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1. Introduction

Vision data collected by body-worn cameras has seen a dra-

ABSTRACT

First-person captioning is significant because it provides veracious descriptions of ego-
centric scenes in a unique perspective. Also, there is a need to caption the scene, a.k.a.
life-logging, for patients, travellers, and emergency responders in an egocentric narra-
tive. Ego-captioning is indeed non-trivial since (1) Ego-images can be noisy due to
motion and angles; (2) Describing a scene in a first-person narrative involves drasti-
cally different semantics; (3) Empirical implications have to be made on top of visual
appearance because the cameraperson is often outside the field of view. We note we
humans make good sense out of casual footage thanks to our contextual awareness in
judging when and where the event unfolds, and whom the cameraperson is interact-
ing with. This inspires the infusion of such “contexts” for situation-aware caption-
ing. We create EgoCap which contains 2.1K ego-images, over 10K ego-captions, and
6.3K contextual labels, to close the gap of lacking ego-captioning datasets. We pro-
pose EgoFormer, a dual-encoder transformer-based network which fuses both contextual
and visual features. The context encoder is pre-trained on ImageNet before fine tuning
with context classification tasks. Similar to visual attention, we exploit stacked mul-
ti-head attention layers in the captioning decoder to reinforce attention to the context
features. The EgoFormer has realized state-of-the-art performance on EgoCap achieving
a CIDEr score of 125.52. The EgoCap dataset and EgoFormer are publicly available at
https://github.com/zdai257/EgoCap-EgoFormer.
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and sometimes irrelevant, to extract salient objects or activities,
upon which object-led scene understanding has accomplished
tremendous success, Anderson et al. (2018). Egocentric vision

matic surge in the past decade. These data contain valuable
information about the cameraperson’s status as well as the sur-
roundings. Nevertheless, these data are yet too unstructured,
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data are typically contaminated by motion blurring, hand occlu-
sion, and awkward camera angles, Grauman et al. (2021). In-
terestingly, we humans tell a good story from footage captured
in poor camera angles. From a pair of shoes pointing inwards
on featureless ground could we tell “I” am in a social occasion
with somebody in front. This is accredited to our empirical
knowledge of quickly judging - Whom is the cameraperson in-
teracting with? Where and when does the scene unfold? With
the help of such context, we make incredibly accurate inference
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Fig. 1. First-person captioning resolves ambiguity where third-person fails.

of the situation even from poorly presented angles, objects, or
blurriness.

In this work, we tackle the under-explored problem of ego-
centric image captioning. Ego-captioning aims at human-
understandable interpretation of vision data which is crucial for
various life-logging applications. Prospective use cases include
auto calorie intake recording for people on a diet, Bolanos et al.
(2017), daily activity tracking for patients, Fan et al. (2018),
and event summarization for emergency responders, Dai et al.
(2022). As is shown in Fig. 1, we note 1st-person captioning
provides a precise perspective in storytelling, whereas, a 3rd-
person narrative poses ambiguity. Moreover, a first-person nar-
rator places the viewer at the centre of the action and lends
credence to the narration, Fan et al. (2018). Thereby, ego-
captioning is also critical for artificial intelligence to establish
the notion of “self”. It enables a machine to distinguish itself
as a participant or an observer, which is vital to avoid miscon-
ceptions in scene understanding.

Nonetheless, the state-of-the-art data-driven captioning has
largely focused on describing the contents objectively, i.e., in
a 3rd-person narrative, Anderson et al. (2018). This results in
most captioning datasets being labelled in the 3rd person, such
as COCO, Lin et al. (2014), and MSR-VTT, Xu et al. (2016).
We note first-person captions cannot be easily created from
3rd-person captions. Specific challenges are: (i) Syntax of a
Ist-person narrative is semantically different from a 3rd-person
narrative; (ii) Egocentric vision data are often contaminated by
noise caused by motion, occlusion, and awkward camera angles
which affect the accuracy of extracting object attributes or key
features; (iii) Empirical implications of the cameraperson’s sta-
tus have to be made as she/he is usually outside the field of view.
Despite the widespread use of wearable cameras, video stream
recording remains particularly power-and-memory-consuming.
Existing life-logging datasets, e.g., EDUB-SegDesc, Bolanos
et al. (2017), or Deepdiary, Fan et al. (2018), record sequences
of images shot at 2 frames per minute. In this paper we scope
our research to ego-image captioning.

The deep learning approach to 3rd-person captioning has
drawn increasing attention for its success in learning visual-
semantic representations. In contrast, previous attempts to gen-
erate ego-captions using templates or beam search based on
mixed 1st- and 3rd-person captions, Fan et al. (2018), deliver
inconsistent results. On the other hand, we notice contextual
cues, such as combination of instances often seen indoor or
outdoor (where), illumination condition (when), and interact-
ing human/objects (whom), play a significant role in facilitat-

il

ing human-alike scene understanding. We are, thus, inspired to
fuse such “contexts” in the caption generation process. We ar-
gue an attention mechanism should be applied equally to the vi-
sual features and the contextual knowledge to tackle the percep-
tion challenges in an ego-perspective. Transformers, Vaswani
et al. (2017), originally initiated for sequential Natural Lan-
guage Processing (NLP), emerges as a natural baseline for its
strength in addressing long-term syntactic dependencies, Doso-
vitskiy et al. (2021).

To this end, we create a new dataset, EgoCap, comprising
life-logging images with five ego-captions each to generate 1st-
person captions consistently. We select source images from
prevailing datasets (COCO, Lin et al. (2014), MSVD, Chen
and Dolan (2011), MSR-VTT, Xu et al. (2016), and Ego4D,
Grauman et al. (2021)) to avoid privacy issues and to increase
scene diversity. EgoCap incorporates contextual labels, namely
where, when, and whom, through querying surveyors. We pro-
pose an enhanced transformer network, EgoFormer, that fuses
the contextual knowledge using a stacked cross-attention layer
alongside visual features. The EgoFormer comprises feature
extractor backbones, a visual encoder, a context encoder, and a
captioning decoder. We take a strategy of pre-training the visual
encoder and decoder on the COCO dataset to grant the model
visual-semantic and syntactic capabilities before fine tuning it
on EgoCap. Likewise, we take the context encoder pre-trained
on ImageNet, Deng et al. (2009), to broaden its horizon of con-
cept recognition before fine tuning it with context classifica-
tions. We evaluate the performance of EgoFormer on EgoCap,
and on a released set from Deepdiary, Fan et al. (2018). Our
proposed model demonstrates state-of-the-art performance im-
provement based on various machine translation metrics.

Our major contributions are: (1) We release a dataset for ego-
centric image captioning which, to the best of our knowledge, is
the first that can support end-to-end learning; (2) We propose a
transformer-based network with visual-context fusion modules
to conduct ego-captioning with enhanced contextual awareness;
(3) Extensive experiments demonstrate the superiority of the
proposed approach to egocentric image captioning.

2. Related Work

2.1. Data-driven Captioning

Ever since Vaswani et al. (2017) proposed the transformer
architecture, it has surpassed convolution-based models, Don-
ahue et al. (2015); Anderson et al. (2018), to become state of
the art for visual-captioning tasks. Numerous augmented trans-
formers then emerged to improve performance further, Zhao
et al. (2019); Zhang et al. (2021a). Multiple self-attention heads
and hierarchies of attention were utilized in Huang et al. (2019).
Cornia et al. (2020) introduced memory cells and skip connec-
tions to fully exploit low- and high-level features of the atten-
tion layers.

Transformers are outstanding in capturing long-term depen-
dencies. To date egocentric image captioning has stagnated
in the CNN-RNN era, Singh et al. (2016). It is found allow-
ing multi-pass attention to the greedy decoded caption, Bar-
raco et al. (2022), produces better results. However, this not
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Table 1. A comparison of existing egocentric or captioning datasets.

Datasets Size Labels
" Diverse  OD° HAC* 3rd-cap [Istcap Context
COCO Lin et al. (2014) 118K v v v
MSVD Chen and Dolan (2011) 1.9K v v
MSR-VTT Xu et al. (2016) 10K v v
Charades-Ego Sigurdsson et al. (2018) 4K v
EPIC-Kitchens Damen et al. (2018) 1007 v v
Deepdiary Fan et al. (2018) 77K~ v v
EDUB-SegDesc Bolanos et al. (2017)  1.3K" v
Ego4D Grauman et al. (2021) 3025h v v
EgoCap 2.1K v v v
© Object Detection.
* Human Activity Classification.
A Fewer than 300 images are released for privacy concerns.
F Unavailable for download.
only increases the inference complexity but presumes all texts 3. EgoCap

are rich in semantics and significance, which does not apply to
ego-captions. The recently published CoCa captioner, Yu et al.
(2022), provides a paradigm of empowering a feature encoder
with image recognition capabilities via ImageNet, Deng et al.
(2009), pre-training. Meanwhile, many works have extracted
and adopted additional features from the images, a.k.a., the
bottom-up and top-down approach, Anderson et al. (2018). Ge-
ometric features, object-relation features, and semantic ground-
ings, Sen et al. (2020), are used to enhance captioning. How-
ever, these additional features rely on the success of object de-
tection from the image, Ren et al. (2015). We notice viability
of detecting objects for egocentric images is impeded owing to
mere object cues available, e.g., in bad camera angles. In NLP,
it is recognized that coherent texts can be synthesized through
attention, Zhao et al. (2019). This lends captioning models
the power of comprehending the scene using external sources
of information. Hence, this research is inspired by fusing ad-
ditional contexts to enhance egocentric visual captioning in a
CoCa-alike way.

2.2. Existing Egocentric or Captioning Datasets

Although popular 3rd-person captioning datasets, such as
COCO, Lin et al. (2014), are valuable sources, they cannot be
directly used for ego-captioning. Current egocentric visual cap-
tioning datasets are limited in either scale or diversity as shown
in Table 1. Charades-Ego, Sigurdsson et al. (2018), and EPIC-
Kitchens, Damen et al. (2018), provide class labels of Human
Activity Classification (HAC) only, and are constrained in scene
diversity. Deepdiary, Fan et al. (2018), and EDUB-SegDesc,
Bolanos et al. (2017), combined release fewer than 300 ego-
image samples in total due to privacy concerns. Ego4D, Grau-
man et al. (2021), is a large-scale egocentric video dataset col-
lected across the globe. Unfortunately, annotations of Ego4D
only provide HAC labels and template-based captions like “A
interacts with B”. We contrast EgoCap with existing datasets in
Table 1. In sum, there is currently a lack of sizeable datasets
supporting egocentric captioning studies.

We create a first egocentric image captioning dataset, Ego-
Cap ', each image of which comprises five captions in only
first-person narrative alongside three contextual labels (where,
when, and whom). We collect source images randomly from
datasets widely acknowledged in visual-semantic studies, in-
cluding COCO, Lin et al. (2014), MSVD, Chen and Dolan
(2011), MSR-VTT, Xu et al. (2016), and Ego4D, Grauman et al.
(2021). This not only maximizes scene diversity but evades pri-
vacy concerns for release. The context labels, which are ob-
tained through polling five surveyors with expertise in vision
data processing, are regarded as probability distributions for
contextual representation learning.

EgoCap is comprised of 2079 images (1252 from Ego4D;
289 from COCO; 218 from MSVD; 320 from MSR-VTT) and
over 10K egocentric captions alongside 6.3K contextual tags.
We also retrieved weak labels of 3rd-person captions or HACs
from their source datasets, and associated them for reference.
Figure 2 shows the composition of EgoCap from multiple view-
points. To the best of our knowledge, this is a first sizable
dataset, with labelled contextual information, that allows end-
to-end ego-caption learning.

4. EgoFormer

We observe object detection constantly fails in extracting
useful information from ego-images. This prevents the con-
ventional “bottom-up” method, Anderson et al. (2018), from
resolving the caption through identifying key attributes in the
scene. In fact, COCO dataset reports 3.5 categories of objects
and 7.7 instances on average per image, Lin et al. (2014). How-
ever, after applying Faster R-CNN, Ren et al. (2015), a de facto
approach to acquiring bottom-up features, we notice only 1.87
categories of objects and 2.98 instances are detected in aver-
age from EgoCap. Furthermore, many ego-images reveal 0 de-
tected objects which utterly prevents “bottom-up” feature inte-
gration.

!Available  at: https://drive.google.com/drive/folders/
10u8kBlrqi9sFiXZrouP6FChypen4dcFz
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Now that fine-grained attribute features of images are un-
available in egocentric footage, we argue the where, when, and
whom knowledge beyond the field-of-view play a key role in
ego-captioning. Specifically, we provide the captioning engine
with such contextual knowledge to be able to judge the spatial-
temporal conditions and interacting object(s) in which the scene
unfolds. To this end, we propose EgoFormer, a two-stream
transformer based network to generate ego-caption with en-
hanced contextual awareness. One encoder (visual ViT, Doso-
vitskiy et al. (2021)) learns visual features from the ego-image
patches. This ViT is pre-trained on the COCO dataset, together
with the decoder, to establish visual recognition and seman-
tic capabilities. The other encoder (context ViT), pre-trained
on ImageNet, is trained to master multi-label classification of
where, when, and whom contexts. Obtained context features
and visual features are fused in a stacked MHA (Multi-Head
Attention) module. The design of EgoFormer is sketched in
Fig. 3 and explained in detail in the following subsections.

4.1. Visual Encoder

The transformer model has demonstrated state-of-the-art per-
formance in various visual-semantic tasks since its proposal,
Vaswani et al. (2017). We follow the encoder-decoder paradigm
for captioning. We first input the images to feature extrac-
tor backbones for visual token extraction. In order to emu-
late 1D sequences from images, we add 2D positional encod-
ing to the evenly split image patches. We take the outputs,
Ieny € RTPWXC from the activation of the last convolutional
layer, and flatten the first two dimensions to produce a 1D se-
quence. Average pooling is used to derive flattened representa-
tions from the convolutional layer. We use a convolutional layer
of 1x 1 kernal size to rescale the channel size to the transformer
hidden state size, d,, (d,, = 256 in our experiments).

The visual ViT encoder consists of N stacked modules of
MHA (i.e., S el fAttn) and feed forward networks (FFN) to learn
visual representations, Vy, of ego-images. The first MHA layer
takes as input the queries, Q = XWy, keys, K = XWg, and

values, V = XWy, which are split into  heads for joint attention
in the sub-spaces. Each head, /;, conducts MHA among Q, K,
V. The FFN layer is comprised of two linear layers with a ReLU
activation and dropout (of rate 0.1) after the first. The visual
representations can be expressed as;

Vy = FFN (MHAN(Q,K,V)) (1)

In each sub-layer, there is a residual connection and a nor-
malization layer. All stacked layers follow the same design.

4.2. Context Encoder

Ego-images are often corrupted by occlusion or bad camera
angles as seen in EgoCap (examples are shown in Supp. Mate-
rials). We humans have the ability to judge the situation from
partially visible matters and casual camera angles, Xiao et al.
(2020). Thus, it is of great importance for ego-captioning mod-
els to possess such contextual awareness. We propose a sepa-
rate context encoder and utilize a novel decoder architecture to
fuse the contextual representations to facilitate attention to both
visual and contextual cues.

We design a context ViT encoder to perform contextual rep-
resentation learning. This context ViT encoder is pre-trained on
image classification tasks (ImageNet, Deng et al. (2009)) before
fine tuning on the context multilabel classifications of EgoCap.
The loss function of the classifier is the sum of the three-head
cross-entropy losses,

K
Loss(6c) = Z CrossEntropy(p;, ¢;) 2)

where K = 3 for the three-head classification; 6c stands for
context ViT parameters; p are the prediction probabilities; and
@ are probability distributions of the contextual labels.

The context ViT encoder uses ResNet-101, He et al. (2015),
as backbone feature extractor. The ViT consists of M stacked
layers of MHA, each containing /" attention heads, followed



@ & &
sxx(\e o'
Context F:eatures

Visual Features

ViT Encoder
ljl # i 0000000000t
‘M [N m Word Embedding

Tokenizer

) ?
&%‘ — {WO’da ... wordyg }

XN

Decoder

I
RE
i
",::
=

Fig. 3. Network architecture of EgoFormer decoder with context fusion.

by FFNs to learn contextual representations, Cy,, of the ego-
images. We utilize a ViT encoder of hidden state size 768
pre-trained on ImageNet-21K. It is attached to a 3-layer fully-
connected classifier of 768, d,, X 197, and 512 neurons, respec-
tively. Prior to the 2nd layer, context feature tokens are flatten
from a 2D matrix into 1D vectors.

4.3. Context-Aware Caption Decoder

To utilize context, we want to grant greater attention to the
domains in which the contextual knowledge lies. The MHA
stands out for this task as it is elaborated for attention. Be-
sides visual feature attention, we propose to conduct attention
to the context features extracted from the first hidden layer of
the context classifier. This is accomplished through a stacked
MHA layer post visual MHA. The network architecture is il-
lustrated in Fig. 3. Such an enhanced visual-context attention
module can be expressed as;

X'; = MHAY (SelfAtn(X; )Wy, VW, VaWy)  (3)

X; = FFN;(MHAS(X jW5, Cy WG, Cy W) (@)

where X; are the decoder hidden states of the j-th module. Each
sub-layer is followed by a residual connection and a normaliza-
tion layer. The visual-context attention layer duplicates in all N
stacked decoder modules, each of which comes with A attention
heads.

We use the BERT tokenizer, Devlin et al. (2019), as a
word embedding layer to tokenize the decoder input sentence,
which is a sequence starting with a start-of-sentence symbol
and paddings to make up a maximum of 128 words. A word
classifier is designed to predict the next word based on the last
hidden states in an auto-regressive manner. We use three fully-
connected layers of output sizes 512, 512, and 30522 (i.e., vo-
cabulary size of the BERT tokenizer), respectively, with ReLU
activations and dropout (of rate 0.1) after the first two layers.
The next-word predictor can be written as;

Token;; = argmax FC3(ReLU(FCy(ReLU(FC1(Xy))))) (5)
id

v

The loss function is cross-entropy loss of the next-word clas-
sifier (context classification heads are dropped in this end-to-
end caption training phase). We follow the design of the origi-
nal transformer, Vaswani et al. (2017), for the rest.

5. Evaluation

For EgoFormer and all comparison models, we use the
Karpathy split, Karpathy and Fei-Fei (2017), of the COCO
dataset to pre-train with recommended hyperparameters in the
original works for a fair comparison. Rich categories of ob-
jects in COCO help the visual encoder and decoder learn the
visual-semantic representations comprehensively. We use Im-
ageNet 21K, Deng et al. (2009), to pre-train the context ViT
encoder before fine tuning on the contextual labels of EgoCap.
We eventually train the EgoFormer model from end-to-end on
the image-caption pairs of EgoCap with 10% of the pre-training
learning rates. We split the EgoCap dataset with 1579 sam-
ples for training, 200 for validation, and 300 for testing. Our
quantitative and qualitative analysis, and an ablation study, are
presented below.

5.1. Quantitative Comparison with Other Methods

We utilize common machine translation metrics for bench-
markings. Note bottom-up approaches are impractical on Ego-
Cap due to many samples coming with O detected objects,
which deny object attributes. This rules out multiple state-of-
the-art methods that work well on COCO (COCO samples guar-
antee object presence), such as Meshed-Memory transformer,
Cornia et al. (2020), object relation transformer, Sen et al.
(2020), or AoANet, Huang et al. (2019). We compare our Ego-
Former with CNN-RNN, Vinyals et al. (2015), CNN-RNN with
attention, Xu et al. (2015), the original transformer (7 rans),
Vaswani et al. (2017), transformer with concatenated context
and visual features (T ransconcar), Libovicky et al. (2018), trans-
former with gated information fusion (Transg;r), Zhao et al.
(2019), RSTNet, Zhang et al. (2021a), CaMEL, Barraco et al.
(2022), COSNet, Li et al. (2022), and CLIP-ViL, Shen et al.
(2022). These models are fine-tuned on EgoCap with the same
testing set. Contexts are not infused in testing these models as
they do not have context encoders. The evaluation results are
summarized in Table 2.

Our proposed model scores the highest over other candi-
dates, especially on CIDEr which is deemed producing bet-
ter human consensus. The EgoFormer exceeds the original
transformer by 38 units and sees a twofold improvement over
those based on a conventional CNN-RNN with attention. This
proves the efficacy of transformers exploiting contextual knowl-
edge. Recent studies of fusing additional information for cap-
tioning show promising results, Sen et al. (2020). We experi-
mented by concatenating visual and contextual sequences pre-
sented in Libovicky et al. (2018), or using the paradigm pro-
posed in Zhao et al. (2019) to fuse the context representations
as external information through a gated soft switch. Their per-
formance ends up poorer than EgoFormer. We tested RST-
Net, CaMEL, COSNet, and CLIP-ViL without self critical se-
quence training on EgoCap due to a limited size for the re-
inforcement learning phase. Although RSTNet integrates grid
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Table 2. Evaluation of EgoFormer in comparison to other captioning models on EgoCap.

Model BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE-L CIDEr SPICE

CNN RNN Vinyals et al. (2015) 42.70 28.96 21.15 15.30 - 41.09 33.14 -

CNN RNNyten Xu et al. (2015) 52.68 38.27 28.95 21.43 - 47.25 51.26 -
Trans Vaswani et al. (2017) 63.04 48.37 37.39 28.53 28.54 54.87 87.23 14.16
Transconcar Libovicky et al. (2018) 63.95 50.51 41.04 32.33 32.34 54.91 86.55 16.45
Transgr Zhao et al. (2019) 70.77 59.74 47.87 38.10 37.51 61.77 124.79 18.18
RS TNet Zhang et al. (2021a) 69.60 57.18 44.61 34.31 35.66 60.68 114.05 18.88
CaMEL Barraco et al. (2022) 71.98 60.12 47.31 38.09 37.91 61.54 123.76 20.09
COS Net Li et al. (2022) 70.45 58.80 47.19 37.52 37.25 61.63 123.20 19.06
CLIP - ViL Shen et al. (2022) 69.42 57.19 44.68 34.49 35.96 60.17 116.34 19.35
EgoFormer 70.93 59.69 47.89 37.93 38.01 61.91 125.52 19.93
EgoFormerguq 69.27 57.16 44.73 34.54 35.85 60.48 110.71 16.92
EgoFormeryiyy 64.03 51.56 39.33 29.82 33.46 57.75 91.88 14.41

Table 3. EgoFormer benchmarks on COCO. Bk short for BLEUk. R;, short
for ROUGE-L. C short for CIDEr. S short for SPICE.

Model B1 B4 Ry C S

Trans Vaswani et al. (2017) 652 248 456 74.9 19.9
AoANet Huang et al. (2019) 774 372 575 1198 213
M2 Cornia et al. (2020) 80.8 39.1 58.6 1312 226
RSTNet Zhang et al. (2021a) 81.8 40.1 595 1356 233
CaMEL Barraco et al. (2022)  82.7 409 60.1 1389 239

COS Net Li et al. (2022) 827 420 60.6 141.1 246
CLIP - ViL Shen et al. (2022) - 39.2 - 130.3  23.0
EgoF Blind cix 662 256 458 76.0 19.7
EgoFRawctx 662 256 458 759 19.7

features, poor camera angles may undermine efficacy of fusing
spatial geometry features. Leveraging pre-trained CLIP mod-
els, Radford et al. (2021) , COSNet and CLIP-ViL turn out
sub-optimised because, similarly, CLIP cannot predict objects
and subjects accurately in severe visual degradation. CaMEL
realizes optimum with several metrics thanks to its dual lan-
guage decoders that learn first-person means of expression well.
Our proposed EgoFormer delivers state-of-the-art performance
with BLEU-3, METEOR, ROUGE-L, and CIDEr. Lesser per-
formance is noticed with EgoFormer of more compact visual
backbones such as ResNet-50 (EgoFormergy,;) and ResNet-
18 (EgoFormer;j,y).

5.2. Qualitative Analysis

Qualitative studies are demonstrated in Fig. 4. In the first
row, although both EgoFormer and the baseline recognize driv-
ing, the baseline cannot tell the fact that someone else is driv-
ing while “I” am a passenger. The baseline also tends to suffer
from overfitting toward car wherever window occurs as is seen
in the 3rd sample. It can be seen from the second row the Ego-
Former is capable of recognizing correct activities or concepts
in challenging camera angles. In the last sample, it is interesting
EgoFormer reveals a bike from holding a bike helmet without
actually seeing a bike. We refer the reader to Supp. Materials
for more qualitative analysis, inclusive of Deepdiary, Fan et al.
(2018), for out-of-domain tests.

5.3. EgoFormer for Third-Person Caption
Although contexts for COCO dataset are not available, we
examine EgoFormer architecture’s generalization in resolving

Table 4. Ablation studies of EgoFormer on EgoCap.

Model B1 B4 Ry, C
EgoF 7093 3793 6191 125.52
EgoFcix fuse in prior 7032 3670 62.19 121.47
EgoF cix pos encoding 61.53 2559 5351 78.82
EgoF cixword embedding 65.88 30.87 55.36 93.73
EgoF packbone ViT grad 62.92  30.50 55.08 94.30
EgoF packbone ViT no—grad 65.79  34.53 56.93 97.87
EgoF Bilind cix 65.06 31.19 5545 91.33
EgoFRawectx 64.60 31.74 5542 93.63
EgoFwhere only 6548 3258 56.76 102.11
EgoFwhen only 65.890 3296 57.16 100.86
EgoFwhomonly 65.59 33.18 56.86 101.24

third-person captioning. We evaluate EgoFormer on COCO
without pre-training (EgoFpjingcx), or with ImageNet pre-
trained context ViT (EgoFrayc1x), In contrast to original trans-
former and state-of-the-art transformers (with object attributes)
shown in Table 3. Since “contexts” do not undergo proper rep-
resentation learning in both cases, EgoF pjing crx and EgoF gy 11
unsurprisingly fall behind state-of-the-art methods.

5.4. Ablation Study

In EgoFormer, the context fusion takes place post visual at-
tention. We investigate the effect of fusing the context prior
to visual (Ctx fuse in prior). Since the context tags are in
the form of 1-out-of-3 options, a question arises whether they
could be regarded as some sort of encoding where these op-
tions are simply differentiated via adding positional encoding.
We experiment by adopting a learnable embedding layer (Ctx
pos encoding) with an input size of 3 X 3 to map the context
selections into features in which the dimension is equivalent
to transformer hidden states, d,,. Transformer with a knowl-
edge graph, Zhang et al. (2021b), proposes to embed semantic
keywords together with their neighbours to enrich the caption
generation. We evaluate this by fusing the wording embedding
of the top-4 synonyms of indoorjoutdoor, daytime/night, and
object/human (masked tokens for ambiguous) using a stacked
MHA (Ctx word embedding). An important question is whether
ego-captioning relies on the same visual representations as 3rd-
person captioning (pre-trained on COCO) which are extracted
by a frozen backbone CNN. Whereby, we test this by allow-
ing gradient descents for the backbone CNN parameters when



Trans: I am driving a car.
EgoFormer: I am driving my car.
GT: I am driving my car.
I am driving a car on a road.
I'am driving.

Trans: I am driving a car.
EgoFormer: I am in a car.

Tamin a car.

GT: I am sitting in a car with a man.

I am at the rear seat of a car.

Trans: I am in a car.

EgoFormer: I am looking out the window.

GT: I am looking outside through my window.
I see a house and lawn through the window.
I am looking through a window.

Trans: I am preparing food in a kitchen.
EgoFormer: I am playing drums.
GT: I am playing drums in room.

I am beating drums.

I am playing drums.

Trans: I am flying in the air.
EgoFormer: I am in a boat.
GT: I am surfing on water.
I am boating on the river.
Tam on a boat.

Trans: I am using a phone on a porch.
EgoFormer: I am on a bike.
GT: I am putting on my helmet.

I am holding a helmet outdoor.

I am wearing a bicycle helmet.

Fig. 4. Qualitative analysis of EgoFormer compared with original transformer (Zrans) on EgoCap dataset. GT is short for ground truth.

training EgoFormer (Backbone ViT grad), and freezing both the
backbone CNN and the ViT encoders (Backbone ViT no-grad),
respectively. We also investigate the necessity of two-stage pre-
training of context ViT encoder by skipping the ImageNet trans-
fer learning (Blind ctx) or skipping the EgoCap context classi-
fications (Raw ctx). Lastly, we test the contribution of contexts
by fine tuning the classifier with where, when, or whom only as
context.

Following an identical training strategy, the ablative out-
comes are shown in Table 4. Fusing the contexts prior to vi-
sual features appears sub-optimal regarding all metrics except
R;. The context positional encoding method turns out the worst
most likely because the semantics of the context information are
overlooked. We find the performance is degraded when fusing
word embeddings of contextual keywords and their synonyms
directly. The overall evaluation improves in order from allow-
ing the backbone and encoders to learn, to freezing both back-
bone and encoders, to only freezing the backbone (EgoFormer)
during training. This implies the ViT encoders have to adapt
which proves EgoFormer is learning unique visual-context rep-
resentations to arrive at optimized ego-captions. Nonetheless,
the backbone CNN outputs had better stay constant as se-
quences of feature tokens. The CIDEr scores deteriorate by
34 units and 32 units without ImageNet and EgoCap context
pre-training phases, respectively. Nonetheless, fine tuning with
any of the contexts appears to optimize the contextual represen-
tations to an extent. In summary, the EgoFormer accomplishes
top-2 in every metric if not the best.

5.5. Computational Resources

We use an NVIDIA RTX A6000 GPU with 48 GB memory to
train EgoFormer including all pre-training phases, comparative

models, and ablative studies. It takes 20 minutes to perform fine
tuning of the ViT context encoder. Pre-training the captioner’s
encoder-decoder backbone network on COCO costs 30 hours.
End-to-end training of EgoFormer takes about 4 hours.

6. Conclusion

Body-worn camera footage from life-logging, patients, or
emergency responders, have witnessed a great surge. Nonethe-
less, first-person captioning which reflects a veracious perspec-
tive of depicting ego-images has been under-explored compared
to 3rd-person ones. We create a dataset of egocentric image-
caption pairs with contexts. We propose a novel transformer
network to fuse the contextual knowledge which brings about
state-of-the-art captioning on EgoCap. Crucially, our findings
shed light on image captioning when object cues are absent.

Upon successfully fusing the contexts, we plan to expand
“contexts” in EgoCap with greater concreteness, such as more
fine-grained details about location (“kitchen/bedroom/in trans-
portation/shopping mall” etc.) and time (“sunny dawn/rainy
day/stormy night” etc.). It is planned to leverage crowdsourc-
ing to constantly grow the size and diversity of EgoCap. We
want to integrate hand gesture, eye contact, and auditory inputs
to enrich contexts in broader senses. We think ego-image cap-
tioning is a vital step towards the more challenging ego-video
captioning which we will address in future work.
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