
EyePhy: Detecting Dependencies in Cyber-Physical
System Apps due to Human-in-the-Loop

Sirajum Munir∗
Bosch Research and Technology Center

Pittsburgh, PA 15203
sirajum.munir@us.bosch.com

Mohsin Y. Ahmed, John A. Stankovic
University of Virginia

Charlottesville, VA 22904
{mohsin.ahmed, stankovic}@cs.virginia.edu

ABSTRACT
As app based paradigms are becoming popular, millions of
apps are developed from many domains including energy,
health, security, and entertainment. The US FDA expects
that there will be 500 million smart phone users download-
ing healthcare related apps by 2015. Many of these apps are
Cyber-Physical System (CPS) apps. In addition to sens-
ing, communication, and computation, they perform inter-
ventions to control human physiological parameters, which
can cause dependency problems as multiple interventions of
multiple apps can increase or decrease each others effects,
some of which can be harmful to the user. Such depen-
dency problems occur mainly because each app is unaware
about how other apps work and when an app performs an
intervention to control its target parameters, it may affect
other physiological parameters without even knowing it. We
present EyePhy, a system that detects dependencies across
interventions by having a closer eye on the physiological pa-
rameters of the human in the loop. To do that, EyePhy uses
a physiological simulator HumMod that can model the com-
plex interactions of the human physiology using over 7800
variables. EyePhy reduces app developers’ efforts in speci-
fying dependency metadata compared to state of the art so-
lutions and offers personalized dependency analysis for the
user. We demonstrate the magnitude of dependencies that
arise during multiple interventions in a human body and
the significant ability of detecting these dependencies using
EyePhy.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and Embedded Systems

General Terms
Algorithms

∗This work was performed while the author was at the Uni-
versity of Virginia.

Keywords
Dependency analysis, Conflict detection, Human-in-the-loop,
Interventions, Control

1. INTRODUCTION
As app based paradigms are becoming popular for smart
phones and smart homes [23] [16], millions of apps are devel-
oped spanning many domains including energy, health, secu-
rity, and entertainment. Currently, Apple and Google each
have more than 1 million apps in their app stores. Among
these apps, a significant number of medical apps already ex-
ist and newer apps are being developed every day. The US
Food and Drug Administration expects that there will be
500 million smart phone users downloading healthcare re-
lated apps by 2015 [1]. Many of these app users are patients
of one or more diseases. In 2005, 44% of all Americans had
at least one chronic disease and 13% had three or more.
By 2020, 157 million Americans are predicted to have more
than one chronic disorder, with 81 million having multiple
conditions, and many of them are likely to use healthcare
apps [8]. Many of these apps perform interventions to
control some physiological parameters of the human body.

This control part of medical apps poses several challenges
because of two reasons. First, each app is developed inde-
pendently and when it performs a control action, i.e., inter-
vention on the human body, it does so without much knowl-
edge about how the other apps work. Second, humans are an
integral part of the feedback control loop. Therefore, when
an app performs an intervention to control its target param-
eters, it may affect other physiological parameters without
even knowing it since human body parts are very connected.
As a result, if the user installs redundant apps, multiple apps
may administer the same drug independently that may re-
sult in a drug overdose. Also, multiple interventions can
increase or decrease each other’s effects, some of which can
be harmful to the user. To the best of our knowledge, no
existing app engines available in the market perform any
analysis across apps’ control actions on the human body.

State of the art techniques, e.g., DepSys [23], require app
developers to specify the effect of each actuation in order to
detect the dependency at the actuator level. For example,
an app that controls a humidifier specifies its effect <hu-
midity><increase> while another app that controls a de-
humidifier specifies its effect <humidity><decrease> in the
app metadata. Such a strategy works well in a home set-
ting where there are only a few environmental parameters

that can be affected by an intervention. App developers may
even skip some effects in a home setting, e.g., an app that
increases the room temperature by turning on an HVAC sys-
tem may increase the humidity a little bit, but this effect is
minor and is ignored and/or is not safety critical. However,
we can not ignore such secondary effects in the context of a
human body. So the state or art strategy of specifying the
effect of actuations or intervention does not work because a
human body has many interconnected parts. In other words,
using current solutions app developers would have to spec-
ify hundreds or even thousands of parameters in order to
specify the effects of an intervention on the human body.

We design EyePhy, a system that detects dependencies across
interventions of human-in-the-loop CPS medical apps. We
call it EyePhy as it has a closer eye on the physiological
parameters of the involved human being. It uses a physi-
ological simulator called HumMod [19] that can model the
complex interactions of the human physiology using over
7800 variables capturing cardiovascular, respiratory, renal,
neural, endocrine, skeletal muscle, and metabolic physiol-
ogy. HumMod is constructed by the medical community
from the empirical data collected from peer-reviewed physi-
ological literature over more than 20 years, and it has been
validated [19] on the criteria established in [26]. HumMod
also permits specification of personalized information such
as age, sex, weight, and medical condition, thus it is possible
to model the physiology of people of both gender having vari-
ous physical characteristics. Using a physiological simulator
to detect dependencies has many advantages. First, it al-
lows us to perform dependency analysis across a wide range
of physiological parameters, e.g., HumMod’s 7800 variables.
Second, it enables us to take into account drug dosage and
the time gap between the interventions in the dependency
analysis. Some websites [2] [4] can be used to check for po-
tential drug interactions, but they do not take into account
these other issues. Also, they can’t provide interaction anal-
ysis between a drug and a non-drug intervention, e.g., exer-
cise, that our solution offers. Third, our dependency analysis
is personalized, e.g., if someone has heart related problems,
he can focus the dependency analysis on the heart. And
fourth, all of these can be done without much effort from
the app developers in specifying dependency metadata.

This work has five major research contributions. First, to
the best of our knowledge, EyePhy is the first system to pro-
vide a comprehensive dependency analysis across human-in-
the-loop medical apps by modeling the environment, i.e., the
human body using over 7800 variables. Second, our solution
takes into account drug dosage, time effect of interventions,
and the time gaps between the dug dosages and interventions
in the dependency analysis. Third, it reduces app develop-
ers’ efforts in specifying dependency metadata compared to
the state of art systems such as DepSys [23]. Fourth, it offers
personalized dependency analysis for the user. Fifth, by us-
ing the HumMod simulator, we demonstrate the magnitude
of dependencies that arise during multiple interventions in
a human body and the significant ability of detecting these
dependencies using EyePhy.

2. RELATED WORK
There are app based paradigms for smart phones (Android,
iOS) and for smart homes, e.g., HomeOS [16] and DepSys

[23]. There are techniques that have been proposed to de-
tect and resolve conflicts that arise when multiple apps try
to control a sensor or an actuator. HomeOS can detect ac-
tuator level conflicts when multiple apps try to control the
same actuator in a conflicting way, e.g., one app wants to
turn on a light while another app wants to turn in off, and
it resolves the conflict in favor of the higher priority app.
DepSys can detect conflicts that occur across devices, e.g.,
one app is running a humidifier while another app is running
a dehumidifier in the same room using additional meta data
called effect, emphasis, and condition. It can resolve con-
flicts by understanding the contexts using the meta data.
Also, it can automatically resolve control conflicts of the
sensors by considering app priority, sensor resource avail-
ability constraint, and app requirements. These systems do
not deal effectively with large numbers of secondary depen-
dencies such as is found for human health.

PhysicalNet [27] provides a generic paradigm for managing
and programming world-wide distributed heterogeneous sen-
sor and actuator resources in a multi-user and multi-network
environment. By allowing owners to specify fine grained ac-
cess control and conflict resolution mechanism, PhysicalNet
allows sharing of resources and increases the number of con-
current applications running on the devices. When multiple
users simultaneously specify contradictory requirements on
the same resource, PhysicalNet uses resolvers to resolve con-
flicts. Although some of the of conflicts that take place in
a home occur due to human-in-the-loop, none of these tech-
niques address the physiological aspect of the human being.

Human-in-the-loop is an active area of research. Humans are
incorporated as a part of the feedback control loop in many
systems including physiological control systems [11, 24], mo-
bile sensing and computing systems [21, 25, 10, 28], thermal
control systems [22], and robotic systems [20]. These works
demonstrate that feedback control can be effectively used to
control systems with direct feedback from the user. Some
of the physiological control systems control the physiologi-
cal parameters of the user. However, they do not consider
the case of multiple interventions from multiple applications
conflicting on the physiological parameters of the human.

There are many physiological models enabling the simu-
lation of different functionalities of a human body includ-
ing the pulmonary system [14] and cardiac metabolism [12].
However, these models are developed to understand the be-
havior of individual organs without providing the integration
across different organ systems and simulation of the whole
body. There are a few physiological simulators that inte-
grate different organs. For example, Nottingham Physiology
Simulator [18] allows simulation of cardiovascular, acid-base,
respiratory, and renal physiological models. Guyton [17]
and HUMAN [13] are two historical models of integrative
physiology. QCP [9] is an extension of HUMAN and it in-
corporates cardiovascular, renal, respiratory, endocrine, and
nervous systems. QCP is developed in C++, which limits
the ability to update the physiological models, e.g., changing
or adding an equation requires recompilation of the whole
simulator. HumMod [19] is developed to overcome this limi-
tation as it uses XML files to describe the model parameters
and the quantitative relationships among them. It uses over
7800 variables to capture cardiovascular, respiratory, renal,

Figure 1: Runtime Dependency Detection by EyePhy

neural, endocrine, skeletal muscle, and metabolic physiology
as a function of a person’s age, weight, sex, and other per-
sonalized information. The model it uses is developed using
the empirical data collected from peer-reviewed physiolog-
ical literature. HumMod provides a model to understand
the complex interactions of integrative human physiology
and allows the simulation of different interventions on the
human body. We choose to use this simulator as it is the
leading physiological simulator in the medical community.

3. APPROACH
In this section, we describe our overall architecture, details
on the classification of parameters and dependencies, the
stakeholders and their responsibilities with suggested app
metadata, and installation time and runtime dependency
detection and resolution.

3.1 Architecture
We assume a centralized architecture for the app-based
paradigm, which is common for smart phones and smart
homes [16] [23]. Apps are run at the top layer by an app
engine, which is the OS of a smart phone or a smart home.
EyePhy runs as a service for the app engine, and detects
dependencies at app installation time and at runtime.

At installation time a new app is compared to all previ-
ously installed apps by analyzing meta data and by running
a simulation of the effects of possible interventions on the
person for 3 hours (a tunable parameter) into the future. If
there are serious conflicts the new app is not installed. More
details are given in section 3.5.1.

The way EyePhy controls apps’ interventions to a human at
runtime is shown in Figure 1. Each app has one or more
physiological parameters of interest that it monitors and
tries to control. The app may have a setpoint that is used to
compute an error, e.g., App1 has setpoint SP1 and it com-
putes an error e1 based on that. Then each app offers a list
of suggested interventions to EyePhy, e.g., IVList1 is a list
of one or more interventions suggested by App1. The list
may contain the same drug with different dosage level, or
different drugs, or other interventions. EyePhy uses Hum-
Mod to determine potential interactions with other previous
interventions and selects an intervention that doesn’t con-
flict with the previous ones. It projects the effects of all the
interventions on the human for the next 3 hours (tunable).
The selected intervention affects the physiological parame-
ters, some of which are captured by the sensor/transducer

and is used for determining the next interventions. An app
uses its sensor data, if available, to update the values of phys-
iological parameters of HumMod as shown DSRF (Dynamic
Sensor Readings Feedback) in Figure 1. Figure 1 also shows
how humans are part of the control loop. The controller also
directly senses physiological responses of the user through
available sensors to update the HumMod model, thus closing
the loop. There are three novelties in our proposed system
in Figure 1 compared to other human-in-the-loop feedback
control systems. First, each app suggests a list of interven-
tions instead of just one intervention, when possible. Sec-
ond, EyePhy automatically detects interactions among the
interventions not only at the current time, but out into a
future time horizon and this is based on the patient current
state. Third, it considers the parameters of interest of the
user when detecting interactions, which allows dependency
analysis to be personalized.

3.2 Parameter and Dependency Classification
HumMod models human physiology using over 7800 vari-
ables. If EyePhy uses all the variables for dependency de-
tection, then almost any two interventions will interact with
each other. We realize that all interactions are not neces-
sarily harmful to the human body and hence to understand
the dependencies, we categorize the parameters and depen-
dencies as follows.

3.2.1 High level and low level parameters
High level parameters are the physiological parameters that
are used to assess the general health of a person in most
medical settings. These are also called vital signs. These
parameters are as follows.

1. Body temperature

2. Heart rate

3. Blood pressure

4. Respiratory rate

5. Glucose

However, this list is extensible. We know the ranges (high,
low) of each of these variables for a healthy body, which
can be a function of age, sex, etc. Low level parameters are
the other physiological parameters that are represented by
over 7800 variables in HumMod. Unfortunately, the normal
ranges of these parameter values of a healthy person are
typically unknown.

(a) Systolic Blood Pressure (b) Heart Rate (c) Kidney Blood Flow

Figure 2: The effects of two interventions on the (a) Systolic Blood Pressure, (b) Heart Rate, and (c) Kidney
Blood Flow.

Figure 2 shows how two different interventions can affect
the high and low level physiological parameters. We con-
sider two interventions, InterVention #1 (IV #1) and In-
terVention #2 (IV #2) in this analysis. We also consider
the case without any intervention (shown as No IV in the
figure). We use HumMod to simulate the effect of these
interventions on the physiological parameters of a human
body. The simulated person takes breakfast from 7 AM to
8 AM in the morning. In case of IV #1, we administer a
drug called Digoxin at 8 AM after eating the meal, which
is used to treat heart failure, and simulate the physiological
parameters for the next 3 hours. In case of IV #2, we ad-
minister a drug called Spironolactone, which is used to treat
patients with hyperaldosteronism, at 8 AM after eating the
meal independently from the previous run and simulate the
physiological parameters for the next 3 hours. In case of
No IV, we just simulate the physiological parameters for 3
hours from 8 AM without performing any intervention.

We show the effect of these interventions on three physio-
logical parameters (systolic blood pressure, heart rate, and
kidney blood flow) in Figure 2 for the next 3 hours from
the 8AM of the simulated time. When we analyze the ef-
fect on the high level parameters (blood pressue and heart
rate) we do not see any conflicts between the two interven-
tions. Because, we see in the figure that IV #1 increases the
blood pressure and decreases the heart rate, while IV #2 has
minor effect on these parameters. Hence, they aren’t con-
sidered conflicting. However, when we observe the effect of
these two interventions on the kidney blood flow, which is
a low level parameter, we see that they have completely op-
posite effect there. IV #1 increases the kidney blood flow,
while IV #2 decreases it. There are other high level param-
eters that we don’t show in this figure due to lack of space.
But it clearly shows that using only high level parameters is
not sufficient to detect conflicting interventions.

3.2.2 Numbers of Parameters
We run an experiment to see the how many physiological
parameters can be affected by an intervention and check
whether it is feasible to ask the app developers to specify all
the physiological parameters that can be affected by their
interventions. We use interventions performed by App #10,
#11, #12, #14, and #18 from Table 1 in this study. Hum-
Mod does not provide any built in technique to determine
whether a variable is affected by an intervention. Hence, we
use a threshold (X) for each parameter to determine that.

Figure 3: Number of variables affected by different
apps’ interventions with different threshold values

More specifically, for each intervention, we run the experi-
ment two times, one with normal behavior (no intervention)
and one with the intervention. We run both experiments
for 3 hours of simulated time on the human body and col-
lect all the variables’ values once per minute. Assume that
at minute t1, for variable v1, we observe v1=n1 for nor-
mal behavior and v1=iv1 for the intervention. Variable v1
is considered affected by the intervention if |n1− iv1|/n1
> X for at least one observation within the 3 hours. We
count the number of variables affected by each intervention
for different values of X ranging from 1% to 250% and show
it in Figure 3. For the interventions that administer drugs
(App #10, #11, #12, #14), we administer the app’s first
preferred dosage as mentioned in Table 1. For app #18, we
assume that the app suggests to do biking for 30 minutes.

We see in Figure 3 that when X is as low as 1%, 1670, 2588,
2137, 1098, and 3010 variables are affected by App #10,
#11, #12, #14, and #18, respectively. When X is 5%, 545,
1412, 1370, 564, and 2571 variables are affected by App #10,
#11, #12, #14, and #18, respectively. When X is 250%,
208, 289, 219, 211, and 727 variables are affected by App
#10, #11, #12, #14, and #18, respectively. This demon-
strates that many physiological parameters are affected by
each intervention even if we use high thresholds to choose
the affected variables. It clearly shows that it is impractical
to ask the app developers to specify all the physiological pa-
rameters that can possibly be affected by the app, and that
we need an automated technique like EyePhy.

3.3 Stakeholders and Their Responsibilities
To better describe EyePhy we list the various stakeholders
and describe how they use the system.

• App developers: They develop apps and describe the
primary and secondary dependencies using the high
level parameters (just five parameters, unless extended)
as app metadata. They can also specify low level pa-
rameters if known. In order to ensure all the app
developers use the same terminology, we suggest us-
ing the parameter names specified in HumMod. They
must also specify all the interventions performed by
this app.

Dependency information involving a physiological pa-
rameter consists of two components: effect and depen-
dency type. Effect of an intervention on a physiological
parameter specifies the impact of the intervention on
the parameter, which can be of three types as described
below.

– increase: The parameter’s value is increased by
this intervention

– decrease: The parameter’s value is decreased by
this intervention

– null : The parameter’s value is no affected by this
intervention

Note that the effect can be both increase and decrease.
The dependency type metadata can be either primary
or secondary. We suggest the app developers to use
the parameter names specified in the HumMod to de-
scribe the effects so that dependency metadata can be
compared across apps. For example, if an app wants to
perform an intervention that increases the heart rate,
which causes a primary dependency, the app specifies
the following dependency information in the app meta-
data.

<param> Heart-Rate.Rate </param>
<effect> increase </effect>
<dependency> primary </dependency>

To specify interventions, app developers are suggested
to use the parameter names specified in HumMod.
For example, an app that wants to administer 10 mg
dosage of a drug called Midodrine specifies the inter-
vention as shown below.

<intervention> MidodrineSingleDose.Dose
</intervention>
<dosage> 10 </dosage>

• Users: They install apps and the installed apps con-
trol their physiological parameters. If they have some
basic knowledge of human physiology, they can choose
parameters of their own interest, e.g., if someone has
heart related problems, he can choose heart related low
level parameters. However, we do realize that most
users are not knowledgeable enough to choose param-
eters by their own.

• Caregivers and doctors: The caregivers and doctors
can specify low level parameters of interest to focus
the simulation. This allows personalized dependency
analysis without requiring the patients to know about
any low level parameters.

• Physiological model developers: They develop the phys-
iological simulator HumMod that can simulate the ef-
fect of various interventions on the human body.

• EyePhy developers: We, the EyePhy developers, in-
tegrate the efforts of all other stakeholders to provide
personalized dependency analysis for the users involv-
ing human-in-the-loop.

Note that Unspecified parameters are the parameters iden-
tified by EyePhy automatically because of the significant
impact on these parameters by the apps’ interventions. The
unspecified parameters are presented to the users, caregivers,
and doctors for additional consideration. If they select any
of these parameters, the selected unspecified parameters are
treated as caregiver specified parameters in the subsequent
analysis.

3.4 EyePhy Dependency Checking
EyePhy considers all the specified parameters in the depen-
dency analysis regardless of developer specified or caregiver
specified. It also updates the list of unspecified parameters
after performing the dependency analysis. EyePhy performs
the following dependency checking at installation and run-
time, respectively.

3.4.1 Installation Time Checking
When a new app is installed, EyePhy performs dependency
analysis across all other installed apps for all the interven-
tions specified in the new app. The new app is considered
conflicting if at least one of the following two conditions is
satisfied over a tunable future time horizon when compar-
ing one of its intervention with another intervention from an
already installed app.

(a) There is an opposite effect on at least one parameter, or

(b) There is a same effect on at least one parameter, where
the joint intervention can exceed the normal range of
the parameter

Two interventions are considered to have an opposite ef-
fect on a parameter when one intervention increases it while
another intervention decreases it and a same effect on a pa-
rameter when they both increase or decrease the parame-
ter value. Condition (a) is checked by analyzing the effect
metadata, i.e., keywords increase/decrease for the developer
specified parameters, and by simulating the intervention us-
ing HumMod for the caregiver specified parameters (both
high level and low level). To determine whether an inter-
vention increases or decreases a parameter using HumMod,
EyePhy monitors the parameter values for the Window du-
ration with and without the intervention. If the parameter
value with the intervention reaches two standard deviations
higher (lower) than the corresponding value without the in-
tervention for at least one observation over the simulated
time window, then EyePhy considers the effect is increase
(decrease). The default value of the Window is 3 hours and
can be changed if needed. Condition (b) is checked for all
the high level parameters (regardless of specified or not) by
simulating the joint intervention using HumMod and check-
ing whether the parameter values stay within the acceptable
range for the Window duration. However, EyePhy can’t
check for condition (b) for the low level parameters as the
normal ranges of these parameters are not known. If it finds
that the new app can conflict with a previously installed app
due to an intervention, it alerts the user with the detailed
information and suggests using caution to install and use
the most recent app. Otherwise, it allows the new app to
get installed without such a notification.

3.4.2 Runtime Checking
At runtime, when an app requests to perform an actuation
on the human body, that intervention request contains the
suggested metadata related to the intervention. EyePhy
checks whether the newly requested intervention can con-
flict with the previously granted interventions by checking
for the conditions specified above in the installation time
checking. However, there are two major differences from
the installation time checking. First, EyePhy takes into ac-
count the time difference between the interventions at the
runtime dependency analysis. To do that it uses the times-
tamps of interventions that are given input to EyePhy by
the apps when they perform a direct actuation on the body
or by the users when they listen to a suggestion, e.g., tak-
ing a drug or doing exercises. Second, at runtime, Eye-
Phy maintains and updates the HumMod simulator based
physiological model of the user by taking into account all
the previously granted interventions and the current state
of the patient based on sensor values. The apps that con-
tinuously monitor physiological parameters are allowed to
provide input to EyePhy that is used to correct the phys-
iological model. To determine whether the new interven-
tion can conflict with the previously granted interventions,
EyePhy checks whether the new intervention can cause any
opposite effect with the most updated model (containing all
the previous interventions) within the Window duration in
at least one specified parameter using HumMod. It also
checks whether the new intervention can cause any same
effect with the most updated model and allowing the new
intervention can exceed the normal range of at least one high
level parameter, where the new intervention is started at the
moment of request in the simulation.

An app’s runtime intervention request contains a list of pro-
posed interventions. EyePhy checks for conflicts for each
intervention as mentioned above. It grants the first non-
conflicting intervention in the list. If all the interventions in
the list are conflicting, EyePhy doesn’t grant the access of
any intervention in the list. It notifies the user that the in-
tervention request is denied and provides a brief explanation
of why it is denied containing the parameter names where
potential conflicts could occur. It also keeps a log of all the
denied interventions to present to the caregivers and doctors.
For each granted intervention, EyePhy updates a list of K
unspecified parameters that are most significantly affected
(highest % change from the without intervention value) by
the intervention, which is later shown to the caregivers or
doctors for additional consideration. Their chosen parame-
ters are treated as caregiver specified parameters and used
in subsequent dependency analysis.

4. EVALUATION
In this section, we demonstrate the conflict detection and
resolution capability of EyePhy involving the human-in-the-
loop apps. We describe a list of human-in-the-loop apps
for the evaluation, low level parameters of interest, experi-
mental setup, and installation time and runtime dependency
detection capability of EyePhy.

4.1 App Selection
In order to evaluate EyePhy, we need a list of human-in-
the-loop apps. Although there are many healthcare related
apps in Apple App Store and Google Play, the apps usually

provide health related tips and do not perform any direct
actuation on the human body due to strict FDA regulation.
Hence, we design the 20 human-in-the-loop apps for the eval-
uation as shown in Table 1. These apps are representative of
the research work in the wireless sensor networks area and
the available healthcare apps in smart phones. When design-
ing these apps, we consider many types of human-in-the-loop
apps including the ones that just monitor health conditions
with no interventions, apps that perform direct actuations
on the human body, apps that provide health related sugges-
tions, and apps that perform actuation on the environment
that affects the human body. Among thousands of medical
conditions, we only choose a few of the medical conditions
(between App #9 and App #14), because HumMod can
directly simulate their effects on the human body. Drug de-
scriptions and dosages are obtained from [6]. We only use
the 12 apps (from App#9 to App#20) from Table 1 in the
subsequent evaluation since the interventions performed by
these apps can be simulated by HumMod. Also, the medical
conditions treated by these apps, e.g., blood pressure, heart
rate, fluid control, glaucoma control, and insulin injection
are very common as many elderly suffer from such simulta-
neous chronic conditions. We also determine the number of
high level and low level parameters affected by these 12 apps
by emulating their behaviors using HumMod for 3 hours and
checking whether an intervention increases or decreases pa-
rameter values beyond two standard deviation of their nor-
mal values and show it in Table 1. Other apps in Table
1 provides an overview about what else is proposed in the
literature and available in the app markets. As HumMod
supports more and more interventions, EyePhy will be able
to perform dependency analysis across more apps.

4.2 Low Level Parameters of Interest
Based on the medical condition, specific low level physio-
logical parameters need to be monitored for a user. In the
evaluation, we consider three case studies focusing on three
different parts of the human body.

1. 5 low level parameters related to the kidney: Kidney-
ArcuateArtery.BloodFlow, Kidney-CO2.PCO2, Kidne
y-EfferentArtery.VasaRectaOutflow, Kidney-Lactate.
Flow, and Kidney-Fuel.TotalGlucoseUsed(Cals/Min).

2. 5 low level parameters related to the heart: LeftHea
rt-BetaReceptors.Activity, LeftHeart-Flow.BloodFlo
w, LeftHeart-Flow.O2Use, LeftHeart-Flow.PO2Effec
t, and Heart-Ventricles.Rate.

3. 5 low level parameters related to the liver: Liver-O2
.BloodFlow, Liver-Fuel.GlucoseDelivered(Cals/Min),
ADHClearance.Liver, GlycerolPool.LiverFARelease,
and Liver-O2.InflowPO2.

4.3 Experimental Setup
EyePhy offers personalized dependency analysis and hence it
is expected that the user will provide some basic information
including his gender, age, weight, and height to personalize
the HumMod physiological simulator. For the evaluation, we
assume that the user is a 37 years male having 171 pounds
of weight and 178 cm height, which is the default configu-
ration of HumMod. We determine the normal ranges of the
high level parameters for an average healthy person of this
age from [7]. For example, for this age, the normal blood
pressure is between 90/60 mm/Hg and 120/80 mm/Hg, res-
piratory rate is between 12 and 18 breaths per minute, heart

ID#App Name Description Parameters Affected
High Level Low Level

1 Lullaby This app uses sensors to keep track of sleep quality of the user. It uses sound, light, temperature,
and motion sensors to record the environmental condition during sleep. All these information is
presented to the user in a tablet that helps him to identify the potential causes of sleep disruption.

N/A N/A

2 Fall Detector This app detects falls of the user using accelerometers and gyroscopes mounted on the body of the
user. The app notifies the caregivers when a fall is detected.

N/A N/A

3 Empath This app monitors the activity levels, sleep quality, speech prosody, and weight of the user to
detect depression. When a depression episode is detected, it turns on the lights and increases room
temperature by 1 degree F of the occupied rooms.

N/A N/A

4 Kintense This app detects aggressive behavior of the user, e.g., hitting, kicking, pushing, and throwing using
a Kinect sensor. When such a behavior is detected, it warns the medical stuff.

N/A N/A

5 Musical Heart This app monitors the heart rate and activity level of the user, and recommends music to help the
user maintaining his target heart rate.

N/A N/A

6 Food Nutrition This app suggests eating nutritious foods. It also educates the user by providing nutrition facts of
over hundreds of foods containing all the vitamins and minerals information.

N/A N/A

7 Calorie Watcher This app allows the user to set a daily calorie budget and suggests food recipe to maintain the
budget. It also keeps a journal of all the food intakes.

N/A N/A

8 Pollen Alert This app suggests to stay home during the period when the pollen level is high outside. N/A N/A
9 Blood Pressure

Control
This app treats high blood pressure and fluid retention caused by various conditions, including
heart disease. It administers a drug called Chlorothiazide, which causes the kidneys to get rid of
unneeded water and salt from the body into the urine. The app administers this drug once a day
(1000 mg dosage) in the morning or two times a day (500 mg dosage) in the morning and in the
late afternoon with meals.

0 420

10 Heart Rate Con-
trol

This app helps control the heart rate. It administers a drug called Digoxin, which is used to
treat heart failure and abnormal heart rhythms. The app administers this drug once a day (0.5
mg dosage) in the morning or two times a day (0.25 mg dosage) in the morning and in the late
afternoon.

4 2901

11 Fluid Control The app is used to reduce the swelling and fluid retention caused by various conditions, including
heart or liver disease. It administers a drug called Furosemide, which causes the kidneys to get rid
of unneeded water and salt from the body into the urine. The app administers this drug once a
day (80 mg dosage) in the morning or two times a day (40 mg dosage) in the morning and in the
afternoon.

3 2085

12 Low Blood Pres-
sure Control

This app treats low blood pressure condition. It administers a drug called Midodrine, which
stimulates nerve endings in blood vessels, which tightens the blood vessels. As a result, blood
pressure is increased. It is also used to treat dizziness that occurs upon sitting up or standing.
The dosage is 10 mg, 3 times a day with at least 4 hours interval in between.

3 1532

13 Glaucoma Con-
trol

This app treats glaucoma, a condition in which increased pressure in the eye can lead to gradual
loss of vision. The app administers Acetazolamide, which decreases the pressure in the eye. Aceta-
zolamide is also used to reduce the severity and duration of symptoms (upset stomach, headache,
shortness of breath, dizziness, drowsiness, and fatigue) of altitude (mountain) sickness. Acetazo-
lamide is used with other medicines to reduce edema (excess fluid retention) and to help control
seizures in certain types of epilepsy. Dosage is 500 mg twice a day, one in the morning and one in
the afternoon.

0 44

14 Blood Pressure
Control II

This app treats patients with hyperaldosteronism (a condition when the body produces too much
aldosterone, which is a naturally occurring hormone); low potassium levels; heart failure; and pa-
tients with edema (fluid retention) caused by various conditions, including liver, or kidney disease.
The app administers Spironolactone, which is used alone or with other medications to treat high
blood pressure. Spironolactone causes the kidneys to eliminate unneeded water and sodium from
the body into the urine, but reduces the loss of potassium from the body. The app administers
this drug once a day (200 mg dosage) in the morning or two times a day (100 mg dosage) in the
morning and in the afternoon.

5 2877

15 Insulin Injection This app administers insulin based on the weight of the person and glucose in the blood level.
Assuming the weight of the person is 171 lbs, it computes that the person needs 42 units of insulin
everyday. It is delivered as a mixture of short acting and long acting insulins in 2 injections
assuming the person has type-1 diabetes. Two thirds of the daily dosage is given before the
breakfast and one third is given before the evening meal.

3 1461

16 Activity Based
HVAC Control

This app changes the room temperature based on the activities of daily living, e.g., while someone
is eating, the app reduces room temperature by 1 degree F. Changing the ambient temperature
may change the body temperature.

0 82

17 Humidity Con-
trol

This app turns on the humidifier to increase the humidity if the humidity goes below a threshold. 0 67

18 Physical Fitness This app suggests to go out for exercise in the afternoon. The suggestion could be to do biking or
to go to a gym to exercise on a treadmill.

3 1713

19 Water Intake
Monitor

This app monitors water intake in the body and suggests drinking more water if water intake is
lower than a threshold.

0 159

20 Nutrition Intake
Monitor

This app monitors nutrition intake in the body and suggests increasing nutrition intakes if needed. 0 516

Table 1: A List of Human-in-the-Loop Apps

rate is between 60 and 100 beats per minute, and tempera-
ture is between 97.8 and 99.1 degrees Fahrenheit.

4.4 Static Analysis
At the time of app installation, EyePhy performs installa-
tion time check to detect potential conflicts with the previ-
ously installed apps by analyzing the dependency informa-
tion specified in the app metadata and running a simulation
for 3 hours into the future. Figure 4 shows the probability
of conflict between at least j apps when i apps are installed
from the 12 apps (App #9 to App #20) in Table 1 using the

high level parameters only. Figure 5 shows the case when
we consider the low level parameters in addition to the high
level parameters. For each value x in the X axis, we ran-
domly select x apps 100 times and compute the probability
of conflict between at least y apps, where 1 ≤ y ≤ 5 and y
≤ x, and show the average results in these figures. Figure 4
shows that when someone installs 2 apps, there is just 7%
probability of conflict between them if we just use high level
parameters for conflict detection. However, Figure 5 shows
that this probability becomes 34%, 10%, and 20% if we use
low level parameters related to the kidney, heart, and liver,

Figure 4: Installation time conflict detection on high
level parameters

Figure 6: Runtime conflict detection on high level
parameters

respectively in addition to the high level parameters. Hence,
using low level parameters enables us to detect more poten-
tial conflicts in a personalized manner. We also see that
installing more apps increases the probability of conflict. As
we see in Figure 4, there is a 62% probability of conflict
between at least 2 apps when someone installs 5 apps if we
just use high level parameters. This probability becomes
98%, 75%, and 88% if we also use low level parameters re-
lated to the kidney, heart, and liver, respectively as shown
in Figure 5. When someone installs 10 apps, the probability
of conflict between at least two apps is 99% when we only
consider the high level parameters. If we also consider any
of the three low level parameters, the probability becomes
100% for each of the three cases. These results show the
severity of conflicts involving high level and low level physi-
ological parameters among the human-in-the-loop apps and
demonstrate the need for a runtime system for detecting
these conflicts.

4.5 Runtime Analysis
In order to evaluate the runtime performance of EyePhy, we
need to install some human-in-the-loop apps and let them
perform interventions on one or more human subjects with
and without EyePhy. However, doing simultaneous inter-
ventions from Table 1 on a human body may not be safe for
the subject. Hence, instead of using real human subjects,
we use HumMod to simulate the effect of interventions on
the human body for the runtime analysis.

We assume that the user installs App #9 to App #20 in
Table 1 in this evaluation. It may be questioned whether
someone will install so many health related apps. We argue
that more than 100,000 mobile medical apps are currently
available [5], and in the Android app store itself, there are
over 80 diabetes apps offering many functionalities includ-
ing self monitoring of blood glucose recording, medication
or insulin logs, and insulin dose calculator [15]. Although
we do not have a statistic on the number of medical apps
that people install in their smart phones, we see that average
Android and iPhone users have 32 and 44 apps downloaded
in their smart phones, respectively, based on a recent study
[3]. Hence, it is not unreasonable to assume that some peo-
ple will install a number of human-in-the-loop apps, often
without a doctor’s knowledge. We also expect this number
to increase in the future.

The way these apps (App #9 to App #20) perform inter-
ventions is described in Table 1. We run the experiment for
a whole simulated day for an adult person using HumMod.
The interventions depend on the lifestyle of the person. By
default, in HumMod, the person sleeps from 10 PM to 6 AM
and eats breakfast, lunch, and dinner between 7AM and 8
AM, 12 PM and 1 PM, and 6 PM and 7 PM, respectively.
The apps that administer drugs take into account the meal
times. App #16 (Activity based HVAC control) also takes
into account the times of eating the meals. As we use this
setting, the apps perform interventions based on the time of
the day by considering the lifestyle of the person. We com-
pute the number of intervention requests, the number of
conflicts detected, and the number of allowed interventions
by EyePhy in every hour during the day. We show the re-
sults in Figure 6 when considering the high level parameters
and in Figure 7 when considering the low level parameters
related to the kidney, heart, and liver in addition to the
high level parameters. For brevity, we call these four cases
as high-level, kidney, heart, and liver cases, respectively in
the following description. The interventions take place in
the following order in the four cases.

• At 6 AM, App #17 requests to perform an intervention
to increase the room humidity, which is granted.

• At 7 AM, before the breakfast, App #15 requests to
inject insulin. Also, at 7 AM App #16 requests to
reduce room temperature by 1 degree F for the dura-
tion while the resident is having the breakfast. Both
requests are granted in all the cases except the kid-
ney case where we observe a conflict at the parameter
Kidney-CO2.PCO2.

• At 8 AM, App #9, #10, #13, and #14 request to ad-
minister drugs. App #9, #10, and #14’s intervention
request contains a list of two dosages, one with a daily
dosage and the other one with a half daily dosage. If
the daily dosage amount is granted, the app does not
perform any other intervention for the rest of the day.
However, if the half dosage is granted, it performs an-
other intervention in the afternoon (6 PM for App#9
and #10, and 7 PM for App #14) with the half daily
dosage. If none of the dosages are granted at 8 AM,
the apps retry the interventions at 9 AM, which may
lead to administering a full daily dosage at 9 AM or
two half daily dosages at 9 AM and 6PM/7PM. App
#13 has just one dosage in the request that it tries to

(a) Kidney (b) Heart (c) Liver

Figure 5: Installation time conflict detection on low level parameters related to the (a) Kidney, (b) Heart,
and (c) Liver in addition to the high level parameters.

(a) Kidney (b) Heart (c) Liver

Figure 7: Runtime conflict detection on low level parameters related to the (a) Kidney, (b) Heart, and (c)
Liver in addition to the high level parameters.

administer at 8 AM and at 7 PM. App #13 and #14’s
requests are granted in all the cases. App #9, #10’s
requests are granted in the high level case and the liver
case. In case of the heart, App #9’s request is granted,
but App #10’s request is denied because of a conflict at
a heart related parameter LeftHeart-Flow.PO2Effect.
In the case of kidney, App #9 and #10 both experience
conflict for the daily dosage. However, both requests
are resolved by using their half daily dosages that do
not cause any conflict. The half daily dosage requests
are granted.

• At 9 AM, App #11 requests for interventions, where
the intervention list contains a daily dosage and a half
daily dosage. If none of the dosages are allowed, App
#11 retries at 10 AM. App #11’s request is granted
in all the cases except the case with the heart where we
observe a conflict at the parameter LeftHeart-Flow.PO-
2Effect. In case of the heart, App #10 retries at 9 AM
as its request at 8 AM is denied, which is denied again
due to a conflict at a heart related parameter.

• At 10 AM, App #12 requests to perform an interven-
tion, which is denied in all the cases due to a conflict
with a high level parameter. In the case of the heart,
App #11 retries at 10 AM, which is denied again due
to conflict at a heart related parameter.

• At 11 AM, App #19 and #20 request to perform in-
terventions. App #20’s request is granted in all the
cases. App #19’s request is denied in all the cases
except the case with the heart, where it is granted.

We skip the description of the other interventions due to
the lack of space. But the results clearly show that Eye-
Phy’s conflict detection and resolution can be personalized

Parameter Types Total
Re-
quested
IVs

Total
Conflicts
Detected

Total
Allowed
IVs

High Level Parameters 17 7 10
High level and low level
parameters related to
the kidney

19 11 10

High level and low level
parameters related to
the heart

19 8 11

High level and low level
parameters related to
the liver

17 7 10

Table 2: Summary of the interventions of 24 hours

by focusing the analysis to specific low level parameters.

A summary of the total number of requested interventions,
the total number of conflicts detected, and the total allowed
interventions of the day are shown in Table 2. It shows
that when considering the high level parameters, a total of
17 interventions are requested by the apps in a day, out of
which 7 result in conflicts and the other 10 interventions are
allowed. It also shows the results when specific low level
parameters are considered in addition to the high level pa-
rameters. When low level parameters related to the kidney
are monitored in addition to the high level parameters, 19
intervention requests are generated by the apps in a day.
Among these requests, 11 requests are detected as conflicts
and 2 of the 11 requests are resolved as described above. In
addition to these 2 resolved conflicts, 8 other interventions
are allowed. It shows EyePhy’s significant ability of detect-
ing conflicts among interventions of apps at runtime as none

of the conflicts could be detected without EyePhy. Note that
detecting a single conflict involving human-in-the-loop can
be crucial for making a life saving decision in some contexts.

5. DISCUSSION
Since EyePhy uses HumMod to simulate the interventions,
the simulation may incur non-negligible energy consumption
if EyePhy runs on a smart phone. Therefore, we run EyePhy
in a desktop as HumMod is not ported to any smartphone
platform yet. On the desktop, it takes about 2 seconds of
real time to perform 10 minutes of simulation. However, as
part of a future development plan, we envision a mobile-
cloud platform for EyePhy which will be more realistic and
user-friendly for end users. In total, the runtime depen-
dency analysis does not incur tremendous computational ef-
fort since we only need to do the simulation when an app
requests an intervention, which happens only about 20 times
in a day in our evaluation.

We did not perform any direct comparison with DepSys in
the evaluation section. However, as described in Section 1,
DepSys’s employed strategy works well when the number of
parameters affected by each intervention is limited. EyePhy
reduces app developers efforts significantly in specifying de-
pendency metadata. As an example, for each of the last 12
apps in Table 1, EyePhy requires specifying only five param-
eters and intervention description, whereas app developers
would have to specify hundreds or even thousands of pa-
rameters if DepSys’s employed strategy were used. We see
a similar trend for the six apps in Figure 3, where differ-
ent thresholds are used to determine whether a variable is
affected by an intervention. Also, personalized dependency
analysis is not addressed in DepSys.

6. CONCLUSION
Independently developed human-in-the-loop CPS apps pose
new challenges for controlling human physiological param-
eters. This is primarily due to complex dependency issues
of the apps’ interventions. As far as we know, EyePhy is
the first system to directly address these issues. EyePhy
uses a novel approach by employing a medically accepted
physiological simulator that can model the complex inter-
actions of the human physiology using over 7800 variables.
Our solution takes into account a wide range of physiologi-
cal parameters at the time of dependency analysis as well as
performs personalized dependency analysis over a time hori-
zon. The end result permits a significant number of conflicts
among the interventions to be detected. This is a major step
towards the complete analysis of human-in-the-loop apps.

Acknowledgement
This work was supported, in part, by NSF grant CNS-1239483
and by Microsoft SEIF.

7. REFERENCES
[1] http://lifescientist.com.au/content/biotechnology/article/the-

rise-of-smartphone-health-and-medical-apps-1072193834.

[2] http://reference.medscape.com/drug-interactionchecker.

[3] http://velositor.com/2012/02/27/the-average-iphone-user-has-
44-apps-on-their-device-versus-only-32-apps-for-android-
smartphone-users/.

[4] http://www.drugs.com/drug interactions.php.

[5] http://www.informationweek.com/regulations/lawmakers-try-
to-sharpen-fda-focus-on-healthcare-apps/d/d-id/1112095?

[6] http://www.nlm.nih.gov/medlineplus/druginformation.html.

[7] http://www.nlm.nih.gov/medlineplus/ency/article/002341.htm.

[8] Tackling the burden of chronic diseases in the usa. The Lancet,
373(9659):185, Jan. 2009.

[9] S. R. Abram, B. L. Hodnett, R. L. Summers, T. G. Coleman,
and R. L. Hester. Quantitative circulatory physiology: an
integrative mathematical model of human physiology for
medical education. Advances in Physiology Education,
31(2):202–210, 2007.

[10] M. Y. Ahmed, S. Kenkeremath, and J. Stankovic. Socialsense:
A collaborative mobile platform for speaker and mood
identification. In EWSN, 2015.

[11] D. Arney, M. Pajic, J. M. Goldman, I. Lee, R. Mangharam, and
O. Sokolsky. Toward patient safety in closed-loop medical
device systems. In ICCPS, 2010.

[12] D. A. Beard. Modeling of oxygen transport and cellular
energetics explains observations on in vivo cardiac energy
metabolism. PLoS Comput Biol, 2(9):107, 2006.

[13] T. G. Coleman and J. E. Randall. Human—a comprehensive
physiological model. Technical report, The Physiologist, 1983.

[14] A. Das, Z. Gao, P. P. Menon, J. G. Hardman, and D. G. Bates.
A systems engineering approach to validation of a pulmonary
physiology simulator for clinical applications. Journal of The
Royal Society Interface, 8(54):44–55, 2011.

[15] A. P. Demidowich, K. Lu, R. Tamler, and Z. Bloomgarden. An
evaluation of diabetes self-management applications for android
smartphones. volume 18, 2012.

[16] C. Dixon, R. Mahajan, S. Agarwal, A. Brush, B. Lee, S. Saroiu,
and P. Bahl. An operating system for the home. In NSDI, 2012.

[17] A. C. Guyton, T. G. Coleman, and H. J. Granger. Circulation:
Overall regulation. Annual Review of Physiology, 34(1):13–44,
1972.

[18] J. G. Hardman, N. M. Bedforth, A. B. Ahmed, R. P. Mahajan,
and A. R. Aitkenhead. A physiology simulator: validation of its
respiratory components and its ability to predict the patient’s
response to changes in mechanical ventilation. British Journal
of Anaesthesia, 81(3):327–32, 1998.

[19] R. Hester, A. Brown, L. Husband, R. Iliescu, W. A. Pruett,
R. L. Summers, and T. Coleman. Hummod: A modeling
environment for the simulation of integrative human
physiology. Frontiers in Physiology, 2(12), 2011.

[20] D.-J. Kim and A. Behal. Human-in-the-loop control of an
assistive robotic arm in unstructured environments for spinal
cord injured users. In HRI, 2009.

[21] X. Liu, H. Ding, K. Lee, L. Sha, and M. Caccamo. Feedback
fault tolerance of real-time embedded systems: issues and
possible solutions. SIGBED Rev., April 2006.

[22] J. Lu, T. Sookoor, V. Srinivasan, G. Gao, B. Holben,
J. Stankovic, E. Field, and K. Whitehouse. The smart
thermostat: using occupancy sensors to save energy in homes.
In SenSys, 2010.

[23] S. Munir and J. A. Stankovic. Depsys: Dependency aware
integration of cyber-physical systems for smart homes. In
ICCPS, 2014.

[24] S. Munir, J. A. Stankovic, C.-J. M. Liang, and S. Lin. Cyber
physical system challenges for human-in-the-loop control. In
Feedback Computing, 2013.

[25] S. Munir, J. A. Stankovic, C.-J. M. Liang, and S. Lin. Reducing
energy waste for computers by human-in-the-loop control.
IEEE Transactions on Emerging Topics in Computing, to
appear.

[26] R. L. Summers, K. R. Ward, T. Witten, V. A. Convertino,
K. L. Ryan, T. G. Coleman, and R. L. Hester. Validation of a
computational platform for the analysis of the physiologic
mechanisms of a human experimental model of hemorrhage.
Resuscitation, 80(12), 2009.

[27] P. A. Vicaire, Z. Xie, E. Hoque, and J. A. Stankovic.
Physicalnet: A generic framework for managing and
programming across pervasive computing networks. In RTAS,
2010.

[28] T. Yan, V. Kumar, and D. Ganesan. Crowdsearch: Exploiting
crowds for accurate real-time image search on mobile phones.
In MobiSys, 2010.

