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Abstract—In this paper, we advocate asymmetric function place-
ment as one of guiding principles to architect sensor network
systems. We demonstrate its generic applicability and effective-
ness by applying this principle to three typical sensor network
technologies, namely, localization (Spotlight), sensing (uSense) and
communication (mNets). These technologies have very dissimilar
features, representing a wide spectrum of system design require-
ments. We have invested significant effort to design, implement
and evaluate our techniques on TinyOS/Mote testbeds. The results
from several running systems indicate that asymmetric function
placement is a powerful guiding principle to achieve efficiency and
high-performance simultaneously in wireless sensor networks. At
the end, we exam the system features that discourage the use of
asymmetric function placement and approaches to address them.

I. INTRODUCTION

Wireless Sensor Networks (WSN) support many promis-

ing applications, such as military surveillance, infrastructure

protection, scientific exploration and smart environments. Re-

searchers in this area have accumulated a large portfolio

of designs, effectively addressing a wide range of case-by-

case problems. However, we are still searching for guiding

principles to efficiently compose sensor network systems as

a whole. In this paper, we attempt to address this issue by

(i) advocating the design principle of Asymmetric Function

Placement, and by (ii) designing and prototyping several sensor

network technologies based on this design principle, and (iii) by

presenting the insights, limitations, challenging issues learned

from our study.

As evident in the Internet evolution, good design principles

contribute to a successful architecture. The famous “end-to-

end argument”, proposed by Saltzer, Reed and Clark [26],

is one of these design principles that led to the success of

the Internet. It suggests pushing functions, which require end-

to-end guarantees (e.g., reliable delivery), to the edge of the

network in order to avoid redundancy and inflexibility. We

note that although the “end-to-end argument” is proposed as

a design principle independent of the TCP/IP architecture, it

provides important guidance as to where each network function

should be implemented. Having observed the importance of

design principles to the success of the Internet, we raise the

following questions: What are the key design principles for

sensor network architectures? And how can we efficiently

utilize these design principles in existing and future sensor

systems?

A sensor network is fundamentally different from Internet in

two key aspects. First, sensor nodes are very constrained de-

vices with limited computation and communication resources.

Therefore efficiency of protocol designs should be a major

architecture concern in sensor networks. Second, a sensor net-

work interacts with physical environments, while the Internet

builds a logical world where human-computer interaction dom-

inates. These differences make new design principles necessary.

In general, sensor network architecture involves multiple

design principles, guiding the design of architecture-level ser-

vice and control interfaces, decomposition and composition

methodologies of functional components. In this paper, we

do not intend to enumerate every design principle that is

potentially useful, but to advocate the principle of Asymmetric

Function Placement – a sensor-network equivalence to the end-

to-end argument found in the Internet. It should be emphasized

first that asymmetric design by itself is not new in general

context - it has been widely proposed and well articulated

in the context of Client/Server architecture, and implicitly

used in many existing sensor network designs [10], [11],

[29]. The main novelty of this work is to 1) demonstrate

systematically that this design principle can be applied in

various aspect of wireless sensor networks, using several novel

solutions, 2) explain how to apply this design principle under

the right sensor network settings appropriately, and 3) reveal

Asymmetric Function Placement can lead to generic, efficient

and powerful designs across different applications.

In the rest of the paper, we first explain the concept of

Asymmetric Function Placement. And then we present three

sensor network designs and physical implementations, namely

Spotlight, uSense and mNets, which use asymmetric function

placement as the guiding design principle. We carefully choose

these designs so that they have very dissimilar features and

represent a wide spectrum of requirements to evaluate the

generality of asymmetric function placement. In each design,

we qualitative and quantitatively explain why this design prin-

ciple plays a key role not only in simplifying the sensor-level

design but also in improving the system-level performance as

a whole. We note that it is unfair to claim asymmetric function

placement can be applied in every sensor system design.

Therefore, we discuss the system features that discourage the

use of this design principle and possible approaches to address

them at the end of this paper.



II. THE CONCEPT OF ASYMMETRIC FUNCTION

PLACEMENT

Essentially, function placement advises where each function

should be implemented in sensor network systems to achieve

overall architecture and performance objectives efficiently.

The guiding principle we identify here is called Asymmetric

Function Placement. It suggests decoupling the non-essential

functions from the core of the sensor network, an approach

to obtain a slim architecture that can be supported on the

resource constrained sensor nodes. The principle of asymmetric

function placement deems a function non-essential, if sensor

applications operate well without direct support from this func-

tion. Non-essential functions, if embedded within the sensor

network, not only increase the footprint (code size) of the

implementation, but also consume valuable resources such as

bandwidth and computation. By decoupling the non-essential

functions and implementing them outside the network core,

we achieve efficiency and performance simultaneously, because

of following two reasons: First, with fewer functions sharing

the limited resources on a node, we can build the essential

functions, the ones that must be embedded into individual

sensor nodes, in a less stringent design space. Second, we

can design and implement non-essential functions outside of

sensor networks free of resource constraints inherent in the

sensor nodes. These functions, therefore, can be very sophisti-

cated and powerful, leading to a significantly improved overall

performance.

We note that the decoupling of non-essential functions is not

straightforward, but a rather challenging task for two reasons.

First, most functions seem to be essential if considered as

a whole and we cannot simply re-implement them entirely

outside of the sensor nodes. We will demonstrate this later in

the paper. Second, application features would affect whether a

function is essential or not. It would also affect how decoupling

should be done. It is a demanding task to conceive application-

specific efficient decoupling mechanisms.

Although asymmetric design is not new in computer science

field, it is new to clarify, validate and consolidate this design

principle from system perspective in the context of sensor

networks, using several running systems. More specifically, our

contributions lie in two main aspects.

• We reveal asymmetric function placement’s ability to

reduce the in-network complexity and enhance system

performance simultaneously. To indicate how widely this

principle can be used, we have designed a set of novel

asymmetric solutions, demonstrating their architecture and

performance superiority in several TinyOS/Mote testbeds.

• We analyze the differences and possible integration

between our design and other existing architectures

such as Tenet [10], SNA [23], COMPASS [25] and

WaveScope [18]. This contributes to the ultimate archi-

tecture design convergence in the future.

III. APPLICATIONS OF ASYMMETRIC FUNCTION

PLACEMENT

Architecture design can be regarded as a process of sys-

tematically decomposing and composing of functions. Since a

monolithic system leads to difficulties in interoperability and

extensibility, it is an indispensable step to first decompose a

system into different functions and answer where each function

should be realized. A thoughtful function placement principle

would lead to an effective implementation as indicated by

the “end-to-end argument”. Another notable function place-

ment principle is put forward by UCLA’s Tenet [10] project,

which advocates that multi-node data fusion functionality and

complex application logic should be implemented only at

the second tier (e.g., master nodes), because the cost and

complexity of in-network processing would overshadow their

benefits. Here we advocate the asymmetric function placement

principle that is different, however complementary. We decou-

ple sensor network functions into two categories: essential and

non-essential functions. Essential functions are the ones that

have to be supported within the network, while non-essential

functions are the ones that need not be embedded as a part

of the network. Different from Tenet, we do not dictate a

tiered architecture and we address function placement at a finer

granularity.

Since we do not expect asymmetric function placement

to apply to all application domains, we scope our work by

assuming the nodes are stationary (no mobility), which is the

case for most existing deployed sensor systems [5], [12], [28],

[30], [32], [36]. In a highly-mobile sensor network, we expect

the benefit of using asymmetric function placement might not

apply. Since mobile nodes are normally more capable than the

types of devices we are considering, traditional architectures

might be used for them.

To illustrate the architectural benefits of asymmetric function

placement, in the rest of the section, we present three examples,

namely, Spotlight, uSense and mNets. We organize each exam-

ple as follows: We first briefly describe the technical design,

and then illustrate how to apply the principle of asymmetric

function placement. At the end of each example, we evaluate

the design through quantitative experiments and qualitative

description of architecture insights.

A. Spotlight Localization

In this section, we use Spotlight localization system [29]

as the first example for asymmetric function placement. To

support location-aware applications, we need two functions,

namely localization and a location service. Localization is

a process of obtaining the (x, y, z) location information of

individual nodes, while the location service defines how to

expose and use these information. We note that localization

is an indirect mechanism while the location service is essential

function, since applications only use location information as

inputs and they do not care about how the location is obtained.

To decouple the non-essential localization function, the

Spotlight system employs an asymmetric architecture, in which

sensor nodes do not need any special hardware. We push all

the sophisticated hardware and computation into a powerful

device, called Spotlight, which is not part of the network.

This asymmetric function placement leads to simplified sensor-

level architecture as well as a much more powerful localization

design.
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Fig. 4. Area Cover

The main idea of the Spotlight localization system is to use

a Spotlight device to generate controlled events in the field

where the sensor nodes are deployed. An event could be, for

example, the light projected into an area. Using the time when

a controlled event is detected by a sensor node and the space-

time correlation of the generated events, location information

regarding the sensor node can be inferred.

• Advanced Design at the Spotlight Device: We illustrate

the Spotlight idea further with Figure 1. Figure 1 shows

a sensor localization scenario: After deployment, the sen-

sor nodes time synchronize with each other. An (aerial

or terrestrial) vehicle with a Spotlight device generates

a sequence of controlled light events. For example, a

controlled sequence of point events can be described as

the event locations (x, y, z) over time t: f : R → R
3,

where f(t) = (x, y, z). A sensor node detects the event

at time t and reports t to the Spotlight device. Since the

spatiotemporal property f(t) of the controlled events is

known to the Spotlight device, it can compute the location

of the sensor nodes by inputting the time-stamp t into the

sequence f(t). Besides disseminating of point events as

shown in Figure 2, we can also use line and area events

to obtain the nodes’ locations. Figure 3 shows how line-

scan works in a 2-D space. Instead of disseminating a

single spot, line-scan create a line of light and scans the

area twice, first with a vertical event line followed by

a horizontal event line. After two scans, each node gets

two time stamps: t1 and t2, which can be used by the

Spotlight device to obtain x and y coordinates of a node.

Figure 4 shows how the area-cover method works. The

2-D area is divided into multiple sections, each with a

unique code. Events are disseminated according to the

code (1/0 denotes the existence/void of the event). The 0/1

detection sequence of a node can be used to identify in

which section this node is located. For example, as shown

in Figure 4, if a node reports a 0011 event sequence, this

node must be at the right upper corner of the field.

The Spotlight device is designed to be powerful enough

to support many types of controlled events, allowing the

tradeoff between the cost and time to achieve localization.

Figure ?? shows both indoor and outdoor version we

implemented. The indoor version (left) uses an Infocus

LD530 projector connected to an IBM Thinkpad laptop.

The outdoor version (right) uses diode lasers, a comput-

erized telescope mount (Celestron CG-5GT), and an IBM

Thinkpad laptop.

     

  
 

Fig. 5. µSpotlight System and Spotlight System

• Simple and Generic Detection Function at Sensor

Nodes: In contrast, sensor-level design is very simple

and generic. Sensor nodes need only to support simple

detection, time-stamping and report functions. In fact,

sensor nodes are blissfully unaware of which type of

events a Spotlight device generates. This lightweight and

generic design not only reduces the memory and energy

during the operation, but also decreases the cost for

reprogramming and the overhead of debugging.

1) Evaluation of Spotlight: We evaluated the performance

of Spotlight localization both indoors and outdoors (Figure 6).

Here we only present the relevant results. Based on the asym-

metric design, Spotlight localization achieves (i) a centimeter-

level accuracy as shown in Figure 7, which is 1 ∼ 2 orders of

magnitude more accurate than well-known range-free schemes

such as centroid [2] and amorphous localization [19], and (ii)

over 1000 meters localization range as shown in Figure 8,

which is two orders of magnitude longer than state-of-the-

art range-based localization systems such as Cricket [24].

And we note that long range and high accuracy are achieved

simultaneously without any additional cost at sensor nodes.

The only process performed at a node is simple event detection

with time-stamping. The cost of a spotlight device (e.g., 800$

currently) can be amortized per node over multiple usages.
2) Architecture Insights: We conclude that the significant

improvements in the Spotlight system come from the architec-

ture design. Previous symmetric solutions such as [2], [19],

[24] implement the localization function completely within

the sensor networks. Developing these symmetric solutions

has limited design choices due to the resource constraints.

For examples, existing localization protocols normally fall

into one of two categories: range-based and range-free. The

former is defined by protocols that use absolute point-to-point



Fig. 6. Deployment Scenario
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Fig. 7. Localization Accuracy
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Fig. 8. Effective Range

distance estimates (range) or angle estimates for calculating

location. The latter makes no assumption about the availability

or validity of pair-wise distance information. In both categories,

cost and accuracy are at odds with each other. In order to

obtain a high accuracy, range-based protocols need to equip

the sensor nodes with sophisticated hardware devices capable

of ranging. In order to reduce cost, range-free protocols have

to use only connectivity information, resulting in a large error

in localization.
In contrast, our asymmetric function placement allows non-

essential functions (e.g., localization) to be designed in a

resource-rich design space (Spotlight device), hence these

functions can be powerful enough to improve the performance

of sensor systems. For example, outdoor experiments [29]

(Figure 6) show that the Spotlight system can achieve as low

as 5 centimeters accuracy over a 170-meter range without any

additional hardware on sensors.
In addition, the asymmetric function placement improves

architecture flexibility by removing application-specific mecha-

nisms outside of sensor nodes. As shown in Spotlight, the time-

stamp function is generic. Three localization methods (i.e.,

point-scan, line-scan and area-cover) can be supported by the

Spotlight device, requiring no changes to the sensor devices.

B. uSense Coverage Framework

In this section, we introduce a coverage framework, called

uSense [11], using asymmetric function placement. The objec-

tives of the uSense design are the flexibility in configuration

and significant energy efficiency in sensing coverage. More

importantly, we use uSense as another example to illustrate

the design philosophy of asymmetric function placement.
It is often the case that a sensor network needs to sup-

port multiple operating scenarios. For example, a military

surveillance network could be required to provide robust full

coverage during a red alert (a spatial coverage requirement),

while tolerating a certain detection delay (a temporal coverage

requirement) at other times to conserve energy. Two algorithms

([31] and [3]) have been successfully designed to meet these

two design goals. However, neither of them, unfortunately, is

flexible enough to meet both requirements. Evidently, with

these two algorithms, we can achieve flexibility by repro-

gramming the coverage component through Deluge [14] and

other wireless download tools [16]. However, reprogramming

is expensive in communication cost, making flexibility and

efficiency at odds with each other.
We observe that the wakeup/sleep schedule of individual

sensor nodes can be described by a set of parameters, which

are independent of the mechanisms to obtain the schedules.

Therefore, we suggest a conceptual decoupling of scheduling

from switching. The scheduling function calculates the pa-

rameters of a working schedule (wakeup/sleep durations) for

individual nodes, while the switching function turns on and off

the sensors according to these scheduling parameters. As shown

in Figure 9, uSense features an asymmetric solution, which

consists of a lightweight algorithm running at the sensor and

a sophisticated design and implementation outside the sensor

network. To support this, a two-way communication is needed

between the outside entity and the sensor network.

• Generic Switching Algorithms at the Sensor: We de-

velop a switching algorithm that is lightweight enough

to run on the resource constrained nodes and generic to

accommodate various types of schedules. We use two

parameters in the switching algorithm design, namely

schedule bits S and switching rate R:

(1) The schedule bits S are an infinite binary string in

which 1 denotes the active state and 0 denotes the inactive

state. The duty cycle of a node is the percentage of 1s

in S. Since the node schedule is normally periodic, it

can be concisely represented by a regular expression (to

save dissemination overhead). For example, (0010)∗ can

be used to denote a repeated off-off-active-off schedule.

(2) The switching rate R defines the toggling rate between

states. For example, a switching rate of 2HZ requires

a node to read 2 bits from the schedule per second.

Theoretically, when the switching rate approaches infinity,

schedule bits can precisely characterize any on/off behav-

ior generated by any coverage algorithm. In reality, the

switching rate is finite, therefore in the worst-case, a node

might need to extend the wake-up period by 1

S
seconds

to guarantee the desired coverage. To build an efficient

switching algorithm, we build a Timed Finite Automaton

(TFA) to interpret the schedule S, associating a time value

to each 0/1 and 1/0 state transition. For example, Figure 10

shows a state-transition of a TFA, which interprets the

schedule (10000010)∗. In this TFA, A0 and A2 are two

active states and S1 and S2 are two sleep states. The state

transitions are triggered by the expiration of the time.

• Global Scheduling Algorithms at the Outside Entities:

As shown in Figure 9, we develop sensor-scheduling

algorithms outside the network (e.g., multiple computa-

tional nodes can be used to distributively collect data and

execute the algorithm). Free of resource constraints, this

outside entity can support a large number of sophisticated
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coverage algorithms [33], [34], [3], [4], [27], [6]. We

design a generic parameter translation engine, which takes

the output of a sensing algorithm and converts it to the

S and R parameters. We note that uSense’s asymmetric

architecture is especially friendly to global scheduling

algorithms, which might require excessive communica-

tion if implemented within the core of network. Since

global scheduling allows more nodes to be activated than

scheduling schemes that only schedule nodes within the

neighborhood, it leads to a significant power savings com-

pared with the localized coverage algorithm. As proofs of

concept, we have designed and implemented two global

scheduling algorithms: line scan and systolic scan. To

illustrate the idea, we only use a simple example here.

Figure 11 shows that an area is partitioned into some

small tiles. Instead of covering all tiles 100% of time,

we only cover a column or a row of tiles in a certain

interval of time during one round of horizontal or vertical

scan. Because only a small number of tiles are sensed at

a specific point of time, many more nodes are put into

sleep mode than a localized scheduling algorithm can.

Therefore, it reduces energy consumption significantly.

One key research challenge we have addressed is to

optimize the node-to-tile assignment according to the

spatiotemporal features of scanning algorithms. Due to

the space constraint, we omit this non-architecture related

detail.

Fig. 12. uSense System Setup

1) Evaluation of uSense: We have implemented a compete

version of uSense as designed in previous section. As shown

in Figure 12 to evaluate uSense, we attach 25 MicaZ motes on

a veltex board (4 feet by 12 feet) using velcro straps. We use a

DELL 2300MP projector to generate light spots on the veltex

board. These light spots are used to emulate static and mobile
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Fig. 13. System Life Time

events. Due to the space constraints, we summarize our results

as follows: uSense can significantly improve the average life for

single node and the half life for the whole network, compared

with the full coverage algorithm [33] as shown in Figure 13,

because its ability to support global scheduling without requir-

ing coordination between neighboring nodes. Second, due to

asymmetric design, uSense implementation has a very small

footprint. The generic switching algorithm is written with the

NesC language [8], running on the TinyOS/Mote platform. The

compiled image of a full implementation occupies 21,040 bytes

of code memory and 907 bytes of data memory. Third, other

than the cost to disseminate the scheduling bits, there is no

need for coordination among nodes.

2) Architecture Insights: uSense has several nice features

originating from the architectural design: (i) The generic design

supports a fast and efficient policy change. We only need to

disseminate a few new parameters to switch between different

coverage algorithms. This property is similar to the Spotlight

design where multiple event distribution functions can be

supported without changing the code at sensor nodes. (ii) It

allows an efficient implementation of the global scheduling

algorithm, which coordinates nodes within a large area, leading

to significantly better performance compared with the localized

solutions. (iii) Only a simple switching algorithm is imple-

mented on the sensor nodes, which leads to savings in memory

and energy consumption.

C. mNets Communication Paradigm

To demonstrate the design philosophy of asymmetric func-

tion placement further, in this section we introduce our third ex-

ample: a new multi-frequency communication protocol, called

mNets. This communication design leverages multiple frequen-

cies to reduce congestion and improve network throughput in

dense wireless sensor networks.



Figure 14 shows the main idea of mNets: We separate a

dense network into several connected sparse sub-networks,

which use different frequencies to support parallel data trans-

mission through multiple sub-networks. We decouple multi-

frequency communication into two sub-functions, frequency

assignment and data forwarding. Using asymmetric function

placement, we implement a set of sophisticated algorithms to

do near-optimal frequency assignment outside the networks,

and a lightweight data forwarding mechanism at sensor nodes.

Link with Frequency A 

Link with Frequency B 

 Sink

Fig. 14. The Conceptual Design of mNets

• Frequency assignment outside: Frequency assignment

function is to partition the original network into sub-

networks and assign different channels to sub-networks.

Our design objectives for mNets are: (1) Every sub-

network is k-connected (k ≥ 1 and connects to at

lease one base station. (2) Sub-networks should overlap

in the field and can be easily reached by all sensor

nodes. (3) Every sub-network should be sparse enough

to reduce congestion and also be dense enough to allow

robust connectivity. Distributed algorithms within sensor

networks can hardly make a global partition and fre-

quency assignment to meet these requirements without

requiring excessive communication, especially for the last

requirement. Based on the asymmetric function placement

principle, we implement this function outside the network.

In the system initialization, we gather the connectivity

information of nodes, and build a graph model outside the

networks and design centralized and sophisticated graph

algorithms to solve corresponding graph theory problems.

Specifically, we modify one classical MAX-CUT algo-

rithm to produce a network partition such that each sub-

network is k-connected (condition 1), with minimizing

the total numbers of links within sub-networks (condition

3). We also modify legacy dominating set algorithms to

compute sub-networks which are connected (condition

1), are k-dominating sets of the graph (condition 2) and

satisfy degree constraint (condition 3). Using the strong

computation ability outside the sensor networks, these

algorithms compute better network partition and frequency

assignment. The computed results are sent back to the

sensor network for the purpose of data forwarding.

• Data forwarding: Since data has to be sent over the

network, we deem data forwarding as an essential function

that should be placed at nodes. Data forwarding operation

of mNets is very simple and generic, in which a node only

needs to use the pre-assigned frequency to forward packets

to destinations. Since the sophisticated intelligence of the

frequency selection is located outside of sensor nodes, the

complexity is significantly reduced, hence leading to less

in-network debugging issues.

1) Evaluation: We have implemented mNets in Glo-

MoSim [35] and TinyOS/Mote testbed, and conducted exten-

sive experiments to evaluate its performance. Detailed descrip-

tion of mNets performance is out of the scope of this paper.

Here we only focus on three important performance metrics:

1) throughput, 2) packet delivery ratio and 3) packet delivery

latency. We adopt two typical sensor network scenarios: (i)

multiple sensor nodes report their readings to one base station

and (ii) the base station disseminates information to multiple

sensor nodes.

The experimental results indicate that mNets outperforms

original network protocols in the following aspects: First, as

shown in Figure 15, by using advanced network partition and

frequency assignment algorithms, mNets achieves 1.6 and 2

times higher average aggregate throughput than the network

without mNets support. Second, by splitting the traffic into dif-

ferent sub-networks, mNets decreases the chance of collisions,

leading to higher packet delivery ratios and low latencies as

shown in Figure 16 and Figure 17, respectively.

2) Architecture Insights: mNets gains several nice proper-

ties from the asymmetric function placement principle due to

the following reasons: (i) It uses the strong computation ability

outside the networks to compute globally optimal frequency

assignment solutions, which can provide better network per-

formance with small communication overhead, compared with

distributed algorithms. (ii) As uSense and Spotlight, the generic

design allows the flexible exchange of different frequency

assignment polices according to their requirements; It also

allows the definition of specific frequency selection rules for

corresponding traffic patterns. At the sensor side, a generic for-

warding technique is used to accommodate different frequency

assignment. (iii) It supports efficient parameter tuning and

replacement of frequency assignment algorithms, which makes

mNets adapt to various network scenarios with good scalability.

(iv)Generic data forwarding protocols can be implemented at

sensor nodes with low overhead and footprint.

IV. ANALYSIS OF THE ASYMMETRIC FUNCTION

PLACEMENT

Unlike evaluating a specific algorithm, a design principle is

difficult to assess and can only be appreciated over a long time

and over a large number of users. In this paper, we present three

new protocols which have very dissimilar features, representing

a wide spectrum of system design requirements. This allows

us to demonstrate the generality of asymmetric function place-

ment to some degree. However obviously, with three concrete

examples, our effort alone is by no means sufficient to evaluate

the design principle of sensor networks.

Despite the difficulty in evaluation, we attempt to reveal

the benefits of asymmetric function placement by comparing

the code size, computation complexity and communication

overhead between the asymmetric solutions with the legacy

symmetric solutions. Since the protocols under comparison do

not share identical assumptions and settings, the comparison



100

200

300

400

500

600

16 20 24 28 32 36 40 44 48 52

Average Number of Neighbors

A
g

g
re

g
a

te
 T

h
ro

u
g

h
p

u
t 

 (
K

b
p

s
) 

  
  

  
  

  
  

  
  

 

a network without mNet

mNet with 2 freq.

mNet with 4 freq.

Fig. 15. Aggregated Throughput

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

16 20 24 28 32 36 40 44 48 52
Average number of neighbors

  
P

a
c
k
e
t 
D

e
liv

e
ry

 R
a
ti
o
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

A network without mNet

mNet with 2 freq.

mNet with 4 freq.

Fig. 16. Delivery Ratio
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Fig. 17. Delivery Delay

Overhead at a sensor External Overhead Overhead at a sensor
memory Compu. comm. memory Compu. comm. memory Compu. comm.

Spotlight O(1) O(1) O(H) O(N) O(N) O(N) DV-Hop [21] O(A) O(A2) O(NA)
uSense O(1) O(1) O(H) O(N) O(N) O(N) K-COVER * [1] O(D) O(D) O(1)

mNets O(1) O(1) O(H) O(ND) O(fND2) O(ND) MMSN [37] O(D) O(D) O(D)

TABLE I
THE BENEFIT OF ASYMMETRIC FUNCTION PLACEMENT.

In the table I, N denotes the number of nodes within a network. D denotes the average degree of connectivity (i.e. the node density). H is the diameter of
the network in the number of hops. f is the number of frequencies available. A is the number of anchor nodes used for localization.

∗We note Set K-cover is a well-known NP-Hard problem, therefore, we compare only the greedy versions in uSense and [1].

can only serve as a qualitative indication of the benefits

of asymmetric function placement. More specifically, 1) we

compare Spotlight with the DV-Hop localization [21], which

localizes the sensor nodes using the hop counts between the

nodes to several known beacons; 2) We compare uSense with

the greedy version of SET K-COVER [1], which assigns a

sensor to the cover set that it can contribute most. 3) mNets

with MMSN [37], which allocates communication frequency

by comparing the random numbers generated within two-hop

neighboring nodes.

A. Memory Requirement

Constrained by the form factor and energy supply, the code

and data memory available in sensor nodes are normally very

small. For example, MicaZ has only 4K data memory available.

Asymmetric function placement suggests the decoupling of

sophisticated components from the sensor nodes to reduce the

footprint of various kinds of functions. As shown in Table I,

the memory requirements of Spotlight, uSense and mNets are

constant at the sensor side, regardless of the size of the network

and the node density. The protocols under comparison require

a memory size proportional to either network density [1], [37]

or the anchor density [21].

B. Computation Complexity

As shown in Table I, the principle of asymmetric function

placement simplifies the computational complexity of the sen-

sor network protocols. For examples, Spotlight only requires

a simple time-stamp function after the detection, uSense only

needs to turn on and off a node according to the scheduling

bits, and mNets only performs simple transmission using

preassigned frequency. With asymmetric function placement,

the expensive computation is located outside of sensor nodes.

In contrast, DV-Hop, K-Cover and MMSN demand the sensor

nodes to perform all operations within the network. In addition

to the computation overhead, the sophisticated in-network

process introduces two detrimental side-effects: large code size

and difficulties in debugging.

C. Communication Cost

The principle of asymmetric function placement necessitates

communication between sensor and off-net entities. The cost of

communication is proportional to the diameter of the network,

which can be reduced by placing multiple second-tier nodes.

In contrast, the communication cost of in-network protocols

could vary significantly. For example, K-Cover only needs

one message to notify its sensing neighbor about its decision,

while DV-Hop requires multiple global flooding to estimate

the distances between sensors and anchors. We argue that the

communication costs of distributive algorithms are small only

if communication is confined within neighborhood. However,

when coordination beyond local interaction (e.g., in uSense

and mNets case) is needed, in-network solutions would intro-

duce surprisingly more communication cost than asymmetric

designs.

V. DISCUSSION OF LIMITATIONS AND SOLUTIONS

On one hand, Spotlight, uSense and mNets demonstrate

several key architecture advantages: (i) simple and generic

processing within the nodes, (ii) a flexible and advanced design

space outside sensor networks, and (iii) high-performance

design as a whole. On the other hand, we do not expect

that asymmetric function placement can be applied to every

possible sensor network scenario. We believe there are several

critical issues that discourage the use of asymmetric function

placement. In this section, we discuss these issues and possible

approaches to address or avoid them.

• In-Network Adaptability: Adaptability is a major con-

cern of asymmetric function placement. High dynamics

within some sensor networks would invalid an off-net

design quickly. For this reason, we hypothesize that



asymmetric function placement does not apply to highly-

dynamic scenarios (e.g., mobility), because the frequent

changes in network states could offset the benefit of

asymmetric design. On the other hand, for most station-

ary sensor networks, dynamic is moderate and can be

addressed smartly. For example, in stationary networks,

nodes normally do not move, which warrants a low-cost

one-time localization such as Spotlight, instead of addition

of extra hardware. As another example, if a node fails

in the uSense design, it recovers by changing only the

scheduling bits of the nodes in the neighborhood of failed

node. There is no need for coordination among nodes

and no need to refresh the schedule globally. As rules of

thumb, system designers shall take the dynamics of target

systems (i.e., how frequently an off-net computation could

be invalided) into account, and design possible solutions

(as we did in uSense) to alleviate the impact.

• Off-Network Scalability: If an asymmetric design is

supported by a single off-net entity, it is subject to

computation scalability issues and single-point of failure.

In addition, if the diameter of the network is large,

asymmetric design would suffer communication scalabil-

ity issues. Legacy system experience indicates compu-

tation scalability issues can be addressed by designing

a conceptually centralized, physical distributed computa-

tion platform. Similarly, communication scalability issues

can be resolved by placing multiple sinks within the

network to reduce in-network communication. We also

note that different protocols normally share the same

network states (e.g., the locations of nodes), therefore,

the communication cost can be amortized by several co-

existing asymmetric functions.

• Principle Applicability: The success of asymmetric

function placement as a design principle is partially

decided by how widely this design principle can be

applied and how much benefit we can obtain from such

decoupling. We have shown a 1 ∼ 2 orders of accuracy

and range gain from the Spotlight example, however, three

examples do not entitle us to make the judgment. We note

that asymmetric function placement is a rather challenging

task, because most functions are essential as a whole

and we cannot simply re-implement them outside of the

network. The core issue here is to decouple a function into

several subfunctions and remove the non-essential parts,

pushing the complexity outside of the network core as

much as possible. In the future work, we plan to apply

decoupling on a wide range of functions. For example, we

suggest investigating whether 1) routing can be decoupled

from forwarding, 2) coordination from transmission, 3)

calibration from adaptation, and 4) topology control from

transmission control. These decouplings can be achieved

by removing indirect or costly underlying mechanisms

away from the core service, as we have shown in Spot-

light, uSense and mNets cases.

VI. RELATED SENSOR NETWORK ARCHITECTURE

Recently, sensor network research is evolving very quickly.

We are now reaching a critical point to decide the issue

of architecture. Although several sensor network architec-

tures [10], [23], [25], [18] have been proposed, it is still unclear

which architecture will dominate eventually. In this section,

we explain architecture commonality and differences between

our design principle and other representative and well-known

architectures.

• TinyOS: TinyOS/T2 [13], [17] is currently the most

widely adopted architecture for sensor applications. In

TinyOS, an application is defined by the modules and

the connections among them. Two-level scheduling allows

concurrency-intensive operations driven by on-demand

events. Since TinyOS defines mostly the composition of

functions within a single node, it is currently enhanced by

the SNA architecture.

• SNA: The SNA architecture [23] aims at providing a

unified abstraction (SP) at the link layer, the sensor

network equivalence of internet IP layer. This unified

abstraction greatly facilitates the rapid integration between

the diversified link layer design and the network layer

design. It effectively isolates the design concerns, making

an architecture highly flexible and extensible. SP focuses

on the design of a concrete layer SP, specifying the

interfaces for this particular layer. In contrast, function

placement is a general design principle for the placement

of functions.

• TENET: The TENET architecture [10] advocates that

multi-node data fusion functionality and complex appli-

cation logic should be implemented only at the second

tier (e.g., master nodes). In general, asymmetric function

placement shares the same thoughts as TENET, i.e., move

the complexity to a more powerful entity. Differently,

TENET focuses on the elimination of application-specific

complex logic at the node level, treating functions as a

whole. In contrast, asymmetric function placement uses

function decoupling to reduce the in-network complexity

a step further. We believe the sensor nodes should be free

from not only application-specific complex logic, but also

non-essential application-independent functions.

• COMPASS: COMPASS [25] is a high-level architecture

that supports collaborative, multi-scale data processing.

From the information processing perspective, it provides

a new multiscale wavelet transform for feature extraction.

From the networking perspective, it provides a multi-

overlay network structure. These two design perspectives

align the communication hierarchy with the information

flow. Our design principle can be applied in the COM-

PASS architecture to reduce the complexity of in-network

processing and the COMPASS architecture is an excellent

platform for us to evaluate the applicability of asymmetric

function placement.

• WaveScope:WaveScope [18], [9] is a specific architecture

for continuous query processing and signal processing

over high-data rate sensor data streams. WaveScope argues

that there is no single architecture currently working for

all application domains, it is often necessary to place

architecture design in a targeted context to achieve better

performance. Different from WaveScope, our principle



is generic guideline for various type of sensor systems,

including WaveScope-like sensor systems.

TinyOS/T2 [13], [17], SNA [23], TENET [10], COM-

PASS [25] and WaveScope [18] have demonstrated their ar-

chitectural superiority from different perspectives. There are

also a set of special purpose architecture for storage [7], power

management [15], inference [22] and filtering [20]. Until now

it is too early to judge which one is better and which path

sensor network researcher should follow. But we are confident

that our design principle has identified a niche position to assist

the effort of final convergence.

VII. CONCLUSION

In this paper, we advocate Asymmetric Function Placement

as the guiding principle to architect the sensor network systems,

which removes one-time, indirect, specific or costly underlying

mechanisms away from the core service. We apply this design

principle on three key sensor network technologies, which have

very dissimilar features and hence represent a wide spectrum

of system design requirements. Through the system design,

physical implementation and test-bed evaluation/simulation of

Spotlight, uSense and mNets, we demonstrate that asymmetric

function placement is a powerful guiding principle for building

high-performance and lightweight sensor network systems if it

is used in appropriate settings. We hope this work can assist

the research community to identify the key design principle

that is conceptually useful for building concrete wireless sensor

systems.
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