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ABSTRACT
Home health care sensing systems are projected to stream-
line the efficiency of the practice of medicine by decreasing
the costs of senior care and by providing preventative care
to keep people out of hospitals and nursing homes. Many
current sensing systems are not yet flexible enough to easily
handle widely different medical applications. Empath2 pro-
vides a flexible three layer architecture that uses the Cloud
and can easily be instantiated for different home health care
applications. To demonstrate the flexibility of the archi-
tecture, Empath2 was instantiated for three widely differ-
ent purposes. We present the design of Empath2 stressing
properties that support flexibility and discuss its differences
from other flexible home monitoring architectures. Evalua-
tions for three sets of real home deployments (two of which
with actual patients, and one with healthy people) are pre-
sented showing the short deployment times, short software
development times, and its effectiveness for the applications
at hand. Lessons learned are also presented.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
communication; D.2.2 [Network Protocols]: Protocol ar-
chitecture

1. INTRODUCTION
In many countries of the world we are seeing rapidly aging

populations that are overwhelming the health care system
[3]. Home health care monitoring is being touted as one
solution. Such systems have been in development for many
years and there are many companies selling various related
products. Most of these systems to date either monitor ac-
tivities of daily living (ADLs) or are focused on a single
medical issue (e.g. Parkinson’s disease). In order for these
systems to be able to handle wide varieties of home mon-
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itoring, various flexible architectures and middleware solu-
tions have been developed [14, 18, 19, 22]. However, what
they lack is that they fail to demonstrate their flexibility
in actual deployments with real patients that study multi-
ple medical issues. We find that the realities of actual de-
ployments for real patients with real medical problems give
rise to many new requirements, including: the need to use
off-the-shelf devices, support for non-expert users, easy in-
stallation and maintenance, ease of developing the specific
software required for a particular instantiation, remote mon-
itoring, extensible monitoring over time, handling the large
scale of data, dealing with complex humans and environ-
ments, and support for the evolution of human behaviors.
In this paper we present a new architecture called Em-

path2 and evaluate it for multiple home health care pur-
poses. The main contributions of this paper are:

• A demonstration of the flexibility of the Empath2 ar-
chitecture by adapting it for three case studies of de-
ployments with real patients. These are: examining
the relationship of sleep and stress on the number of
seizures that people with epilepsy experience, the re-
lationships between nighttime agitation and inconti-
nence events for those with Alzheimer’s disease, and
depression monitoring.

• Deployment details showing short installation times
and few number of intermediate visits needed. Most
deployments require a half-hour time and can be done
by non-technical users. The system configuration times
for different instantiations of Empath2 are also shown
to be short.

• Introduction of a web-service based stream abstrac-
tion designed for heterogeneous and multidimensional
stream data, These streams are merged or forked to
form inference trees. When data is requested, infer-
ence is lazily evaluated. We also show examples of
storing this stream data in a document-based backend
(MongoDB).

2. EMPATH2 SYSTEM DESIGN
The basic architecture of Empath2 is similar to many

home health care sensing architectures and consists of three
main layers: the sensing layer, the basestation, and a cloud-
based web server and database shown in Figure 1. However,
in contrast to single purpose architectures, e.g., those that
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Figure 1: Home area network framework.

monitor ADLs, because of the specific design decisions made
for Empath2, new instantiations for different home health
care applications can be built quickly and simply. Also, in
contrast to other flexible architectures [14, 19], Empath2
was instantiated and evaluated with real patients on three
widely different monitoring applications.

Sensing Layer: Empath2 permits easy installation of
various wired and wireless sensors that generate either con-
tinuous or event-based data. Some examples incorporated
into our framework include weight scales, contact reed switches,
PIR motion detectors, accelerometers, sound sensors, and
user surveys. The framework allows integrating sensing de-
vices that use different communication protocols (e.g., Blue-
tooth, Zwave, X-10, etc.) by having the associated commu-
nication radio adaptor at the basestation. Because some
sensors generate high data-rate streams, we typically em-
ploy reducers which convert the high data rate or highly
multidimensional data to lower data rate and fewer dimen-
sions. For instance, this can be achieved by buffering data
in the time period of an epoch (for instance 1 minute), and
then calculating the statistics such as the mean, variance,
min, max, count as the reported as output. This epoch is
instantiated, and forwarded to a basestation over the net-
work.
To support ease of development and flexibility, each sen-

sor program can be built as an independent module im-
plemented in the programmer’s choice of language such as
Java, C, or Python and be launched from the command line.
The modules that we have built, available in a library, are
meant to be cross-platform and have been tested on a va-
riety of platforms such as the Raspberry Pi, Beaglebone,
and laptops. Besides modules in the library, there are oth-
ers created by third parties such as the Fitbit and Withings
scale that have their own mechanisms to send data to their
own server in the cloud. Currently, we have incorporated
both the Withings weight scale and the Fitbit, which pub-
lish the data to the Withings and the Fitbit web servers,
respectively. Because many commodity components release
an API for their data, they can be easily incorporated into
Empath2’s system along with the sensor data collected inter-
nally. Consequently, third party devices can be integrated
easily with Empath2.
Empath2 also supports adding new sensors to the archi-

tecture. When a developer integrates a new sensor device,
they must extend the class AbstractDataCollector which

implements basic functionality such as maintaining a con-
nection to the message broker and handling the serialization
and publishing messages. In addition, they must implement
the virtual functions for initialization, starting, stopping,
and shutting down the device. For each new type of sensor,
in addition to the above class, a new data collection class
has to be created to read the raw sensor data and publish it
to the MQTT broker. Finally, the home controller module
has to subscribe to this new sensor.
One interesting feature of our sensor layer is that an entire

Zigbee-based mesh network can be treated as a single node
attachment to Empath2. Each mote in a Zigbee network
shares a common Personal Area Network (PAN) assigned
during configuration. Each mote has a pre-configured 64-bit
value as its ID. One mote must be configured as the Coor-
dinator and is attached to the basestation, and the other
devices are set as routers or end-devices (depending upon
duty cycling requirements). When a packet is received by
the coordinator, the data is converted to a stream ID for the
particular device that it came from.

The Basestation: When the basestation receives an
epoch from the sensing layer, it is stored temporarily and
staged for syncing to the web service. Empath2 also sup-
ports a higher level middleware communication layer on the
basestation to simplify the networking between the compo-
nents. We defined a common protocol for sending data to
other devices. In the home, one device is designated as a
basestation, and the message broker runs on this device and
listens for incoming connections. We use the MQ Telemetry
Transport (MQTT) protocol [16] and the Mosquitto server
for our message broker. MQTT implements a publish/sub-
scribe message pattern to provide a one-to-many message
distribution so that we can adequately decouple the mod-
ules from one another. In each of the packets, the payload is
a series of Epoch data serialized as a JSON string. MQTT
provides this basic network connectivity with small trans-
port overhead, the fixed-length header is just 2 bytes.
When a sensor is installed, the IP address for the message

broker must be specified and a name for that sensor. For
example, a broker can be located on a machine at 10.0.0.1
and the bed sensor is on 10.0.0.8 and the name is bed1.
When the bed sensor collects 50Hz data for one second, the
mean and standard deviation are computed for each of axis
of each accelerometer, resulting in a 12 dimensional feature
vector. A new Epoch is created using the current timestamp,



duration, and feature vector. This epoch is serialized to a
JSON string and published to the topic: sensors/bed1. The
Empath2 controller subscribes to sensor data by subscrib-
ing to the topic group sensors/+. When a message arrives,
the message is stored in the Controller’s local database for
later syncing with the Cloud. This local database was imple-
mented using SQLite3 which is a self-contained, serverless,
transactional SQL database engine. Once data is synced to
the cloud it is deleted from the basestation.

Cloud: The third layer is the cloud layer. Empath2’s
cloud-based server is implemented by a Java web applica-
tion that can be installed into any Java servlet container
(Tomcat, Jetty, JBoss, etc). We used the Spring3 framework
for handling the Model View Controller (MVC) pattern for
handling requests from the clients and serialization of JSON
messages. The Spring Security extension was used to imple-
ment authentication and access control. Each user is given
a set of roles such as Patient, Clinician, Technician, Ad-
ministrator, Coordinator, Researcher for controlling access
to requests to resources. For a more robust access-control
mechanism, these roles can be predicated, so that a user
can be a Clinician for X, and X is a Patient of study Y
and Researcher is a member of Study Y . Before any re-
sources are served, a user must sign in, and a session ID is
created and stored as a cookie in the HTTP client, and the
communication provided through an HTTPS tunnel.
To further demonstrate flexibility, we implemented the

system on two Cloud platforms: the Amazon Web Services
and the Google App Engine. For the Amazon Web Ser-
vice, we launched a two small EC2 instances with 2 GB of
memory. One EC2 instance ran a Jetty9 instance for our
application, and another ran only the MongoDB database.
The database node mounted a RAID10 array with 8 GB of
Elastic Block Storage formatted with the XFS filesystem.
For the Google App Engine, we used their native compo-
nents, such as the Jetty web server and the Google Data
Store for the database. Changing the deployments only re-
quired changing the Spring’s XML configuration file describ-
ing what DAO implementation was to be used for the local
stream data.
A key component of Empath2 is an abstraction we devel-

oped that meets the special needs of sensor streams called
a StreamFeed [5]. This new steam abstraction is similar to
a regular web resource such as HTML or an image that it
can be referenced by an URL. As such, they can be both the
source and the target of hyperlinks. All data in the Empath2
system are exposed simply by a URL, where the UUID is a
128-bit UUID: http://www.XYZ.com/stream/{UUID}
Likewise, all Epochs inside of a stream also can be re-

trieved using a URL: stream/{UUID}/epoch/{ID}
Each of these URLs point to a StreamFeed that can be

fused, processed and filtered to create new StreamFeed. The
result can be repeated to eventually produce an inference
tree. For example, data from multiple sensors in the home
can be combined to form better estimates of the occupant’s
behaviors. Because the returned stream is often quite large,
a series of time range parameters are encouraged. A partic-
ular attribute can be used as a filter parameter. Consider
the following HTTP GET request to:

sensor/{UUID}/epochs/filter/?min=100
This URL-based interface follows the RESTful (Repre-

sentational State Transfer) principles [6]. The advantage of
using a RESTful interface is that there is an inherent stan-

dardization placed on the operations that can be applied to
the resources, without needing to explicitly define descrip-
tions of the methods. The URL contains all the information
that is needed to return to a particular state of a web service.
There are three basic types of streams in Empath2: First,

there are persistent streams that are stored in a database.
Second, and very common, are memory streams that do not
have persistence and are populated upon request. This is
useful for streams are only needed to produce some report
to a caregiver. This allows the Evaluator objects to store
the results temporarily like a scratchpad, so that clients can
quickly query for the information without requiring the en-
tire inference chain to be recomputed. Third, there are web
streams which are data sources that are not stored locally in
the Empath2 system, but rather through another webserver
on the Internet.
We used a document-based database for serveral reasons.

Most relational databases (such as MySQL) enforce ACID
guarantees for atomicity, consistency, isolation, and durabil-
ity. However, our data being generated rarely changes once
being committed, also even if it is changed, the data does not
need to be consistent across the database replicas, just even-
tually consistent. Document-based databases achieve much
higher performance in the write once, read many times use
case.
When a deployment is setup, many stream Processors

are created and their operating parameters are set. After-
ward, streams are “wired” to the input and output ports for
these Processors. Consider a simple example with scoring
questionnaires. A PHQ9Evaluator processor is created and
the input port “PHQ-9 Responses” is wired to a persistent
stream A holding the item responses, and to the output port
“PHQ-9 Score”, a memory stream B is wired to the port.
When the PHQ-9 stream is queried for the first time, the
stream holds no epochs and is marked ‘dirty’. Because of
this, the StreamService invokes the PHQ-9 Evalator’s eval-
uate() function which will query A for the all epochs in that
time range. Because A is persistent and not marked dirty, all
the values are available and evaluation does not need to be
taken to another level. Next, for each of the epochs, a score
is produced and the result added to stream B. This evalu-
ation method uses a lazy evaluation approach for fetching
stream information because the rate of querying for higher
level data is much less frequent than the production of lower
level data. When a lower level stream gets appended to, the
streams above it are marked ‘dirty’ for reevaluation. There
are some requirements to this structure, most importantly,
there cannot be any cycles in the inference chain or evalua-
tion will never halt.
The monitoring modules in the cloud run each morning

to check if data have been uploaded from the deployment
site and if there is any inconsistent data that represents one
/ more sensors may be broken. The status is automatically
emailed to a monitoring team so that they can react in case
of any sensor / device failure. The monitoring modules in
the basestation continuously logs the system memory con-
sumption, Internet connectivity status, and battery level of
the laptop along with checking consistency in the generated
data. These logs are also automatically uploaded in the
cloud. This multi-level monitoring ensures that we can de-
tect problems as soon as possible and also often determine
the exact problem.



Table 1: Stream Metadata Examples
Key Description

Creator UUID of the user who created the stream
DeploymentID UUID of the deployment the data came from
TargetID UUID of a user the stream might relate to
PreferredRenderer Bar plot, time series, table, etc
Device Specification of the device make and model

2.1 Time to Instantiate
The time it takes to instantiate an instance of Empath2

for the use of an new application depends on the time it takes
to implement inference and sensing modules. The inference
modules are application-dependent and vary considerably
depending on the complexity involved in the application.
For example, the development times for the inference logic
presented in this paper took the following amount of time:
incontinence (7 days), depression (15 days), and epilepsy
(2 days). These inference modules are then simply wired
into the framework. The time it takes to implement sensing
modules also varies depending on their complexity (e.g., we
developed a bed sensor module that took a total of 300 lines
of Java and C code).

3. EVALUATION
The evaluation of Empath2 consists of instantiating and

deploying in homes with real patients and collecting data
from three very different home health care applications. Our
main goals are to demonstrate the flexibility of the frame-
work and ease of instantiation. We also show examples of
the collected data which was produced as specified by our
collaborating medical professionals. This data is currently
being used by them to obtain preliminary information on
researching these medical conditions. It is not our intent to
show how the system solves medical problems. Such a result
would require large scale clinical trials which are beyond the
scope of this work.

3.1 Incontinence and Dementia
Alzheimer’s disease is the most prevalent type of demen-

tia in the US, affecting 4-6 million people, and is estimated
to expand to 17 million by 2050. Alzheimer’s frequently
presents with episodes of nighttime agitation, which are
highly burdensome and costly for caregivers and for the
health care system. Additionally, people with dementia such
as Alzheimer’s are also much more prone to urinary incon-
tinence than others. There is anecdotal evidence that there
is a relationship among incontinence, sleep disturbance, and
agitation in these patients. Urinary incontinence is thought
to trigger awakening from sleep, with subsequent agitation,
although there is a lack of systematic evidence that these
phenomena are related. Based on previous work with uri-
nary incontinence and sleep in persons with Alzheimer’s dis-
ease, this study with real patients aims to describe the re-
lationships among the times of occurrence of nighttime ag-
itation, sleep continuity and duration, and urinary inconti-
nence in persons with Alzheimer’s disease by using innova-
tive, non-invasive sensing technology.

Instantiation: As shown in Figure 2, to instantiate a
system for this incontinence study, we simply create Em-
path2 with instances of an accelerometer-based sleep moni-
toring module, an activity monitoring module that consists

Figure 3: Incontinence study over 6 nights, inves-
tigating relationship among movements (top), wet-
ness episodes (middle), and vocal outbursts (bot-
tom).

of a wetness sensor only, and an acoustic based speech mod-
ule.
The primary objective of this study is the ability to de-

tect when a wetness episode occurs. The DryBuddy is a
small, off-the-shelf, lightweight, and wireless sensor that uses
a magnetic locking system to keep the sensor in place on
the outside of the undergarment or pajama. It uses electri-
cal conductivity within an incontinence pad to determine if
a wetness event has occurred. We monitor audible speech
outbursts by way of a microphone. The mechanisms pre-
sented in the previous section permit easy linking of these
sensors into the system. In total, sensing aspects of the in-
stantiation took only a few hours and the specific inference
and higher level processing (which can not be general) took
7 days.
To date, this on-going project has produced 12 deploy-

ments with actual ill patients. Figure 3 shows a summary
of the data for our first deployment. The first wetness event
shown in the figure was a test before deploying the sys-
tem to ensure that the X10 receiver was placed within the
range of the DryBuddy. During the deployment, two wet-
ness events were detected. From the data, the analysis to
find the relationship among incontinence, sleep disturbance,
and agitation is ongoing and done by another research group
consisting of nurses and statisticians and that analysis is not
within the scope of this paper.
The results of all the deployments are summarized in Ta-

ble 2. For lack of space, we do not show the details of
bed and audio sensor data from the deployments. Table 2
shows the age and sex of the patients of each deployment.
The table shows that in initial deployments graduate stu-
dents visited the patients’ homes to set up all the devices.
The process takes about 20 minutes. However, in four of
the deployments, two nurses set up the devices themselves
with the help of the instructions provided to them. Deploy-
ment by nurses takes extra time because they have to be in
phone contact with the graduate students remotely monitor-
ing the system to check that all the sensors are connected
and reporting data. This shows the ease of deployment of
Empath2.

3.2 Depression Monitoring
Depression is a major health issue that affects over 21

million American men and women each year. Depression
often goes unrecognized and untreated, and even once treat-
ment begins it is often difficult to monitor its effectiveness.



Table 2: Summary of incontinence study deployments
ID Age Sex No. of No. of Nights No. of Nights Who Deployment No. of

Nights Wetness Wetness Deployed Time Intermediate
Detected Reported (Minutes) Visits

1 65 Female 6 2 5 Grad. Student 20 0
2 87 Male 8 5 5 Grad. Student 20 0
3 71 Male 5 4 5 Grad. Student 20 0
4 73 Female 5 5 5 Nurse 30 0
5 79 Male 5 0 0 Nurse 30 1
6 88 Male 5 4 5 Nurse 30 1
7 89 Female 5 5 5 Nurse 30 0
8 95 Female 5 3 5 Grad. Student 20 1
9 102 Female 7 7 7 Grad. Student 15 1
10 76 Female 6 3 4 Grad. Student 25 0
11 78 Female 7 3 4 Grad. Student 20 2
12 79 Male 7 7 7 Grad. Student 15 1
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Figure 2: The incontinence study uses wetness sensor, bed accelerometer, and bedside microphone.

This poses particular challenges for the diagnosis and treat-
ment of depression, particularly for those who avoid visit-
ing a doctor or therapist due to social stigmas or a lack
of energy. Currently, depression diagnosis is based on sub-
jective screening questionnaires or structured clinical inter-
views that rely on timely in-person visits as well as accurate
recollections by the patient, these have been shown to be in-
accurate since symptom reports are often exaggerated or left
incomplete. Yet early detection and treatment of this debili-
tating disorder has been shown to improve patient outcomes
considerably [7, 15]. However, people are quite complicated
and exhibit depression is different ways. This requires a
multi-modal sensing approach.
As shown in Figure 4, the depression detection system

we implemented monitors sleeping patterns, changes in be-
haviors, weight gain or loss, social interaction, and feedback
from the person via a medically approved subjective ques-
tionnaires called the PHQ-9. The architecture of the system
is the same as Figure 2 except the wetness sensor and with
additional X10 sensors (as described below) reporting to the
X10 receiver.

Instantiation: For the depression study, we instantiate
Empath2 with an instance of an accelerometer-based sleep
monitoring module, an instance of an activity monitoring
module that consists of multiple X10 sensors, an instance
of acoustic based speech module, an instance of the weight
monitoring module, and an instance of the subjective mood

scoring module. Again, the instantiation of the sensing mod-
ules took a few hours, and due to the complexity of this ap-
plication the specific inference streams and high level logic
took 15 days.
We implemented and deployed Empath2 for depression in

two homes supporting all the modalities listed above. The
first deployment was in an apartment over a period of 4
weeks. Although these results are not meant to investigate
any medical hypotheses, it however shows an example of
the system in operation and how it is able to collect useful
data about a depressive episode continuously in the home.
Adding these new modalities involved registering an X10 re-
ceiver to the broker to add activity recognition and a touch-
screen client that supports the questionnaire. In addition,
on the server, the weightscale API was configured to pull
information from the webservice.
It took less than one hour to install Empath2 in the sub-

ject’s home. X10 devices were attached to the stove, freezer,
refrigerator, kitchen sink, microwave, spice cabinet, plate
cabinet, glasses and cups cabinet, front door, cleaning closet,
medicinal closet, bathroom sink, trash can, wardrobe closet,
and shower. The weight scale was placed on the floor of the
bathroom. A computer with the client software was placed
in the living room. The total cost of the system excluding
the laptop and phone is less than $500.
Each morning, the subject reported his subjective rating

of the previous night’s rest as being good or poor (this is
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Figure 5: Daily sleep quality factors measured over
a month.

used as ground truth). Figure 5 shows the sleep quality
score calculated from the bed sensor readings for each night
on a scale of 0 to 9, where a higher score represents a better
quality of sleep. In the ground truth, the only night when
the subject responded that his sleep was poor was on night
10, which appears to correlate with our sleep quality score.
The graph suggests that for this subject, Empath2’s sleep
monitoring score can approximate sleep quality.
The second deployment for depression was in a single resi-

dent home; the resident was a 30-year old male. In addition
to all the sensors and devices deployed in deployment 1,
there were additional sensors to detect when the resident
is watching the TV and when he is cooking by using the
stove. Once again, it was very easy (less than 1 hour) to
add these two new sensing modalities using Empath2 and
the higher level inference took minimal time because it had
already been created in the previous application.
We collected data from this deployment for six months

continuously. All the objective measurements in Figure 4
were calculated and reported. For lack of space, we only
show the distribution of the times of the day when resident
eats; Figure 6 shows this distribution. Although, eating
habits are not part of the inference modules shown in Fig-
ure 4, one can easily test if there is any correlation of the
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Figure 6: Distribution of the times of day when the
resident eats over the six month for Deployment 2.

resident’s eating habits with his mode from the data pre-
sented in Figure 6.

3.3 Epilepsy and Stress
The most commonly identified precipitant of seizures in

people with epilepsy is stress, and the most common comor-
bidities associated with epilepsy are mood disorders. Re-
search shows that important and complex linkages exist be-
tween stress, sleep, and epilepsy. Seizures themselves can
also disrupt sleep. Therefore, an understanding of the re-
lationships between stress and sleep is important in seizure
control and in improving sleep for patients with epilepsy. In
this study, we investigated using an ancient Chinese healing
art based in Eastern philosophy, internal qigong, referred to
as Reflective Exercise, as an alternative therapy intended to
reduce stress, and thus improve the sleep quality.
To measure sleep quality and disturbances, we instru-

mented the bed with two tri-axis accelerometers (sampling
at 50 Hz) by placing them on the right and left sides of the
bed. Because the accelerometers are placed just beneath the
mattress pad, we are able to detect fine movements while the
patient is unaware of their presence. The movement levels
for one minute epochs are calculated by computing the mean
and standard deviation of the samples. We configured Em-
path2 for this data collection application. The data then
can be accessed through a web interface for the clinical re-
searchers or physicians to investigate the patients condition.

Instantiation: For the epilepsy and stress study, we in-
stantiate XYZ with only an instance of an accelerometer-
based sleep monitoring module. Since this sensor modality
is already in the library it took almost no time to instan-
tiate the sensing aspects of this application and 2 days for
the specialized logic.
We deployed the system in two homes. The first partici-

pant was a 19-year-old female who had experienced seizures
since adolescence. The second participant was a female of
28-year-old who also started her seizures as a teenager. The
system tracked participant’s movement on the bed. Figure 7
shows the average movements during sleep for one of the pa-
tient for seven days when the patient practiced the internal
qigong exercise. Result shows that the therapy improves the
sleep quality, and thus the epilepsy condition of the patient.
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Figure 7: Internal qigong therapy reduces bed move-
ment of epilepsy patient during sleep.

4. LESSONS LEARNED
The Empath2 architecture was refined through multiple

real home deployments with real patients for three very dif-
ferent home medical applications. In that process, we dis-
covered many practicalities that must be addressed in any
home health care architecture. The lessons learned include
the following:

• Deployment time must be as short as possible. The
architecture must have the capability to quickly dis-
cover the emplaced sensor nodes, activate the system,
and importantly test that the installation is fully op-
erational in an end-to-end manner, i.e., from sensors
to cloud to users. In our case studies, Empath2 was
deployable usually within an hour.

• Deployments must be installable by non-technical ex-
perts, e.g., contracted system installers or home care-
givers. In our case studies, nurse aides were able to
perform the installations.

• Mobile broadband Internet connections are not always
available when needed, and the connection can drop
while in use. This occurred more often than we ex-
pected, most especially in homes in more remote lo-
cations. Consequently, the system allows for a local
backup (such as a SQLite3 DB on the base station)
and a background daemon to reliably synchronize and
upload new data when a connection is made.

• The architecture must support frequent monitoring of
the correct operation of the system, to ensure that
the sensors are working, recording and transmitting
properly, and that the data itself appears reasonable.
Empath2 provides self-monitoring support at points
throughout the architecture (in both the cloud and
base station levels).

• The system must be resilient and cognizant to actions
of patients and caregivers over the lifetime of the sys-
tem. Minimizing assumptions required for the system
to operate properly is critical. Will the system still
work if a sensor or device is turned off or moved from
its expected location? What happens when there is a
power outage in the area? At a minimum, redundancy
of critical components is required and any affected or
missing data should be tagged with meta data explain-
ing the situation.

5. STATE OF THE ART
In the first decade of this century, there were various home

healthcare systems that are summarized well in a survey pa-
per [12]. Significant research in this area has occurred in uni-
versity research testbeds. Georgia Tech’s AwareHome [11]
combined context-aware and ubiquitous sensing, computer
vision-based monitoring, and acoustic tracking of people.
The University of Rochester built their Smart Medical Home
which is a five-person house outfitted with infrared sensors,
biosensors, and video cameras for use by research teams.
Other work includes PlaceLab [10], research at Univ. of
Florida [9], Univ. of Texas at Arlington[1, 20], SmartAssist
[2] and HealthOS [13].
Further, to date, there have been an increasing number

of companies that have begun to sell their systems directly
to people who want to monitor either themselves or their
loved ones. Philips provides Lifeline with Auto Alert for
elderly people. Also, Philips provided Telehealth solutions
where a patient takes their vital signs and answers personal-
ized, clinician-directed surveys and their results are send to
a website via a landline or cellular signal. Intel-GE has de-
veloped QuietCare that uses advanced motion sensor tech-
nology that learns the daily activity patterns of residents
and sends alerts to help caregivers respond to potentially
urgent situations and major routine changes. Intel also has
developed Intel home health Gateway where patients take
their vital sign measurements as defined in their care plan
and System monitor their health status under the guidance
of a healthcare professional. Cisco HealthPresence can im-
prove healthcare between patients, clinicians, and specialists
located in distant places. As far as we know all these above
systems have not explicitly focused on flexible architectures
and evaluated that flexiblity across a widely different medi-
cal monitoring applications.
Related work also appears in web-based sensor networks.

A recent survey describes web-based sensor networks [17].
The SAPHE health care system for the Sensor Web [4] is
able to sense different physiological attributes such as blood
pressure, temperature and send them to the web for a spe-
cialist or doctor. Another system was developed especially
to monitor Parkinson’s disease [21].
In addition to systems focused on a single medical issue or

on general monitoring of ADLs, there are a number of works
that develop more flexible architectures. In [14] an extensi-
ble architecture is created but it only focuses on tracking of
patients. In [19] GiraffPlus is created as an infrastructure for
home care monitoring and used in real homes. However, this
architecture concentrates on middleware and sensing layers
and to date no evaluations of it can be instantiated for very
different home health care applications have been provided.
This systems was extended to mobile middleware in GP-m
[18]. The paper [22] also discusses architectures for smart
home applications but does not evaluate any of them in the
context of instantiations of those architectures for different
medical conditions. Other work, such as [8] describes an
ecosystem for programming flexible assistive environments.
Since this work concentrates on the programming paradigm
it is orthogonal to our work.



6. CONCLUSIONS
Most commercial home monitoring systems are either fo-

cused on single devices or are single purpose. Some support
general monitoring, but are not easily extensible. Research
systems have focused on creating a system for a specific
purpose and are rarely, if ever, tested with actual patients.
The Empath2 architecture serves as a basis for easily in-
stantiating versions of it for home health care for a wide
variety of purposes. The claim is substantiated by creating,
deploying, and evaluating three instances of Empath2. All
deployments are in real homes (a total of 17 homes to date).
Importantly, 2 of the 3 deployments are with actual ill pa-
tients. It is also important to note that the deployments vary
from relatively simple ones such as the epilepsy case study,
to complicated ones such as the incontinence and depression
case studies. In particular, in the case studies we show that
using the framework we can quickly implement and deploy
multimodal, largely passive behavioral monitoring systems
that are useful to caregivers and medical professionals.
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