples of non-
targeted class) is 56.2%. The hierarchical classifier outperforms five state-of-the-art models on samples with
and without environmental distortions (See table 2).

• To address the first challenge, we show that explicitly training on non-interested confounding emotions
where you have data plus employing an OOD technique for non-interested emotions where you don’t have
data outperforms using just an OOD for all non-interested emotions by more than 10%.

, Vol. 1, No. 1, Article . Publication date: July 2021.



Emotion Recognition Robust to Indoor Environmental Distortions and Non-targeted Emotions Using Out-Of-Distribution Detection • 3

• To address the second challenge, we demonstrate how different environmental distortions affect the
classification results: background noise and deamplification have the most impact on the decrease of
classification accuracy by 7.3%, followed by room reverberation that results in the decrease of classification
accuracy by 4.5%.

• We create a novel synthetic dataset usable by the community that incorporates a padding strategy to better
mimic real world speech monitoring than current datasets, and includes deamplification, reverberation,
and added noise from 11 types of real home background noise. The information of the synthetic dataset as
well as the 5-class CNN and OOD solution is publicly available at: Website.

• Accurate mood detection by our solution allows the emotions of users in a smart home to be automatically
detected in a passive manner. Upon detection, while not part of this paper, relaxation and mindfulness
techniques that have been shown to alleviate unhealthy mood can be recommended to the users.

2 RELATED WORKS
There have been studies on detecting emotions in smart-home environments. Many of these do not use speech.
For example, Fernandez et al. propose a proof-of-concept architecture that detects a user’s emotion by analyzing
their facial expression and physiological signals [25]. Mano et al. propose to use the facial expression of elderly
people to detect their emotions; the emotion detection classifier can identify when an elderly person needs urgent
help [43]. Zhao et al. develop EQ-Radio that transmits an RF signal that will bounce off a person’s body and back
to the analyzing device. The RF signal carries the information of heartbeat and respiration signals that can be
teased out and used for emotion recognition [56]. However, it is not always feasible to deploy such systems.

Other in-home systems such as Alexa and Siri are providing voice assistance for access to health-care services
and support for reminders, detecting colds, etc. To date, they do not assess mood. In addtion, there have been
works that use a smart home assistant to detect mood, such as Chatterjee et al. [13], but this work is evaluated
only on clean datasets that are not environmentally distorted. Callisto et al. [11] also propose to use a smart
home assistant robot (and available smart home speakers can fill this role) to detect emotions in smart homes,
but to date this work has been only a proposal.
The works that have focused on using the acoustic modality to detect emotions on samples that are under

various degrees of environmental distortions are by Triantafyllopoulos et al. [50], Dickerson et al. [20], and
Vrebcevic et al. [52]. The Deep Residual Network [50] is a scalable deep learning network that can be used
to detect emotions in previously unseen environments due to its noise-removal procedure. RESONATE [20]
is a reverberation compensation approach that add reverberation (but not noise or deamplification effects) to
a training corpus in order for a model trained on this corpus to be able to account for reverberation. After
adapting Alex-Net so it is suitable to process sound, Vrebcevic et al. [52] train the classifier on samples that are
contaminated with ambient noise (but there are no reverberation or deamplification effects).
The works that have focused on detecting emotions in real-time include Lech et al. [37] that adapts AlexNet

for speech processing but does not deal with environmental distortions, Cen et al. [12] that develops a system
consisting of voice activity detection and emotion recognition. However, Cen et al. [12] is evaluated on a
simulated online learning environment so the testing samples are absent of environmental distortions. Not taking
environmental distortions explicitly into account is a very prevalent problem with works on emotion detection
in real-time or time-sensitive tasks; works that suffer from this problem also include Stolar et al. [49], Fayek et al.
[23], and Bahreini [4].

A published summary [22] shows acoustic features or parameters that have been used for emotion detection,
encompassing frequency, time, and amplitude. Since a huge variety of features are used in different previous
works and different works uses different set of these features, direct comparison and cross-examination on the
effectiveness of the features prove challenging. The summary [22] proposes that emotions from the datasets
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Work Approach Performance Environmental Distortion

[18] GentleBoost 86.3% ×

[41] Linear Discriminant Analyses 81.8% ×

[3] Support Vector Machine 85.5% ×

[17] Ensemble of SVM 86.3% ×

[53] Fourier Transform + SVM 79.51% ×

[19] Autoencoder-Based Domain Adaptation 62.0% ×

[2] Convolutional Neural Network 69% ×

[50] Deep Residual Network 86.3% (unweighted aver. recall) ✓
[20] RESONATE 80% (approximate) ✓
[52] Alex-Net + Data Augmentation 34.03% ✓
[8] Evaluation by Humans 86.0 % ×

Table 1. Evaluation of previous works on EMO-DB. The performance, if not otherwise noted, is measured by accuracy. Three
of the works attempt to deal with environmental distortions. The definition of environmental distortions is defined differently
in different works.

analyzed can be represented by two features: valence, which represents the degree of positivity or negativity of
an expressed emotion, and arousal, which represents the energy or intensity of the expressed emotion. Trigeorgis
et al. [51] use valence and arousal for emotion detection from speech. The usage of acoustics-based emotion
recognition using valence and arousal extends from emotion classification from speech to classifying emotions
based on music [30], which provides a set of features that describe valence and arousal in a musical piece.
However, when it comes to realistic deployments and detecting emotions from speech in the wild, the features
extracted from the raw audio signal must be resistant to both background noise and various combinations of
reverberation factors. The demonstration that the features descriptive of valence and arousal will not be sensitive
to environmental distortions remains lacking.

Other popular datasets of acted emotional speech include the Surrey Audio-Visual Expressed Emotion Database
(SAVEE) [33], the Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), [40] and the
Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D) [10]. These three datasets consist of both
audio-video and audio-only samples. Other works [6], [28], [5], [46] seek to exploit the multi-modality of the
datasets, while works such as [35] only use the audio clips from SAVEE and RAVDESS. Despite the high accuracy
achieved by some of the works on one or more of the three multi-modal datasets, they still haven’t explicitly
addressed the issue of environmental distortions. Salekin et al. [47] publish the Distant Emotion Recognition in
which they select features that are robust to distance and only extract those features when processing a speech
signal. However this work does not evaluate its model on speech that are contaminated with background noise,
so it is hard to tell if it is robust to this particular kind of environmental distortion. Another work [54] improves
the robustness of speech-based emotion recognition by considering the magnitude spectrogram and the modified
group delay spectrogram. This work considers both noise and reverberation, but they simply show that their
work is robust noise contaminated speech samples and there is no evaluation on how their model fares when
different combination of reverberation factors, such as the decay factor and diffusion, are combined.

Since confounding emotions are largely overlooked in research papers by the acoustic-based emotion detection
community, we are unable to find any research that indicates the effort of filtering out confounding emotions so
that such samples will not be sent to the classifier and result in a wrong classification. A possible approach to
discern an emotional utterance sample that is of emotions that the classifier is not trained to classify is to detect
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Work Dataset(s) Approach Accuracy Distortions

[35] RAVDESS, SAVEE Shake-Shake Regularization 60.8 % ×

[6] SAVEE, CREMA-D LSTM encoder 41.2 % ×

[28] RAVDESS Temporal DNN 67.7 % ×

[28] CREMA-D Temporal DNN 74.0 % ×

[54] RAVDESS Noise Mitigation + CNN 81.0 % ✓
[48] RAVDESS Noise Mitigation 80.0 % ✓

Our baseline RAVDESS, EMA, CREMA-D, TESS, SAVEE Hierarhical Classifier 94.7 % ✓
Our baseline RAVDESS, EMA, CREMA-D, TESS, SAVEE Hierarhical Classifier 88.4 % ×

Table 2. Evaluation of works on SAVEE, CREMA-D, RAVDESS, EMA, TESS. The performance, if not otherwise noted, is
measured by accuracy. The definition of environmental distortions is defined differently in different works. Except for the
hierarhical classifier, the other items are published state-of-the-art works on emotion recognition on (a subsets of) the
datasets that our solution is trained on. The hierarchical classifier is developed by us to serve as a baseline that we compare
against our solution because it is trained on the same datasets that our solution is trained on. On clean samples, our baseline
achieves an accuracy of 94.7% which outperforms the first three baselines (two of which use the same algorithm) evaluated
on clean speech. On environmentally distorted samples, our baseline achieves an accuracy of 88.47%, which out-performs the
last three baselines that are tested with environmental distortions.

if this sample is within the distribution of the training samples. Hendrycks et al. discovers that, when wrongly
classified, an out-of-distribution sample results in a generally smaller softmax probability than an in-distribution
sample that is correctly classified [34]. Based on this observation, they propose to detect an out-of-distribution
sample by comparing it within the context of the statistics of the softmax probability scores by all samples (in
the testing set). This approach’s performance is improved by Liang et al. [39] who use temperature scaling and
input perturbing for out of distribution detection. Both Liang et al. and Hendrycks et al.’s approaches are out-
perormed by a Mahalanobis distance-based approach: Lee et al. [38] proposes a way to detect out-of-distribution
samples to prevent them from being sent to the softmax layer of a deep neural network and result in a wrong
classification. For each training sample, Lee et al. calculate the activation of the penultimate layer (the layer that
will forward its activation to the output layer) to get the distribution of the training samples. After training, when
a previously unseen sample is sent to the classifier for classification, the activation of the penultimate layer of
the neural network is calculated before being sent to the output layer. The Mahalanobis distance [42] from the
activation of the penultimate layer by this previously unseen sample to the distribution of the activations of
the penultimate layers by training samples thisen be calculated. The Mahalanobis distance measures how many
standard deviations a data point is away from the distribution of a group of data points.

3 SYNTHETIC DATASETS
There are 5 well known datasets used for emotion detection: CREMA-D, SAVEE, RAVDESS, TESS, and EMA.
Table 3 shows what emotional utterances are in each of the datasets. Even combining these datasets results in too
limited data and that data would not account well for noise, reverberation and deamplification. Consequently, we
not only combine these 5 datasets to provide more samples and to be more general, but we also develop multiple
synthetic datasets. These datasets include clean speech (to serve as a baseline), noisy speech, reverberated speech,
and combining all the factors and adding deamplification. This enables the evaluation to show the effects of each
factor as well as the overall situation that closely represents realistic environments. The following subsections
describe how we built the synthetic datasets from the five publically available sets of emotional speech. We also
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Dataset HAP ANG NEU SAD SUR FEA DIS CAL

CREMA-D ✓ ✓ ✓ ✓ × ✓ ✓ ×

RAVDESS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
SAVEE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ×

TESS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ×

EMA ✓ ✓ ✓ ✓ × × × ×

Table 3. The components of the original datasets: CREMA-D, SAVEE, RAVDESS, TESS, and EMA. The emotions in this Table
are: Happiness, Anger, Neutrality, Sadness, Surprise, Fear, Disgust, and Calm.

describe how we create out of distribution samples to test the case when humans exhibit emotions that are not
accounted for in the training.
The fact that all five of the publically available datasets have happy, angry, neutral, and sad classes suggests

that these four emotions are acknowledged to be commonplace, but distinctive enough to be separated from other
emotions. As a result, these four classes of emotions are also included in our synthetic datasets as emotions of
interest. In addition to these four classes, we also have a class of confounding emotions, which are emotions that
are distinct enough to not be confused with any of the four commonplace emotions. Because surprise is similar to
happiness (for example, TESS lists the surprised emotional utterances are speech samples of "pleasant surprise")
[21], and boredom is similar to neutrality, surprise and boredom are not considered confounding emotions, rather
variations of happiness and neutrality. This leaves us with two confounding emotions - fear and disgust, and
one class of out-of-distribution emotion, calmness. The class of confounding emotions in our synthetic datasets
consists of fearful and disgusted speech samples.

3.1 Generate padded samples that are otherwise not environmentally distorted, denoted as D1

After getting rid of corrupted and otherwise unusable samples from the five sets of emotional speech, we end up
with the set of clean audio samples of various lengths. Since most of the audio clips are less than or equal to 4
seconds, we pad each of them into a 5-second window. In order to do the padding, we first generate a 5-second
segment of pure silence audio clip and randomly decide the index of a frame in the 5-second segment and overlay
a sample of emotional speech with the silence with that frame index as the starting point. This strategy of padding
results in a more diverse set of samples of emotional speech in comparison to the strategy in which each sample of
emotional speech is overlaid with the silence segment starting universally at a fixed index. Our padding strategy
also results in a more realistic dataset that resembles the set of emotional speech segments collected in the wild,
as it is unreasonable to expect that each speech segment is perfectly captured by the microphone right when
the first syllable of the segment is spoken. By providing a more diverse and more realistic way of padding, we
increase the diversity of our dataset and this contributes to the robustness of the classifier.
The complete set of generated clean padded samples is referred as D1. In D1, there are 1792 happy samples,

1793 angry samples, 1573 neutral samples, 1793 sad samples, and 1837 samples of confounding speech. In total,
there are 8788 samples.

3.2 Generate de-amplified, noise-contaminated samples, denoted as D2

For each audio clip in D1, we create two copies of them. For each of the two copies, we randomly de-amplify it
withm decibels such thatm ≤ 12. Then, we randomly choose among the dataset of background noise collected
in real homes which are around 5-minutes long; within a certain chosen clip of background noise in real home
environments, we randomly take a 5-second audio segment from it, and overlay it with the de-amplified sample.
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Event Instances

(object) rustling 60
(object) snapping 57

cupboard 40
cutlery 76
dishes 151
drawers 51

glass jingling 36
object impact 250
people walking 54
washing dishes 84

water tap running 47
Table 4. Events that are present in the background noise collected from real homes from the dataset [44]. All of them are
covered in the process of contaminating audio samples with background noise.

Table 4 illustrates the events that are present in these audio clips of home environments. The way we overlay the
background noise clips with the duplicate samples ensures that the household events in Table 4 are present in the
resulted audio clips of the overlaying.
The set of de-amplified, noise-contaminated samples is referred as D2. In D2, there are 3584 happy samples,

3586 angry samples, 3146 neutral samples, 3586 sad samples, and 3674 samples of confounding speech. In total,
there are 17576 samples.

3.3 Generate reverberated samples, denoted as D3

For each audio clip in D1, we duplicate it once. The duplication is then reverberated. The reverberation effect is
generated by the combination of three reverberation factors: the wet/dry ratio r , diffusion d , and the decay factor
f . Each time an audio sample is reverberated, a random set of values for the wet/dry ratio, diffusion, and the
decay factor is generated. The choice of the reverberation parameters and the set of their values is also used in
DER (Distant Emotion Recognition) [14] which seeks to solve the problem of speaker identification by generating
different reverberation models to represent difficult rooms in which a speaker might be present. Their approach
yields almost zero error rate when tested in real-time when human participants were speaking in a room where
a microphone array was present. The performance achieved by DER indicates that the different combinations
of the given reverberation parameters and their given ranges are able to describe typical indoor environments.
Therefore, we adopt the same reverberation model to change the audio samples as if they were collected in the
indoor environments described by the different combinations of the reverberation parameters.
The set of reverberated samples is referred as D3. In D3, there are 1792 happy samples, 1793 angry samples,

1573 neutral samples, 1793 sad samples, and 1542 samples of confounding speech. In total, there are 8493 samples.

3.4 Generate samples that are de-amplified, noise-contaminated, and reverberated, denoted as D4

For each audio clip in D2 that is not of a confounding emotion, we duplicate it once. For each duplication,
we reverberate it in the same way as we obtain the reverberated samples in D3. The set of samples that are
de-amplified, noise-contaminated, and reverberated is denoted as D4. In D4, there are 3584 happy samples, 3586
angry samples, 3146 neutral samples, and 3586 sad samples. In total, there are 13902 samples.
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D = ∪n
i=1Di ,n = 4 (1)

∩n
i=1 Di = �,n = 4 (2)

3.5 Training and testing sets, denoted as Dtrain and Dtest

After generating the above synthetic datasets we take the union of them for overall evaluation. We split the
union of the synthetic datasets into training and testing sets. To ensure that all the emotion classes are equally
represented in both the training and testing sets, we randomly select 80% of confounding samples, 80% of happy
samples, 80% of angry samples, 80% of neutral samples, 80% of sad samples and use them for training, while the
rest of the samples are used for testing. The 80% of samples selected from an emotion consists of samples from
D1, D2, D3, D4 so the environmental distortions and their combination are accounted for the testing set.
Let Dtrain denote the training set and Dtest denote the testing set. Equation 3 describes the relationship

between the entirety of the synthetic datasets, D, and Dtrain and Dtest . The mutual exclusion of Dtrain and
Dtest is described in Equation 4.

D = Dtest ∪ Dtrain (3)

Dtest ∩ Dtrain = � (4)
Equations 5 and 6 describe the subsets of the training and testing sets based on the subsets’ relationship to D1,

D2, D3, and D4. Each of Di , i ∈ {1, 2, 3, 4} shares some members with the training set. Similarly, it also shares
some members with the testing set. For example, Dtrain,1 denotes the set of samples in the training set that are
not distorted in anyway, and Dtest ,3 denotes the set of samples in the testing set that are reverberated, but are
neither deamplified nor contaminated with noise.

Dtrain,i = Dtrain ∩ Di , i ∈ {1, 2, 3, 4} (5)

Dtest ,i = Dtest ∩ Di , i ∈ {1, 2, 3, 4} (6)

3.6 Generate samples that are out of the distribution of the training and testing sets
We have addressed the importance of considering confounding emotions. However, the number of confounding
emotion classes to be included in the training and testing sets is finite. If an emotional speech segment is not
within the distribution of the samples of interested and confounding emotions in the training set, this speech
segment does not belong to any of the interested or confounding classes. Classifying such a sample will be
pointless, as the classifier will make mistakes on classifying it. Therefore, out-of-distribution detection is crucial,
and it will further assist in filtering out emotional utterances that are not of the interested classes.

We generate out-of-distribution samples to test the performance of the out-of-distribution technique. We use
calm speech segments from TESS as out-of-distribution samples, because in-distribution samples will be happy,
angry, neutral, sad, or confounding (disgusted or fearful). We generate synthetic calm samples in the same way
that we generate synthetic samples of other emotions. First, we pad them to 5-second window, following the
exact step described in Section 3.1. This group of padded but not otherwise environmentally distorted calm
samples is represented by O1. Then, we create three copies of them. For the two copies of each padded calm
sample, we de-amplify them and contaminate them with noise, as described in Section 3.2. This group of calm
samples is represented by O2. The other copy of the padded calm sample is reverberated, following the same
procedure described in Section 3.3. This group of calm samples is represented byO3. Then, we make a copy of the
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Low-Level Descriptors (LLD’s) Amounts

Mel-Frequency cepstral coefficients (MFCC) 1-13 104
Delta coefficients for MFCC 1-13 104

Zero-crossing rates 8
Delta coefficients for zero-crossing rates 8
Root-mean-square signal frame energy 8

Delta coefficients for root-mean-square signal frame energy 8
Spectral centroid features 8

Delta coefficients for the spectral centroid related features 8
Pitch-related features 8

Delta coefficients for the pitch-related features 8
Total amount 272

Table 5. The 272 low-level descriptor features

calm samples that are de-amplified, noise-contaminated, but not reverberated. For all the copies, we reverberate
them, so they become de-amplified, noise-contaminated, and reverberated. This group of calm speech segments
is represented by O4. Collectively, the entire set of calm speech segments is represented by O , which is the union
of O1, O2, O3, and O4. Note that these calm speech segments are in neither training nor testing sets.

4 FEATURE SELECTION
In this work we use 272 low-level descriptor features associated with emotions because these are common to
many previous solutions such as [47]. Table 5 provides a summary of these features.

5 SOLUTION

5.1 Overview
To illustrate the importance of considering confounding emotions, we have developed two emotion detection
algorithms. One of the algorithms serves as a baseline and is a hierarchical structure that consists of 3 CNN’s
and this algorithm only has four classes (section 5.4). It is able to achieve high accuracy even in the presence of
background noise, de-amplification, and reverberation, under the condition that all audio clips passed to this
structure are happy, angry, neutral, or sad utterances. However, as the Evaluation section shows, the accuracy
significantly drops once the condition no longer holds - in other words, the structure fails to perform adequately
if speech samples of confounding emotions are added which is the typical situation in the real world.

The second algorithm (sections 5.2 and 5.3) is our solution. Due to the importance of considering confounding
emotions, our solution is a CNN classifier that has five classes - confounding emotions (emotions that we are not
interested in, but for which we have data), happiness, anger, neutral, and sadness and to these 5 classes we add
an OOD component to capture confounding emotions where we do not have data.
Our solution works with 5-second audio clips. If the input is shorter than 5-seconds, we pad it with the

padding algorithm described in the synthetic datasets section. Note that the authors of [47] show that 5-second
audio samples obtained from padding the original samples from datasets yields high accuracy across various
speaker-to-microphone distances. After making the input to be exactly 5-seconds long, we slice it into 48 small,
overlapping frames, each of which lasts for 25 ms. From each small frame, we obtain 272 LLD features. As a result,
the input of our classifier is a tensor of 48 frames × 272 channels per frame. The hyper-parameters we choose are
provided in [47], as these values for the hyper-parameters are shown to achieve good classification accuracy.
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Softmax Distribution ODIN Mahalanobis

Accuracy 85.0% 91.0% 95.7
Table 6. The detection accuracy of three out-of-distribution detection algorithms. The in-distribution samples are CIFAR-10
samples. Samples of SVHN are out-of-distribution samples [38]. The metric is accuracy.

5.2 The 5-Class CNN Classifier
Although neural networks sometimes yield good performance with minimally tuned hyper-parameters, [29]
suggests that performance will significantly increase if a thorough tuning of hyper-parameters is performed. Grid
search is recommended by [29] as an approach to perform hyper-parameter optimization when there are relatively
few hyper-parameters. When performing grid search over a set of hyper-parameters, the programmer assigns a
small, finite set of values for each hyper-parameter. The grid search algorithm loops over the combinations of
the specified hyper-parameters and trains the model multiple times to iterate through the combinations. The
combination of the hyper-parameters that results in the model that yields the least validation set error is the final
choice of the hyper-parameters.
The hyper-parameters that we choose to tune are a standard choice for tuning CNN’s. Due to the relatively

small number of the hyper-parameters we have, we choose to perform grid search on them, instead of random
search, another hyper-parameter optimization algorithm that is quicker but less thorough. We have performed
grid search over the following hyper-parameters: epoch, batch size, the number of convolutional layers, the
number of kernels in each layer, the size of kernels in each layer, the stride size of max-pooling, the activation
function (ReLU and Leaky ReLU), the optimizer, the learning rate, the decay ratio, and the size of the dense layers
after the convolutional neural nets are flattened. Our final model consists of four convolutional layers. After
the output of the final CNN is flattened, three dense layers of 2048 neurons are attached. We choose the adam
optimizer with the learning rate as 1e-4 and decay ratio as 0. The optimal batch size is 128. The optimal epoch is
1000. The optimal filter size is 3 (filters are measured by the number of small frames).

The classifier is implemented with Keras, a neural network API using Tensorflow backend and trained on the
samples in the training set, Dtrain . For each sample X in Dtrain , we slice them into 48 overlapping small frames
x1...xn,n = 48 with hop length of 5. Hop length is defined as the amount of samples between two small frames.
Librosa, a python package on acoustic signal analysis, is used to extract the 272 features for each small frames
si such that i ∈ {1, ..., 48}. As we have described in Table 5, the features can be categorized into (1) MFCC’s
1-13, (2) the delta coefficients of MFCC’s 1-13, (3) zero-crossing rates, (4) the delta-coefficients of zero-crossing
rates, (5) RMSE, (6) delta-coefficients of RMSE, (7) spectral centroids, (8) delta-coefficient of spectral centroids, (9)
pitch-related features, and (10) their delta-coefficients. For each of these categories, we calculate the minimum,
the maximum, the median, the mean, the standard deviation, the variability, the skewness, and the kurtosis. This
indicates that, for the first category, we have 13 × 8 features, for the second category, we have 13 × 8, for the rest
of the categories, each category has 1 × 8 features. In total, we have 2 × 13 × 8 + 8 × 1 × 8 = 272 features.

5.3 The Detection of Out-Of-Distribution Samples
The fifth class (the confounding emotions class) of the classifier described above is to prevent disgusted and
fearful emotional speech segments (as examples of emotions for which we are not interested in but have data)
from being classified as happiness, anger, neutrality, or sadness. However, this classifier can handle only six
most basic emotions (happiness, anger, neutrality, sadness, fear, and disgust), and human beings are capable of
expressing other emotions. Table 3 shows that the TESS dataset considers calmness to be an emotion category
that is different from the aforementioned six emotions.
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In order to further filter out emotional speech segments that are not included by the 5 emotions, we use the
out-of-distribution technique [38] using Mahalanobis distance. We select this technique because it outperforms
two other major out-of-distribution detection algorithms - softmax Distribution and ODIN as indicated in Table
6. In the following paragraphs, we describe in detail the Mahalanobis distance-based OOD detection technique.

Let x i and yi represent a sample in the training set and its label. Let Nc represent the number of all samples in
the training set whose label is of class c . Equation 7 defines the empirical mean of a class c and f represents the
activation of the penultimate layer of our 5-class CNN by the input x i . µ̂c is the mean of the activations of the
penultimate layer of our 5-class CNN by all samples in the training set whose label is of class c .

µ̂c =
1
Nc

N∑
i :yi=c

f (x i ) (7)

Equation 8 [38] defines the empirical covariance matrix, an important part required to represent the distribution
of the training set. After the empirical means for all c ∈ C are calculated, whereas C is the set of all possible
labels, (f (x i ) − µ̂c ) is used to measure how each samples in the training set deviates from the empirical mean
of all samples in the same class, c . (f (x i ) − µ̂c )(f (x i ) − µ̂c )

⊤ results in a symmetric matrix with numbers of the
rows and columns equal to the number of neurons of in the penultimate layer of our 5-class CNN. By looping
through all classes, the empirical covariance matrix of the training set is calculated.

Σ̂ =
1
N

C∑
c

N∑
i :yi=c

(f (x i ) − µ̂c )(f (x i ) − µ̂c )
⊤ (8)

After the empirical means for all classes and the covariance matrix for the training set are computed, we have
obtained the two crucial components that collectively describe the distribution of the training set so that a new
incoming sample that is two many standard deviations away from the this distribution is considered abnormal
and should be prevented from being sent to the output layer of the classifier. Equation 9 [38] describes how to
calculate the Mahalanobis distance of a previously unseen sample x to our 5-class CNN after the training phase
of the CNN. Since there are multiple classes, we need to calculate the Mahalanobis distance for each class c based
on its µc . After the calculation of the Mahalanobis distances for all the classes, we pick the class such that the
Mahalanobis distance from the sample x is the smallest.

CM (x) = argmin
c

(f (x) − µ̂c )
⊤Σ̂−1(f (x) − µ̂c ) (9)

After we obtain the Mahalanobis distance from x , the previously unseen sample that we want to classify, we
check if its Mahalanobis distance is in a threshold obtained during the validation phase with direct experiment. If
yes, the this sample is in the distribution of the training set, indicating that it is of happiness, anger, neutrality,
sadness, disgust, or fear. Since it is in distribution, the activation of the penultimate layer when given x will be
forwarded to the output layer of the 5-class CNN. If the sample is out of the distribution of the training set, then
it is not of happiness, anger, neutrality, sadness, disgust and fear. Therefore, forwarding it to the output layer
of our 5-class CNN will result in a wrong classification no matter what, so we do not forward the penultimate
layer’s activation of this sample to the output layer.

5.4 The Hierarchical Structure of Classifiers
As mentioned above, to further demonstrate the value of our solution, we compare it to a hierarchical set of 3
classifiers as a baseline. Hierarchical structures attempt to leverage the information given by the higher-level
classifiers to reduce the complexity of the problem that lower-level classifiers need to solve [7]. Our hierarchical
set of three classifiers is trained on Dtrain , the same training set on which our solution is trained, for the
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purpose of a better comparison on the performance of the hierarchical structure and our solution. This baseline
demonstrates how a false sense of accuracy can be achieved by only testing on targeted emotions when other
emotions also exist. We intend to use the hierarchical structure to prove the hypothesis that a mood detection
algorithm that achieves high accuracy on interested emotions - in our case, happiness, anger, neutrality and
sadness, will not perform adequately in a scenario where confounding emotions are present.
The hierarchy baseline consists of 3 binary CNN classifiers: C1, a classifier that separates happy and angry

audio clips from the neutral and sad audio clips,C2, the classifier that separates happy and angry audio clips, and
C3 the classifier that separates neutral and sad audio clips. The three classifiers are trained with the same batch
size, which is 128, the same optimizer, adam, and the same learning rate (1e-4) and decay (0), and the same kernel
size (3 small frames). All of them are trained in 1000 epochs with an early stop of 50 epochs.
The classifier that separates happy and angry audio clips from the neutral and sad audio clips,

represented asC1. ThisC1 decides if a given audio input is in either of the two classes: (1) the input is of happy
or angry speech; (2) the input is of neutral or sad speech. This classifier returns a vector of size 2, whereas the
first value represents the score computed by the CNN that this input of emotions is happiness or anger and the
second value, the score for neutrality or sadness. Based on these scores, the audio input is passed toC2 orC3.C1
is trained on samples of happiness, anger, neutrality, and sadness in Dtrain .

The classifier that classifies happy and angry audio clips, represented asC2. IfC1 decides that a given
input is either a happy speech or an angry speech, that input is passed to this classifier which further determines
if the speaker that produced the audio clip is happy or angry. The output is a vector of size 2, whereas the first
value represents the score that the input is a happy speech and the second value represents the score that the
input is an angry speech. C2 is trained on samples of happiness and anger in Dtrain .

The classifier that classifies neutral and sad audio clips, represented as C3. If C1 decides that a given
input is either a neutral speech or a sad speech, the input is passed to this classifier which further determines if
the speaker that produced the audio clip was neutral or sad. The output is a vector of size 2, whereas the first
value represents the score that the input is a neutral speech and the second value represents the score that the
input is sad speech. C3 is trained on samples of neutrality and sadness in Dtrain .

6 EVALUATION
After training, the evaluation is conducted on Dtest for both our 5-class CNN solution and our baseline, the
hierarchical classifier.

6.1 Evaluation to Show the Necessity of Adding Environmental Distortions to Training Samples
We place an emphasis on the importance/necessity of adding reverberation, background noise, and deamplifi-
cation effect into samples in the training set. Before we start evaluating our solution, the 5-class classifier, and
the baseline we built, which is the hierarchical classifier, we present experimental results to demonstrate the
importance/necessity of adding environmental distortions; see Table 7.
In this experiment, we have trained a classifier using only clean samples of the five classes (happiness, anger,

neutrality, sadness, fear/disgust) from the synthetic training dataset. For this classifier, we evaluate it in two ways.
First, we evaluate it on samples that are not environmentally distorted. These clean samples are the samples from
the testing set that have not been environmental distorted in any way. Second, we evaluate it on a subset of a
real-life dataset, VoxCeleb.
VoxCeleb [45] contains utterances extracted from YouTube videos in which celebrities give talks or attend

interviews. We evaluate the clean classifier on a subset of VoxCeleb. Voxceleb is a very imbalanced dataset, for
there are only 216 angry samples in the entire testing set. Since we want to have a more balanced dataset, the
subset of VoxCeleb we choose consists of: 500 happy samples, 216 angry samples, 500 neutral samples, 500 sad
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Dataset f1 score
Clean samples in testin set 73.84%

VoxCeleb 17.51%
Table 7. The left column consists of the two datasets that the classifier trained on only the clean samples is evaluated on.
The difference in the f1 score demonstrates the necessity of adding environmental distortions. The metric is f1 score.

Classifier Happy Angry Neutral Sad Overall

C1 99.7% 99.6% 100% 100% 99.8%
C2 95.5% 95.0% 95.3%
C3 92.9% 96.1% 94.6%

Table 8. The hierarchical structure evaluated on (Dtest \ C) ∩ D1 that contains only samples of interested emotions that
are not environmentally distorted. On the entire testing set, the hierarchical structure achieves an accuracy of 94.7%. The
metric is accuracy.

samples, and 500 samples that are not of the happy, angry, neutral, and sad emotions As seen in Table 7, the
clean classifier yields an f1 score of 73.84% on the not environmentally distorted samples, but it drops to 17.51%
on the subset of the real-life dataset. The decrease in the performance is by 56.33%. This demonstrates that the
classifier trained on clean speech does not maintain the same level of performance on real-life dataset. As a
result, adding environmental distortions are necessary.

6.2 Evaluation on the Hierarchical Structure of CNN’s, the Baseline
The purpose of the hierarchical structure solution is to serve as the baseline, as stated before. It’s performance
is superior to the state-of-the-art on clean samples without non-targeted emotions. This baseline achieves an
accuracy of 94.7%, and it outperforms 5 state-of-art algorithms on mood detection (see Table 2) on clean samples
that do not include non-targeted samples.

We now show that the hierarchy of classifiers, only trained on happy, angry, neutral, and sad examples, are able
to achieve very high accuracy when only evaluated on these emotions. However, it will always make mistakes
if the input is of a confounding emotion, such as disgust. This is the case of many state-of-the-art classifiers
on emotion detection; they are able to perform accurately only on certain emotions, but they are not expected
to be as accurate as they are in environments where different kinds of emotions are omnipresent. In addition,
by evaluating the hierarchical classifier, we have further confirmed that environmental distortions affect the
classifier’s performance.

6.2.1 The hierarchical structure evaluated on (Dtest \ C)∩D1. Table 8 shows the performance of the hierarchical
structure evaluated on (Dtest \ C) ∩ D1. Recall that Dtest is the testing set, C is the set of every samples of
confounding emotions, and D1 is the set of samples that are not distorted. Thus (Dtest \ C) ∩ D1 is the subset of
the testing set that contains only happy, angry, neutral, and sad samples that are not distorted. The three CNN
classifiers in the hierarchy achieve 99.8%, 95.3%, and 94.6% of accuracy respectively, which suggests that, without
environmental distortions, the hierarchy can achieve a very high level of accuracy, as many state-of-the-art
algorithms on mood detection do.
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Classifier Happy Angry Neutral Sad Overall

C1 95.9% 98.4% 98.4% 98.5% 98.2%
C2 95.4% 94.3% 94.8%
C3 92.2% 92.8% 92.5%

Table 9. The hierarchical structure evaluated on (Dtest \ C) ∩ D2 that consists of only samples of interested emotions that
are de-amplified and mixed with noise. The metric is accuracy.

Classifier Happy Angry Neutral Sad Overall

C1 99.4% 99.3% 99.6% 99.6% 99.5%
C2 88.9% 89.2% 89.1%
C3 86.1% 93.2% 89.6%

Table 10. The hierarchical structure evaluated on (Dtest \ C) ∩ D3 that contains only samples of interested emotions that
are reverberated. The metric is accuracy.

6.2.2 The hierarchical structure evaluated on (Dtest \C)∩D2. (Dtest \C)∩D2 is the subset of the testing set that
contains only happy, angry, neutral, and sad samples that are de-amplified and then mixed with background noise.
Table 9 describes the performance ofC1,C2, andC3 when evaluated only on samples of interested emotions that
are de-amplified and contaminated with background noise. The three CNN classifiers in the hierarchy achieve
98.2%, 94.8%, and 92.5% of accuracy respectively. The accuracy of the three classifier drops by 1.6%, 0.5%, and 2.1%
when compared to their performance on samples of targeted emotions that are not distorted, demonstrating that
de-amplification and noise have impact on the performance of the hierarchy but the hierarchical structure is still
able to compete with state-of-the-art mood detection algorithms in terms of accuracy.

6.2.3 The hierarchical structure evaluated on (Dtest \ C) ∩ D3. Table 10 shows the hierarchy’s performance
in terms of weighted accuracy on the samples of interested emotions that are reverberated. Compared to their
performance on samples of interested emotions that are not environmentally distorted, the accuracy of the three
classifiers all drop: C1’s accuracy drops to 99.5% by 0.3%, C2’s accuracy drops to 89.1% by 6.2%, C3’s accuracy
drops to 89.6% by 5%. Reverberation distorts the samples, and the drop of accuracy is expected. The fact that the
drop in accuracy is insignificant illustrates that the hierarchical structure is robust to reverberation.
Compared to their performance when evaluated on samples of interested emotions that are distorted by

de-amplification and background noise shown in Table 9,C1 is more resistant to reverberation (drop by only 0.3%
on reverberated sample), while C2 andC3 are more resistant to de-amplification and background noise (drop by
0.5% and 2.1% on samples that are de-amplified and mixed with background noise), as indicated in Table9 and
Table 10.

6.2.4 The hierarchical structure evaluated on (Dtest \ C). Table 11 illustrates the performance of the classifiers
evaluated on the samples of interested emotions in Dtrain . C1 achieves an accuracy of 97.6 %. C2 achieves an
accuracy of 91.0%.C3 achieves an accuracy of 90.3%. Since Dtest \ C is the set of samples of interested emotions
that are either not environmentally distorted or environmentally distorted by the myriad combinations of the
de-amplification amount measured in decibels, various segment of background noise collected from real home
environments, and the three reverberation factors, this set is descriptive of speech samples of interested emotions
that will take place in home environments. The high accuracy of the three classifiers demonstrate that the
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Classifier Happy Angry Neutral Sad Overall

C1 95.9% 98.1% 98.4% 98.1% 97.6%
C2 92.3% 89.8% 91.0%
C3 88.4% 91.9% 90.3%

Table 11. The hierarchical structure evaluated on Dtest \ C, that contains all samples of interested emotions. The metric is
accuracy.

Classifier Happy Angry Neutral Sad Confounding Overall

C1 95.9% 98.1% 98.4% 98.1% 0% 83.3%
C2 92.3% 89.8% 0% 68.4%
C3 91.9% 90.3% 0% 66.6%

Table 12. The hierarchical structure evaluated on Dtest , the entire testing set that contains both samples of interested and
confounding emotions. On the entire testing set, the hierarchical structure achieves an accuracy of 56.2%. The metric is
accuracy.

hierarchical structure on emotion detection of the interested emotions (happiness, anger, neutrality, and sadness)
is robust to environmental distortions in home environments.

6.2.5 The hierarchical structure evaluated on Dtest . Table 12 shows the performance of the three classifiers of
the hierarchy when tested on four of the emotions of interest and the confounding emotion. Table 12 shows the
disadvantage of a common theme of emotion detection classifiers: emotions outside those of interest are assumed
to not exist. However, many other emotions may exist in the real world and, thereby, reduce the overall accuracy
of classifiers solely trained on the emotions of interest.

In Table 12, the three classifiers still achieve the exact same performance on the interested emotions, happiness,
anger, neutrality, and sadness as Table 11. However, since confounding emotions are introduced and the hierar-
chical structure must classify the samples of confounding emotions (fear and disgust) as one of the interested
emotions, it is bound to make mistakes. As a result,C1,C2, andC3 achieves an accuracy of 0% on confounding
samples. This result in a significantly decrease of the their overall performance measured in accuracy: C1’s
accuracy drops from 97.6% to 83.3%, C2’s accuracy from 91.0% to 68.4%, andC3’s accuracy from 90.3% to 66.6%.
The deterioration of the performance of the three classifiers in the hierarchy suggests that classifiers that are
trained to achieve very high accuracy on only interested emotions will not perform adequately when given
samples of confounding emotions.

6.3 Evaluation on the 5-class classifier Without Out-Of-Distribution Samples
Next, we evaluate our solution, the 5-class CNN, to understand its performance on recognizing each emotion
with and without environmental distortions.

Tables 13 and 14 show the evaluation of the 5-class classifier in four different scenarios that account for
environmental distortions. The first column is the evaluation on this classifier on samples in the testing set that
are padded, but no environmental distortion is introduced to the sound. The second column is the evaluation on
this classifier on padded samples that are reverberated. The third column is the evaluation on this classifier only
on padded samples that are de-amplified and mixed with noise. The last column is the evaluation on this classifier
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Class Dtest ,1 Dtest ,2 Dtest ,3 Dtest

Happy 92.6% 92.2% 80.2% 89.6%
Angry 92.3% 92.4% 84.8% 88.9%
Neutral 95.9% 91.3% 90.7% 88.7%
Sad 94.9% 88.6% 93.8% 89.1%

Confounding 88.9% 79.0% 78.4% 81.4%
Mean 92.9% 88.4% 85.6% 88.0%

Table 13. Evaluation on the 5-class classifier that categorizes its input into categories: Happiness, Anger, Neutrality, Sadness,
and Confounding emotions.The metrics for evaluation is accuracy. The average is weighted.

Dtest ,1 Dtest ,2 Dtest ,3 Dtest

f1 score 93.2% 86.1% 87.6% 87.9%
Table 14. Evaluation on the 5-class classifier on different subsets of the testing set. The metric for evaluation is f1 score.
The average is weighted. Since our synthetic dataset is very well balanced, we can see that the f1 scores are very similar to
the scores in Table 13. The metric is f1 score.

on the entirety of the testing set. The samples used for evaluation in Table 13 are denoted as Dtest ,k ,k = 1, 2, 3,
defined as Equation 10.

Dtest ,k = Dtest ∩ Dk ,k = 1, 2, 3 (10)
The average accuracy of the 5-class CNN drops from 92.9% when evaluated onDtest ,1, the set that resembles the

idealistic scenario in which the speaker is close to the microphone and the room reverberation and background
noise have minimal impact on the quality of the sound signal captured by the microphone, to 85.6% when
reverberation is introduced, and to 88.4%, when de-amplification and background noise are introduced. This
indicates that environmental distortions such as reverberation, background noise, and de-amplification still affect
the performance of the 5-class CNN - which is as expected, since the signal is distorted, the classification result
of any classifier is expected to deteriorate slightly, moderately, or severely depending on the robustness of the
classifier. Evaluated on Dtest , the weighted average of accuracy of our classifier is 88.0%, which is only a 4.9%
drop of accuracy from 92.9% obtained from the evaluation on the ideal Dtest ,1 dataset. In other words, our 5-class
CNN deteriorates only by 4.9%, despite the various combinations of environmental distortions that are collectively
illustrated by the reverberation factors (the wet/dry ratio, decay factor, and diffusion), the number of value
measured in decibels deduced from the amplitude, and the various background noise from home environments.

The previous paragraph discusses the overall performance of the classifier inDtest ,i , i = {1, 2, 3} andDtest , but
we can also observe how the classifier performs in the four scenarios on each emotion. Its accuracy on happiness
drops from 92.6% on happy samples in Dtest ,1 to 80.2% on happy samples in Dtest ,2 when reverberation is
introduced; meanwhile, the accuracy on happy samples inDtest ,1 drops only 0.4% when compared to its accuracy
on happy samples in Dtest ,3. The difference between the two drops in accuracy suggests that reverberation is
harder to deal with by our classifier than noise and de-amplification for happiness. Similarly, when classifying
angry samples, the drop from the accuracy achieved on angry samples in Dtest ,1 to the accuracy achieved on
angry samples inDtest ,2 is 7.5%, while the accuracy on angry samples that are distorted and de-amplified actually
increases 0.1% compared to the accuracy achieved on angry samples that are not distorted at all. The classifier’s
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performance on happy and angry samples suggests that noise and de-amplification have minimal influence on
our classifier’s performance when compared to reverberation.

On neutral and sad samples, the observation that noise and de-amplification have less influence on the classifier’s
performance than reverberation no longer holds. Compared to the classifier’s performance on neutral samples that
are not altered, the accuracy drops from 95.9 % to 90.7% by 5.2% and 91.3% by 4.6%, respectfully on reverberated
neutral samples and neutral samples that are de-amplified and contaminated with noise. Reverberation and
amplification with noise result in similar deterioration of the classifier’s accuracy on neutral samples. On sad
samples, reverberation results in a drop in accuracy from 94.8% to 93.8% caused by reverberation, and to 88.6%
caused by de-amplification and noise. The observation on the classifier’s performance on distorted sad samples is
that reverberation has minimal influence on the classifier’s performance when compared to de-amplification and
noise.

On confounding samples, the classifier achieves an accuracy of 88.9% on clean samples, but it drops to 78.4% by
10.5% and 79.0% by 9.9% on reverberated samples and samples that are de-amplified and contaminated with noise.
For happy, angry, neutral, and sad samples, the drop of accuracy obtained from clean samples to distorted samples
is always less than 5%, which is also expected, because the set of confounding emotions C is more complex than
the setsH ,A,N , S. C consists of more samples of more than one emotions, while the others consists of samples
of only one emotion.
Note that the entirety of the testing set Dtest is descriptive of the actual environment in which the classifier

is envisioned to be deployed, because it encompasses a variety of different combinations of the environmental
distortions illustrated by different factors that range from having no effect on the acoustic signals to significantly
distorting the acoustic signals.

Our solution reaches an accuracy of 92.9% onDtest ,1, the set of samples that are not environmentally distorted,
for all emotions, and it achieves 88.0% high accuracy in Dtest , for all emotions. The environmental distortions
only reduce the overall accuracy of our solution by 4.9%. Therefore, our solution is highly robust to environmental
distortions.

The evaluation of our solution described in Table 13 illustrates the pattern that noise and de-amplification have
less impact on the performance of our solution than reverberation for happy, angry, neutral, and confounding
emotions. However, sad utterances do not following the same pattern, as noise and de-amplification decrease our
solution’s performance by 6.3% while reverberation decreases our solution’s performance by only 1.1%. This is
because the original sad utterances have lower volume (measured in decibels) compared to the other emotions.
During the process of adding environmental distortions, we subject all utterances to the same standards (for
example, the same range measured in decibels of possible de-amplification). As a result, the sad utterances, whose
volumes are lower than the other emotions, are more susceptible to de-amplification.

6.4 5-class classifiers with out-of-distribution detection technique versus 4-class classifiers with
out-of-distribution detection technique

We have stated that, out of the 5 classes of our solution, there is one class that we are not interested in. The
aforementioned performance that the 5-class classifier achieved with out-of-distribution detection technique
prompts us to ask the question - what if we train a classifier only on the four interested classes and use the
out-of-distribution detection technique to intercept emotional utterances of other classes? In other words, we
investigate the value of having a confounding class. In the following paragraphs, we answer the question:
With the out-of-distribution technique and samples of classes that we are not interested in, which

approach is better: (1) should we include those samples during training, or (2) should we exclude
them from training and let the out-of-distribution algorithm intercept samples from this “confound-
ing”/uninterested class during training?
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without OOD with OOD

f1 score 65.86% 76.66%
Table 15. Evaluation on the 4-class classifier on the combined set of the testing set and the set of the Calm emotion. Samples
of the calmness class and the confounding class are considered out-of-distribution, since the 4-class classifier is trained on
and can only assign any given input to the four targeted classes. The metric is f1 score.

To do so, we train a 4-class classifier (the four classes being happiness, anger, neutrality, sadness). To make it
comparable to the 5-class classifier, the 4-class classifier is required to achieve the similar level of performance on
testing samples of those four emotions as the 5-class classifier on the testing samples of five emotions (happiness,
anger, neutrality, sadness, and confounding). Via direct experiment, we have obtained a 4-class classifier that
achieves an f1 score of 87.18% on all the samples of the 4 classes in the testing set. It achieves a similar level of
performance the 5-class classifier achieves (with an f1 score of 87.9%).
Having obtained a 4-class classifier, we evaluate it the same way we evaluate the 5-class classifier - first,

just itself without out-out-distribution detection technique; second, this 4-class classifier paired up with the
out-of-distribution detection technique.

Without the out-of-distribution detection technique, the 4-class classifier’s performance drops from an f1 score
of 87.9% to 65.86%, by 22.04%, as every sample of the calmness class and the confounding class is predicted to be
of the happy, anger, neutrality, and sadness class. As a result, the predictions on calm samples and samples of the
confounding class are always wrong.

With the out-of-detection technique to intercept samples that are potentially of classes unknown by the 4-class
classifier, the f1 score improves to 76.66%, by 10.8% compared to its performance without the out-of-distribution
detection technique. However, it is still 11.24% lower than the 4-class classifier’s performance on testing samples
from its 4 targeted classes.
The fact that the out-of-distribution detection technique improves the performance significantly by 10.8%

demonstrates that it is still advantageous to pair the classifier with the out-of-distribution detection technique.
However, in Section 6.6, we demonstrate that, with the out-of-distribution detection technique, the 5-class

classifier’s performance (an f1 score of 87.71%) on its targeted classes and a previously unseen class is almost
identical to its performance (an f1 score of 87.9%) without the out-of-distribution detection technique. The same
improvement is not observed when we pair the 4-class classifier with out-of-distribution detection technique.
The less significant improvement (by 10.8%) suggests that the samples in the confounding class are very similar
to one or more of the 4 targeted classes. As a result, the out-of-distribution detection technique is not effective at
picking them out and allows them to be passed to the 4-class classifier.
As a result, we conclude that With the out-of-distribution technique and samples of classes that we

are not interested in, we should include those samples during training: there is always a possibility that
the samples of the uninterested classes resemble one or more of the samples of the interested classes. In this
case, the out-of-distribution is not effectively at distinguishing samples of interested classes from samples from
uninterested classes, as the vector representations of samples of interested classes can be within the
distribution of the vector representations of samples of interested classes.

6.5 Evaluation on the 5-class classifier With Out-Of-Distribution Samples
We now evaluate our full solution by including the detection of samples that are out of the distribution of the
training set. Tables 12 and 14 show that our classifier is able to achieve an accuracy score of 88.0% and an f1 score
of 87.9% on the testing set, which contains not only clean samples but also samples that are environmentally
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without OOD with OOD

f1 score 77.78% 86.64%
Table 16. Evaluation on the 5-class classifier on the combined set of the testing set and the set of the Calm emotion, which is
not one of the 5 classes and therefore considered out-of-distribution (OOD). The metric is f1 score.

distorted. We have achieved these scores using the testing set, which also has five classes. Despite that we have
4 interested emotion classes and 1 uninterested class, we must acknowledge the possibility that the classifier
encounters samples that are not of the 5 classes. Since the classifier can only assign a class out of the five, its
prediction is always wrong because the true label is not among the five.
We hypothesize that many samples not belonging to our recognized 5 classes are out of distribution of

our training set. Therefore, if we intercept the out-of-distribution samples, we can significantly improve the
performance of our classifier in a more realistic setting.

Table 16 shows the evaluation result of the 5-class solution on the combined set of the testing set and the set of
the Calm emotion, which is not one of the 5 classes and therefore considered out-of-distribution(OOD) with and
without the out-of-distribution detection technique. This combined set has 9995 samples. All the samples in the
testing set are among those samples. The newly added samples are all of the Calm emotion. The Calm samples
have been preprocessed in the same way as the samples in the synthetic dataset: we have clean Calm samples
and environmentally reverberated Calm samples.

Without the out-of-distribution detection technique, we have achieved an f1 score of 77.78%. This is a significant
drop (10.12%) from the f1 score achieved only on the testing set that has 5 targeted emotions (87.9%). The drop is
to be expected, since the classifier can only assign the Calm samples to be happiness, anger, neutrality, sadness,
and confounding emotions (fear and disgust), its prediction on a Calm samples is always wrong.

With the out-of-distribution detection technique, the f1 score improves to 86.64%, a significant increase (8.86%)
compared to the experiment result in which no out-of-distribution detection technique is used and consequently
all the out-of-distribution samples are wrongly assigned by the classifier. Note that the f1 score (86.64%) achieved
on five targeted emotions and one previously unseen emotion class with the out of distribution technique is
very close to the f1 score achieved on the five targeted emotions (87.9%) only. This indicates that, with the
out-of-distribution detection technique, the classifier can maintain its level of good performance on sets that
have out-of-distribution samples, compared to its performance on sets that only have samples that are of one of
the classifier’s targeted classes.

6.6 Real Time Computation
Our solution is currently part of a home Patient-Caregiver monitoring, modeling, and interactive recommendation
system for caregivers of dementia patients [26], titled the Patient-Caregiver Relationship (PCR) system. One of
the objectives of this system is to detect the onset of anger of the caregiver using only the acoustical modality
(which our 5-class solution is a part of) and immediately notify the recommender system which will recommend
mindfulness/relaxation techniques intelligently. In the PCR system, we use an external microphone and an
off-the-shelf laptop to detect emotions with our 5-class solution with OOD.

Real-time applications such as PCR on requires an emotion detection algorithm to notify the caregiver promptly
when their difficult emotions are expressed in their own speech. The notification would not be helpful to the
caregiver if the notification is sent too late. Since the PCR problem is time-sensitive, it is imperative that the
emotion classifier is capable of real-time computation.
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The obvious computation architecture to choose is a standard architecture for smart home speakers such as
Google Home speaker. However, smart home speakers do not perform the classification themselves; they only
serve as acoustic sensors that stream data. The actual classification is handled using cloud computing: the acoustic
signals are sent to a powerful cloud computing server from which the smart home speakers receive classification
results. In other words, even in the case of smart home speakers, the acoustic signals are also processed by a
powerful computing architecture. By using a standard PC architecture, we demonstrate that an off-the-shelf PC is
able to run our CNN in real-time. There are also small form factor processors such as Toshiba’s dynaEdge DE-100
[1] that have the same capabilities as a laptop, but without a screen and our solution can execute on one of these
when we want the deployment equipment to take up less space than a laptop.

The average running time of the components of our 5-class CNN on 184 samples of 5-second duration on a
Intel(R) Core(TM) i5-9300H CPU at 2.40 GHz is 2.62 seconds. The average time consists of the time required to
perform feature extraction, the time required to perform out-of-distribution detection, and the time to perform
classification. If the caregiver’s speech starts to become angry or sad, it will take 5-seconds for their speech to be
recorded, and 2.62 second for our 5-class CNN to generate the classification result. Within the amount of time
required to compute the emotion of the caregiver based on their speech, the caregiver will likely still be under
the influence of the emotion; thus a notification to them is more likely to help than a notification that is sent
to them long after they are no longer under the influence of the emotion. In other words, our 5-class CNN is
capable of real-time computation, which is a necessary condition that an emotion detection algorithm must meet
in order to be used in applications like PCR.

7 CONCLUSION
Emotional health is a crucial part of one’s well-being. The rapid development of machine learning in the field of
acoustic signal processing has resulted in a surge of interest in detecting emotions from speech. We have created
a combined convolutional neural network (CNN) and out of data distribution (OOD) solution that is robust to
environmental distortions such as reverberation, noise, distance, and handles emotions that are not the targeted
emotions through a class we call confounding emotions. To test our solution we created synthetic datasets that
combined five standard datasets and enhanced them with de-amplification, home noises, reverberation, and a
real-world padding scheme. Our solution outperforms a state of art baseline and achieves high accuracy in the
presence of environmental distortions and confounding emotions.
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