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Abstract

In this paper, we analyze the performance of group based
detection in sparse sensor networks, when the system level
detection decision is made based on the detection reports
generated from multiple sensing periods. Sparse deploy-
ment is essential for reducing cost of large scale sensor net-
works, which cover thousands of square miles. In a sparse
deployment, the sensor field is only partially covered by
sensors’ sensing ranges, resulting in void sensing areas in
the region, but all nodes are connected through multi-hop
networking. Further, due to the unavoidable false alarms
generated by a single sensor in a network, many deployed
systems use group based detection to reduce system level
false alarms. Despite the popularity of group based detec-
tion, few analysis works in the literature deal with group
based detection. In this paper, we propose a novel ap-
proach called Markov chain based Spatial approach (M-
S-approach) to model group based detection in sensor net-
works. The M-S-approach successfully overcomes the com-
plicated conditional detection probability of a target in each
sensing period, and reduces the execution time of the anal-
ysis from many days to 1 minute. The analytical model
is validated through extensive simulations. This analytical
work is important because it provides an easy way to un-
derstand the performance of a system that uses group based
detection without running countless simulations or deploy-
ing real systems.

1 Introduction

Wireless sensor network researchers have been using
dense sensor networks to track moving targets, like battle-
field monitoring [1] [2]. When an enemy tank is simulta-
neously detected by multiple local sensors within a sensing
period, a local leader sensor reports that an intruding target
is recognized, and sends this intrusion information back to
a base station through multiple hops. This design princi-

ple works well when the deployed sensor network has high
node density so that enough sensing redundancy is available
to cover the moving target at any location and at any time.

In this paper, we consider sparse sensor networks, where
sensing coverage is very limited but communication cov-
erage is available through multi-hop networking. A sparse
sensor network is possible when sensor nodes’ communi-
cation ranges are greater than twice their sensing ranges,
which is not a problem with existing mainstream sensor de-
vices [3] [4]. Sparse sensor networks are especially useful
for emerging applications like border control and undersea
surveillance. For example, thousands of cameras can be de-
ployed at the border to detect illegal border crossers. For
this application, it is too expensive to deploy a dense sen-
sor network that covers every square inch of the border with
multiple camera sensors, since cameras may only be able to
see a short distance due to obstacles, nighttime, etc. An al-
ternative and feasible solution is to deploy a sparse sensor
network with much fewer cameras, which partially covers
the border with void sensing areas allowed. Since the cam-
eras can be equipped with tall antennae, the communication
can go pretty far and all cameras in the network can still
report detection information back to base stations through
multiple hops. Also, considering the high cost of an under-
sea sensor [5] that is in the order of thousands of dollars, a
sparse deployment achieves the tradeoff between the size of
the surveillance area and the detection performance when
only limited resources are available.

In real deployments, an individual sensor is inclined to
generate false positive alarms due to limited sensing capa-
bilities and environmental noise. In this paper, we use false
alarms to denote node level false positive alarms. Because
of false alarms, instantaneous detection that is based on a
single detection report is problematic and group based de-
tection becomes a better choice. In group based detection,
the system level detection decision is made based on the
detection reports generated by various sensors within mul-
tiple sensing periods. Only the detection reports generated
in a sequence, which can be mapped to a possible target



track, are recognized as true target detections. In this case,
most false alarms are filtered out, since false alarms are not
likely to be generated in a sequence that can be mapped
to a target track. Group based detection is widely used in
real applications [1] [2] [6] due to its effectiveness in reduc-
ing system level false alarms. Thus, performance analysis
based on group based detection is extremely important for
understanding the performance of a real sensor network ap-
plication.

This is the first paper to present an accurate theoretical
model for analyzing the performance of group based de-
tection in sparse sensor networks, where the system level
detection decision is made based on the detection reports
generated from multiple sensing periods. In this paper, we
first reveal the significant complexities involved in the con-
ditional detection probability of a target in each sensing pe-
riod. Then we propose the Spatial approach (S-approach)
to overcome the complicated conditional detection proba-
bility of the target in each sensing period. However, the
S-approach incurs high computation overhead, which re-
stricts its wide usage. To address the computation overhead
problem in the S-approach, a novel approach called Markov
chain [7] based Spatial approach (M-S-approach) is pro-
posed. The model is validated and shown to be extremely
accurate through extensive simulations. Our model quan-
tifies the relationship between surveillance attributes and
system parameters, which provides an easy way to under-
stand the impact of various system parameters on surveil-
lance performance.

The rest of this paper is organized as follows: we de-
scribe the terminology and assumptions used in this paper
in Section 2. Then we present the analytical model of group
based detection in Section 3. We validate the model in Sec-
tion 4 and review related work in Section 5. Finally, we
conclude our work and discuss future work in Section 6.

2 Terminology and Assumptions

We assume that sensor deployment conforms to a uni-
form random distribution, primarily for ease of analysis. We
also believe that this is a reasonable assumption especially
for sparse sensor networks. For example, in undersea sen-
sor networks, both the randomness brought by deployment
and sensor drift due to ocean flows [8] are common.

We assume that the sensing algorithm in each node is ex-
ecuted periodically and that at the end of each period the lo-
cal sensing algorithm decides whether the target is detected
or not in that period. We use sensing period to denote the
period during which the sensing algorithm is executed. Pa-
rameter ¢ is used to denote the length of a sensing period,
which mainly depends on how long a specific sensing algo-
rithm needs to sample the environment before a detection
decision is made. We assume that in a sensing period, if
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Figure 1. The Detectable Region (DR) of a tar-
get in one sensing period.

a target is within a sensor’s sensing range, the probability
of the target being detected by the sensor in that period is
P;'. We use R, to denote the sensor’s sensing range and
we assume that the sensing ranges of all the sensors are the
same. During each sensing period, if a target is detected by
a sensor, a detection report is generated by that sensor. For
simplicity of presentation, we assume that the communica-
tion range is larger than twice the sensing range to support
sparse deployment, that is, sensing coverage is not available
but communication coverage is available through multi-hop
networking.

We use the Detectable Region (DR) of a target in a sens-
ing period to denote the area, in which, if there is a sensor,
it has probability P, to detect the target in that period. So if
the target is static, the DR of the target in a sensing period
is a circular area, whose center is the target’s location and
radius is R,. The size of the DR of a static target is 7R2.
In this paper, we assume that the target travels in a straight
line with a constant speed V' and the size of the target can
be neglected 2. We also do not consider the situation when
multiple targets cross paths, since we are currently consid-
ering very large areas and very rare events, like undersea
submarine detection, in which one target at a time is very
reasonable. If more than one target exist but are far from
each other, our analysis still holds per target. In the future,
we plan to deal with multiple targets that might be near each
other and/or crossing. As shown in Figure 1, a target moves
from location 1 to location 2 during a sensing period, so the
size of the DR of the moving target in this sensing period is

In this paper, we assume that group based detection is
used to reduce the system level false alarms. Without loss of
generality, we abstract the group based detection algorithm
as follows: the system level detection decision is made
when the sensor network generates a sequence of at least
k detection reports within M sensing periods that can be
mapped to a possible target track; otherwise, detection re-

'We assume that P is independent of the length the target overlaps
with the sensing range in a sensing period primarily for ease of analysis.
This assumption will be revisited and revised in future work.

2In section 4, our performance evaluation shows that even when the
target changes its moving directions frequently, our group based detection
model still gives very good performance



ports are perceived as false alarms. The value of & is chosen
based on the system’s false alarm rate. If the false alarm rate
is high, a large k is configured, so that a possible sequence
of false alarms does not result in a system level false alarm.
We assume that k is given based on empirically obtained
false alarm patterns.

We analyze the detection probability of a target, given
that the group based detection algorithm is known and the
M and k values are specified. During the analysis, we do
not consider false alarms. If we have false alarms mixed
with real target detections, it only increases the probability
of the real target being detected, since it results in more de-
tection reports to be generated along the target track. There-
fore, when our analysis result is applied to a real system
that has false alarms, we may expect a little higher detec-
tion probability from the real system due to the impact of
false alarms.

3 Analytical Model

In this section, we present the theoretical model for an-
alyzing the performance of group based detection in wire-
less sensor networks. We first analyze the preliminary case
in section 3.1 when the system level detection decision is
made based on the detection reports from a single sensing
period, i.e., M = 1. Then in Section 3.2, we reveal the
difficulties involved in computing the conditional detection
probability of a target in each sensing period when M > 1.
After that, we present the Spatial approach (S-approach) to
resolve that problem. However, the S-approach is restricted
due to its high computation overhead. So we finally propose
the Markov chain based Spatial approach (M-S-approach)
that uses a Markov chain to overcome the high computation
complexity in the S-approach.

3.1 Preliminaries

In this section, we consider the preliminary case when
M = 1. When M = 1, the performance analysis of group
based detection becomes straightforward and is addressed
in [9].

We use p;,q; to denote the probability of the target being
detected by an individual sensor sampled from the sensor
field in a sensing period. So, p;nq; 1S the probability of an
individual sensor sampled from the sensor field being in the
DR of the target in that sensing period multiplied by P;. We
use S to denote the size of the sensor field. For a uniform
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random distribution, p;,q4; = Py=—————=.

Suppose we have N sensors deployed in the sensor field.
Since the nodes are uniformly and randomly distributed,
the number of reports generated from the DR of the tar-
get in a sensing period conforms to a binomial distribution
B(N, pinai)- Accordingly, P[X = k], the probability of

having exactly k detection reports in one sensing period
when there is a target in the network, is computed as fol-
lows:

PX =k = ( N ) Phai (1 = pinai)¥ M

So, Pi[X > k], the probability of having at least k de-
tections in one sensing period when there is a target in the
sensor field, is computed as follows:

k—1
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Although [9] provides a neat solution to analyze the
performance of a group based detection algorithm when
M = 1, its usage is limited, especially when the deploy-
ment is sparse. In sparse deployments, M should be much
greater than 1, since in sparse deployments, the probability
of having more than one reports in one sensing period is
very low even in the existence of a real target. In this case,
if M = 1, k should also be set to 1, because if k is greater
than 1, the probability of the target being detected will be
very low. When both M and k are set to 1, group based de-
tection becomes instantaneous detection, which is unable to
filter any false alarms. This is true even if the deployment is
not sparse. In real applications [1] [2], to effectively elim-
inate the system level false alarms, the system level detec-
tion decision should be made based on the detection reports
from multiple sensing periods, rather than a single sensing
period. This motivates the need to analyze the performance
of group based detection when M > 1, which is almost to-
tally different from the case when M = 1 and is much more
challenging.

3.2 Detection Dependencies

The main difficulty of analyzing the performance of
group based detection when M > 1 is that target detections
in a sensing period are dependent on the target detections in
the previous periods. We use a simple example to illustrate
the detection dependencies in different sensing periods. In
this example, M = 2.

Figure 2 shows the DRs of a target in sensing periods 1
and 2. The sensing period number is set to 1 when the target
first appears in the sensor field. In this example, we assume
that the target moves through location 1, 2, and 3, which
lie on a straight line. To better show the DR of the target
in each period, we move the DRs of period 2 vertically to
avoid visual overlapping of these DRs. So location 2 shown
in the DRs of period 1 and period 2 are actually the same
location. The Newly Explored Detectable Region (NEDR)
in a sensing period is defined as the area that belongs to
the DR of that period but does not belong to the DRs of
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Figure 2. DRs of a target in sensing periods 1
and 2.

the previous periods. Because period 1 denotes the period
when the target first appears in the sensor field, the NEDR
of period 1 equals the DR of period 1. In other periods,
the NEDR is only part of the DR in that period as shown
in the figure, which is like a crescent. The overlapped DR
of periods %, ¢ 4+ 1, ..., and 7, in which ¢ and j are positive
integers and ¢ < j, is defined as the area that belongs to the
DRs of periods ¢, ¢ + 1, ..., and j.

Let us first consider the detection probability of the tar-
get in period 2. In Figure 2, we can see that the number of
reports generated in period 2 not only depends on the num-
ber of sensors in the NEDR of period 2, but also depends
on the number of sensors in the overlapped DR of periods
1 and 2. Although the probability of having different num-
ber of sensors in the NEDR of period 2 is independent of
the target detections in period 1, the probability of having
different number of sensors in the overlapped DR of peri-
ods 1 and 2 is decided by the target detections in period 1.
If the target meets a sensor in the overlapped DR of peri-
ods 1 and 2 in period 1, the probability of having a sen-
sor in the overlapped DR of periods 1 and 2 in period 2 is
100%. The conditional detection probabilities involved in
these two periods affect the probability distribution of hav-
ing different numbers of detection reports generated within
these two periods.

The conditional detection probabilities are much more
complicated than the simple example shown in the previous
paragraph, due to the following two aspects. First, let m
denote the number of sensing periods a target takes to tra-
verse a distance of 2R, so m,; = [2‘}};]. If we consider
the detection probability in period ¢, where ¢ > m, we can
see that it depends on target detections in the previous m
sensing periods. Note that m reflects the fact that the DR
of the target in period ¢ overlaps with the DRs of the target
in periods ¢« — 1, ¢ — 2, ..., and ¢ — m,. Second, we may
have multiple sensors in the DR of the target in a single pe-
riod, especially when the deployment is not very sparse. In

this case, we need to consider the probabilities of having
different numbers of nodes in the overlapped DRs.

An intuitive approach, which we call the Temporal ap-
proach (T-approach), is that we compute the probabilities
of having different numbers of detection reports based on
the temporal sequencing: period by period. In each period
from period 1 to period M, we compute the probabilities of
having different numbers of detection reports generated in
that period based on previous target detections. Then we use
a Markov chain [7] to compute the probabilities of having
different numbers of detection reports generated from pe-
riod 1 to period M. However, simple analysis, which is not
shown here due to the page limit, indicates that this method
can easily get into the state explosion problem, in which
the Markov chain needs to use millions or more states to
deal with these conditional probabilities. The reason is that
whether a target is detected or not by a sensor in a sensing
period is temporally correlated: once the target is within a
sensor’s sensing range, the target may remain in that sen-
sor’s sensing range for up to mg + 1 periods. When we
compute the probabilities of having different numbers of de-
tection reports in a sensing period, we need to keep track of
the number of nodes in the overlapped DR of that period and
the period before that period to resolve the temporally cor-
related detection dependency problem. This process seems
simple, but it requires a huge number of states to achieve it,
especially when m is large.

3.3 Spatial Approach

The failure of the T-approach indicates that the tempo-
ral correlation of detection dependency problem is hard to
be resolved by considering the detection reports accord-
ing to the temporal sequencing. In this paper, we conquer
that problem by considering the detection reports spatially.
We propose an approach called the Spatial approach (S-
approach). In the S-approach, instead of considering the
detection reports period by period, we compute the detec-
tion reports area by area. Note that in a random uniform
distribution, the probability of having a node in any loca-
tion is the same. The temporal correlation of detection de-
pendency only affects the number of periods a sensor covers
a target. Here when we say a target is covered by a sensor,
it means that the target is within the sensor’s sensing range.

In the S-approach, we use the Aggregate Region (ARe-
gion) to denote the DRs from period 1 to period M and we
want to compute the probabilities of having different num-
bers of reports generated from the ARegion from period 1
to period M. We divide the ARegion into multiple subareas
based on the number of periods a sensor covers the target
if the sensor is in a subarea. This is to account for the fact
that sensors in different subareas may cover the target for
different number of periods. We use Region(i) to denote



Figure 3. ARegion of a target in sensing pe-
riod 1,2 and 3 (M = 3).

all the subareas within the ARegion, in which if there is a
sensor, the sensor covers the target for ¢ sensing periods.
In this section, we do not describe the way to compute the
size of Region(z), since it involves details that will be ex-
plained in the following section. Rather, we use the example
in Figure 3 to illustrate what Region(z) is comprised of. The
ARegion in Figure 3 is divided into 7 subareas by the DRs
of periods 1, 2 and 3. It is intuitive to see that sensors in dif-
ferent subareas may cover the target for different numbers
of periods. For example, a sensor in the subarea A3 cov-
ers the target for 3 periods, because it is within all the three
DRs. So, Region(1)=A1+A5+A6+A7, Region(2)=A2+A4,
Region(3)=A3.

Note that if M > mg, we have ms + 1 regions. In the
remainder of the paper, we only consider the general case
in which M > m,. Suppose we have computed the size of
Region(?). Then we can compute the probabilities of hav-
ing different numbers of detection reports generated from
the ARegion from period 1 to period M. Note that, in the
remainder of the paper, when we mention the detection re-
ports, we mean the detection reports generated from period
1to M.

The number of reports generated from the ARegion not
only depends on the number of sensors in the ARegion, but
also the specific sensor locations. Let psy(m)(iy,is,...,im)}
denote the probability of having m sensors in the ARe-
gion, which are distributed in Region(i;), Region(i2), ...,
Region(im). Ps{(m)(i1,ia,....im)} 1S cOmputed as follows:

im

N ARegion n_m, Region(i)
PS{(m)(i1sigsesim)} = | gy ) (1= =) H —s

=171

Note that the size of ARegion is 2M RVt + 7w R2. Since a
sensor in a different region covers the target for a different
number of periods, the probability of having a certain num-
ber of reports generated by a sensor in a different location
is different. Let p(,, ;) denote the probability for a sensor in
Region(?) to generate m detection reports. It is computed as
follows:

P(m,i) = ( - ) P (1—Py)'™™ 3

Let ps.,,, denote the probability for sensors in the ARegion

to generate m detection reports. To compute pj.,,, we first
compute pPs...n, the probability of having m detection re-
ports generated from the ARegion when there are n sensors
in the ARegion. ps.0.0 means the probability of having no
sensor in the ARegion, and is computed as follows:

_ N (ARegion)o(1 ARegion)N
Ps:0:0 = 0 S S

ARegion N

=0- 5 ) “

In this paper, we use the pseudocode in Algorithm 1 to
illustrate how to compute ps.,.,. Due to the page limits,
we only present the code for computing pg.,,.1 and pg.p,.2.
A similar algorithm can be used to compute ps.,,., When
n > 2.

Algorithm 1 Pseudocode for computing ps. .

initialize pg.m.1 to zero { Compute the value of ps.y,:1.}
for Ry = 1toms + 1 do
Ploc = PS{(1)(R;)} {Probability of having one node in Region(RR1)}
for Ny = 0to Ry do
Ps:Ny:1+ = PlocP(Nq,Rq)
end for
end for
initialize ps.m.2 to zero { Compute the value of ps.y,:2.}
for Ry = 1tomgs + 1 do
for Ro = 1toms + 1 do
Ploc = PS{(2)(Ry,Ra)} {Probability of having two nodes: one in
Region(R1) and the other in Region(R2)}
for Ny = 0to Ry do
for No = 0to R2 do
Ps:Ny+No:2+ = PlocP(Ny,R1)P(Noy,Rs)
end for
end for
end for
end for

After we obtain ps.,,.,, W€ can compute ps.,,, as follows:
Psim = Zﬁ;o Ps:m:n, in Which N denotes the total number
of nodes deployed in the sensor field. Since the time com-
plexity for computing ps.,, is O(m2"), we need to limit the
value of n to reduce the computation time and sacrifice anal-
ysis accuracy. Suppose the maximum value of n taken into
the computation is G. Let ng denotes the analysis accuracy
when the maximum value of n is G, which is as follows:

G A
> o D o Peimin
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In the above equation, A denotes n(ms + 1), which is the
maximum number of reports n sensors can generate, since
a sensor can cover the target for at most mg + 1 periods.
The equation quantifies the relationship between G and 7.
If users define the required analysis accuracy, we can com-
pute the smallest value of G based on that equation. How-
ever, to achieve enough accuracy like 95%, the value of G



is always equal to or greater than 5, especially when the size
of the ARegion is large. This may result in high computa-
tion overhead. For example, if m is 10 and G is 6 based on
the user requirements for analysis accuracy, which are rea-
sonably small values, the time complexity would be in the
order of 10'2. In this case, we need to wait at least many
days to get the results. This is not acceptable.

3.4 Markov Chain based Spatial Ap-
proach

Although the S-approach correctly resolves the problem,
it is restricted because of its computation complexity. In this
section, we propose a Markov Chain based spatial approach
to significantly reduce the computation complexity.

3.4.1 Main Idea

In the Markov Chain based S-approach (M-S-approach), in-
stead of considering the DRs of period 1 to period M as a
single ARegion, we divide the ARegion into multiple sub-
ARegions. Each subARegion is further divided into mul-
tiple areas based on the number of periods a sensor covers
the target if the sensor is in the area. In each step, we count
the detection reports generated from a subARegion by us-
ing the same method shown in the S-approach. After all
the subARegions are processed, we use a Markov chain to
assemble these probabilities and generate the final results.

While the ARegion can be divided in many different
ways, we divide it based on the NEDR of each period. In
this way, the ARegion is divided into M/ subARegions, each
of which is the NEDR of one period. In the M-S-approach,
we start from the NEDR of period 1 to the NEDR of period
M. That means in the ¢th step, we compute the probabilities
of having different numbers of detection reports generated
from the NEDR of the ith sensing period. Based on that,
we compute the probabilities of having different numbers
of detection reports generated from period 1 to period M
based on a Markov chain.

In this way, in each sensing period, we only need to con-
sider the detection reports generated from the NEDR of that
period. Compared to the S-approach, since the size of the
NEDR that we consider in each sensing period is signifi-
cantly smaller than the size of the ARegion, we can use a
much smaller G value when we compute the probabilities of
having different numbers of detection reports generated in
that area, given the same user requirements for analysis ac-
curacy. Therefore, we reduce the computation complexity
of the S-approach.

In the M-S-approach, we split our modeling into three
stages: Head stage, Body stage and Tail stage. The Head
stage deals with the NEDR of period 1. The Body stage
processes the NEDRs from period 2 to period M — m, and
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Figure 4. An example of target detections in
multiple sensing periods (M = 8, m, = 4).

the Tail stage considers the NEDRs from period M —m+1
to M. While all three stages use the same set of states in
the Markov chain, they have different transition matrices.
Figure 4 shows an example of target detections in multiple
sensing periods. In this example, M = 8 and ms; = 4.
So the Head state contains the NEDR of period 1, the Body
stage contains the NEDRs of periods 2, 3 and 4, and the Tail
stage includes the NEDRs of periods 5, 6, 7 and 8.

3.4.2 Head Stage

The reason to separate the Head stage from the Body and
the Tail stages is that in the Head stage, the NEDR equals
the whole DR, while the NEDRs in the following periods
are only parts of the DRs. In the Head stage, we compute
the probabilities of having different numbers of detection
reports generated from the NEDR of period 1. We first di-
vide the DR of period 1 into m4 + 1 subareas according
to the number of sensing periods a sensor covers the target
if a sensor is in the subarea. These subareas are named as
AreaH(1), AreaH(2), ..., and AreaH(mg + 1), respectively,
and are divided by the DRs of the following m g sensing pe-
riods. More formally, AreaH(?) is the area that belongs to
the DRs of both period 1 and period ¢, but not the DR of
period ¢ + 1. After dividing the DR into these subareas,
we can see that if there is a sensor in AreaH(7), the target
is covered by the sensor for 7 sensing periods. This can be
easily proved according to the definition of AreaH(7). Fig-
ure 4 also shows an example of the subareas in the DR of
period 1, where the DR of period 1 is highlighted with the
bold line. As shown in this example, m; = 4 and we have
5 subareas.

We use pp.m.n to denote the probability of having m de-
tection reports generated from the NEDR of period 1, when
there are n sensors in the NEDR of period 1. With pre-
liminary geometry knowledge, it is easy to compute the
size of AreaH(7) as shown in Equation (6). After we ob-
tain the sizes of all the subareas in the DR of period 1, the
same method in the S-approach to compute .., is used
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to compute pp.m.,. Here we do not go through the same
process again. Rather, we point out the changes to be made
to the equations in the S-approach: the size of the ARegion
(2M RVt + wR?) should be replaced with the size of the
NEDR of period 1 2RVt + mR?); Region(i) should be
replaced with AreaH(7).

Let pp.., denote the probability for the sensors in the
NEDR of period 1 to generate m detection reports, in which
DPhem = Zi:;o Ph:m:n. Therefore, we also need to limit the
value of n to reduce the computation time. Suppose the
maximum value of n that is taken into the computation in
the Head stage is gp. In this case, the analysis accuracy
in the Head stage, which is denoted by &}, is computed as
follows:

Ih

N 2RVt +TR2 2RVt +7R% n_;

i=0

Based on py,.,,, we can use the Markov chain shown in
Figure 5 to model the target detections in period 1.

Figure 5. Markov chain used in the Head
stage.

In Figure 5, Z denotes (ms + 1)gp, which is the max-
imum number of detection reports that can be generated
from the DR of period 1, given that we only consider at
most gy, sensors in the NEDR of period 1. State n denotes
the state that has n detection reports generated in total. We
use M Z + 1 states to denote all possible numbers of detec-
tion reports, since M Z is the maximum number of detection
reports that can be generated during M sensing periods. If
we are only interested in the probability of having at least k
detection reports, we can merge the states from k to M Z.
In this case, the transition probability to this merged state is
the sum of all the transition probabilities to the states from
state k to M Z. In Figure 5, an arrow is used when the tran-
sition probability between two states is greater than zero.

We use Ty to denote the transition matrix in the Head
stage, which is easy to obtain based on the Markov chain
shown in Figure 5 and thus not shown here. The Markov

chain in the Head stage is only executed for one iteration
since the Head stage only considers the NEDR of period 1.

3.4.3 Body Stage

The way to model the Body stage is similar to that used to
model the Head stage. Yet, there are two major differences:
first, the NEDR of a period in the Body stage is only part
of the DR of that period and looks like a crescent; second,
the Body stage contains M — mg — 1 periods and thus has
M — mg — 1 steps, each of which deals with the NEDR of
the corresponding period in the Body stage.

In each step of the Body stage, we divide the NEDR of
the corresponding period into mgs + 1 subareas according
to the number of periods a sensor covers the target if we
put a sensor in the subarea. These subareas are named as
AreaB(1), AreaB(2), ..., and AreaB(mg + 1), respectively.
These subareas are divided by the DRs of the following m
sensing periods. AreaB(7) in period [ is the area that belongs
to the NEDR of period [ and the DR of period [ 4+ — 1, but
does not belong to the DR of period [ 4 7. It is also easy
to prove that a sensor in AreaB(7) will cover the target for
1 periods based on the definition of AreaB(7). Figure 4 also
gives an example of these subareas in the NEDR of period
2. Since mg = 4, the NEDR of period 2 is divided into 5
subareas, as shown in the figure.

We use pp.m,:n to denote the probability of having m
detection reports generated from the NEDR of a sensing
period in the Body stage, when there are n sensors in the
NEDR of that period. Based on AreaH(z) computed in the
Head stage, we can compute the sizes of the subareas in the
NEDR of a sensing period in the Body stage as follows:

AreaH(i) — AreaH (i + 1)

. ifi < mg
AreaB(i) = { AreaH (1) iZm

i3 = m. +1 ®)

After obtaining the sizes of all the subareas, the same
method in the S-approach for computing ps..,,.,, is used to
compute Pp..,.n. We only need to make two changes: the
size of the ARegion (2M R, V't + mR?) should be replaced
with the size of the NEDR of a period in the Body stage
(2RsV't), and Region(z) should be replaced with AreaB(7).

Let pp.., denote the probability for the sensors in the
NEDR of a sensing period in the Body stage to have m
detection reports. Suppose the maximum value of n that
is taken into the computation in each sensing period in the
Body stage is g. In this case, the analysis accuracy in each



Figure 6. Markov chain used in the Body
stage.

step of the Body stage, which is denoted by &, is computed
as follows:
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Based on py,.,,,, the Markov chain used in each step of the
Body stage is shown in Figure 6. We use T'g to denote the
transition matrix in each step of the Body stage, which is not
shown here. Note that the Body stage contains M —mgs — 1
steps and the Markov chain in each step is the same. There-
fore, the Markov chain in the Body stage will be executed
for M — mg — 1 iterations.

3.4.4 Tail Stage

The size of the NEDR of a sensing period in the Tail stage
is the same as that in the Body stage. However, the NE-
DRs in the Tail stage are divided into different numbers of
subareas in different sensing periods, because the NEDRs
of different sensing periods in the Tail stage overlap with
different numbers of DRs of the following periods before
period M + 1.

The Tail stage includes m sensing periods, ranging from
period M — mg + 1 to period M. So, the Tail stage has m
steps. For ease of description, we rename period M —m+1
to period M as period 17 to T3, , respectively. The NEDR
of period T is divided into ms + 1 — j subareas, which
are called AreaT;(1), AreaT;(2), ..., AreaT;(ms + 1 — j),
respectively. These subareas are divided by the DRs of the
following m¢ — j sensing periods. AreaT (%) is the area that
belongs to the NEDR of period T} and the DR of period
T+ j—1, but does not belong to the DR of period T;; if
Ti+; < T, . We can also prove that a sensor in AreaT;(7)
will cover the target for ¢ sensing periods before the end of
period M based on the definition of AreaT;(z). Figure 4
also gives an example of these subareas in the NEDR of
period T;. Because ms; = 4, the NEDR of period 77 is
divided into 4 subareas, as shown in the figure.

We use pyj.m:n to denote the probability of having m
detection reports generated from the NEDR of period 7 in
the Tail stage, when there are n sensors in the NEDR of
period T};. Based on AreaB(7) computed in the Body stage,

Figure 7. Markov chain used in period 7} in
the Tail stage.

the size of AreaT;(7) in the NEDR of period T in the Tail
stage is computed as follows:

) AreaB(1)
AreaTj (i) = mg+1 AreaB(m)

m=mg+1—j

ifi < me—j
ifi=mo+1—5 U0

Then we can use the same method in the S-approach
to compute Ps.m:n O COMPULE Pyijim:pn. In the Tail stage,
we need to make three changes when we compute ps. .-
1) the size of the ARegion (2M RVt + mR?) should be
replaced with the size of the NEDR of a period in the
Tail stage (2R;V't); 2) Region(i) should be replaced with
AreaT(i); 3) since the NEDR of period T} is divided into
ms + 1 — j subareas, ms + 1 in the pseudocode should be
replaced with mgs + 1 — j.

Let p¢;.m denote the probability for the sensors in the
NEDR of period T} in the Tail stage to have m detection re-
ports. Since the size of the NEDR of each period in the Tail
stage is the same as that in the Body stage, the same maxi-
mum value of n is used in the Tail stage, which is g. There-
fore, the analysis accuracy in each step in the Tail stage is
the same as that in the Body stage, which is .

Based on py;..,, the Markov chain used in period 77 in
the Tail stage is shown in Figure 7. In Figure 7, we use Y;
to denote the value of (ms+1— j)g. We use Tj to denote
the transition matrix in sensing period 77 in the Tail stage,
which is not shown here. Note that the Tail stage includes
my steps and the transition matrices used in different steps
are different.

After obtaining all the transition matrices used in differ-
ent stages, we can compute the probabilities of having dif-
ferent numbers of detection reports in M sensing periods.
We use u to denote the initial probability vector, which has
MZ + 1 elements. Since we have zero reports before the
target enters the field, u is expressed as follows:

u= [1 0 0 ... 0] (11

Let Result denote the probability distribution of the
Markov chain after M sensing periods. We have
Result = uTyTgM s 7! H Trj (12)

j=1
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Figure 8. The required value of g, g;, and G to
satisfy 99% analysis accuracy.

If the index of the first element in Result is one,
Result[m] denotes the probability of having m — 1 de-

tection reports in M sensing periods. Let sum =
Z%:Zfr ! Result[m]. Since both g, and g are smaller than

N, sum < 1. So, when we compute the detection probabil-
ity of a target, we normalize the result as follows:

MZ+1

1
Py X > k] = E Result[m + 1] x
m=k

sum

(13)

3.4.5 Time Complexity

Based on g5, and g used in the M-S-approach, the analysis
accuracy of the M-S-approach, which is denoted by 7/ s, is
computed as follows:

nas = €M1 (14)

Based on the above equation, we can also compute the re-
quired value for g5 and g in the M-S-approach given the
user requirements for analysis accuracy. Suppose the anal-
ysis accuracy requirement is 7. To meet this analysis ac-
curacy, the following condition should be satisfied in the
M-S-approach: &,6M~1 > np. Let &, = £ for simplicity.
We have £ > n?. Based on Equation (7) and Equation
(9), we can compute the value of g, and g. Based on Equa-
tion (6), the value of G used in the S-approach can also be
obtained by setting ng > ng.

Since the time complexity of the S-approach is
O(m?@) and the time complexity of the M-S-approach
is O(m29n (M — 1)m?29), the value of G used in the S-
approach and the values of g; and g used in the M-S-
approach are the key factors in determining the computa-
tion time. So we compare g and g, in the M-S-approach,
and G in the S-approach to reveal the computation time of
both approaches. Figure 8 shows the required value for g,
gn, and G to achieve 99% analysis accuracy. The results ob-
tained in the figure are based on the following parameter set-

tings: S = 32000m x 32000m; Rs = 1000m; t = 1min;
M = 20; V = 10m/s. We can see that G is significantly
greater than both ¢ and g,. When G is large, such as 6
or more, the S-approach may be computationally infeasible
depending on the value of mg. From our experiments, it is
common for the S-approach to run for many days to get the
results. Several times, we are forced to turn off the program
since it shows no sign of completing the computation in the
near future. On the contrary, the M-S-approach we propose
can significantly reduce the execution time of the analysis
from many days to 1 minute.

Figure 8 also shows that g; is greater than g, because
the size of the NEDR of period 1 considered in the Head
stage is greater than the size of the NEDR of any period in
the Body and Tail stages. In fact, we can reduce the com-
putation overhead in any step by further dividing the com-
putation in that step into multiple substeps and each sub-
step only considers the detection reports generated from a
subarea of that step. In this case, g, or g used in the M-S-
approach will be smaller. We do not go into the details of
how to further divide the computation in each step into mul-
tiple substeps due to page limits. Since both g and g;, are
significantly smaller than GG, we convert a computationally
infeasible solution into a quick solution without losing any
accuracy. All our analysis results, when g, and g are 3, are
obtained within one minute.

4 Model validation

We have implemented the group based event detection
simulator in Matlab. We compare the detection probability
of a target obtained from the analysis to that obtained from
simulations to validate our model.

Simulation Configuration: Unless otherwise specified,
in all our analysis and simulations, we use the parameter
settings suggested by researchers at the Office of Naval Re-
search’: 60~240 sensor nodes are randomly deployed in a
physical region of 32000m x 32000m; the sensing range
of each node is 1000m and the communication range is
6000m; if a target is within a sensor’s sensing range, the
probability for the sensor to detect the target is 90%; for
the group detection algorithm that we abstract, the system
level detection decision is made when a sequence of at least
5 detection reports are recorded within 20 sensing periods
(the time length of each sensing period is 1 minute); other-
wise, detection reports are perceived as false alarms. In the
simulation, a target moves from a randomly chosen start-
ing location towards a randomly chosen direction, with the
specified speed of 4m/s or 10m/s.

3 A long sensing range (around 1km), and a long communication range
(around 10km) with a reasonable data rate (5~10kHz) in undersea acous-
tic communication is achievable [10] for supporting of sparse deployments.
The short range Mica2/Telos motes are comparatively less appropriate.



For a sensor node to report detection information back to
a base state through multi-hop networking, the maximum
possible physical distance in this deployment is around
36km, that is, around 6 hops. With classic Geographic
Forwarding routing protocols like GF [11] and GPSR [12],
this 6-hop end-to-end communication can be easily finished
within a single sensing period, that is, 1 minute. As long
as a sensor can send a packet to the base station through
multi-hop networking within a single sensing period time
(1 minute here), no matter what MAC and Routing combi-
nation is used to implement the underlying multi-hop net-
working, our group detection performance analysis in this
paper is still valid. For this reason, we ignore the commu-
nication stack in this simulation and only focus on sens-
ing. For each trial of simulation, we randomly generate all
nodes’ locations and also randomly choose the staring lo-
cation and moving direction of the target. For each sensing
period, we compute the geographical region the moving tar-
get passes and compare that with the locations of all sensor
nodes. Therefore, we know which sensor can detect the
target at what time, and know how many detections are re-
ported. When there are at least 5 detection reports within
20 sensing period, we consider that the target is detected.
The simulation is repeated 10000 times, and the detection
probability is computed by dividing the number of trials that
record at least 5 reports to the total trial of 10000.

Figure 9(a) shows that the analytical model is extremely
accurate under various simulation settings when the target
travels in a straight line. The analytical results coincide with
the simulation results. This means that despite the compli-
cated conditional probabilities involved in the problem, our
method successfully models the target detections in multi-
ple sensing periods. Figure 9(a) also reveals that the de-
tection probability increases when more sensor nodes are
deployed.

One interesting thing to note is that according to Equa-
tion (14), when N = 240 and V' = 10m/s, the analysis
accuracy of the M-S-approach is 95.6% when both g;, and
g are set to 3. However, Figure 9(a) shows that the analysis
accuracy is above 99% when N = 240 and V' = 10m/s.
The reason is that when we compute the detection probabil-
ity in Equation (13), we normalize the result by multiplying
Sulm. The normalization helps improve analysis accuracy.
The reason is that when the analysis accuracy is 95.6% ac-
cording to Equation (14), it means that in total 4.4% of the
probability distribution of having different numbers of re-
ports is not taken into consideration. When the normaliza-
tion is applied, we assume that the probability distribution
of having different number of reports when we only con-
sider limited number of nodes (95.6% probability), < g, in
the Head stage and < g in both the Body and Tail stages, is
the same as that when we consider all the N nodes (4.4%
probability).

10

Another interesting thing in Figure 9(a) is that when the
moving target’s velocity is 10m/s the detection probability
is higher than that when the moving velocity is 4m/s. This
is actually one advantage of using group based detection in
sparse sensor networks. In a sparse sensor network, within a
specified time period, the faster the target moves, the more
covered sensing area the target travels through, hence the
more detection reports the base station collects within 20
sensing periods, hence a higher chance the base station rec-
ognizes the target, that is, collecting 5+ detection reports
within 20 sensing periods.

Different from Figure 9(a), Figure 9(b) shows the de-
tection probability of the target when the result is not nor-
malized in the analysis. When the result is not normal-
ized, the analysis accuracy decreases as V' or NV increases,
which conforms to Equation (14). Also, without normal-
ization, the analysis error is above 4% when N = 240 and
V' = 10m/s, which is close to the value obtained from
Equation (14). The analysis accuracy obtained from Equa-
tion (14) can be considered as the lower bound for the anal-
ysis accuracy when normalization is applied.

Performance When Target Does Not Move in a
Straight Line: In the performance evaluation as shown in
Figure 9 (a) and (b), we assume that the target travels in a
straight line. In reality, the target may change its direction.
If we do not know the target track and the target changes
its direction randomly, we are unable to analyze its perfor-
mance precisely. Nevertheless, the analysis results based on
the straight line target track are very close to the simulation
results even if the target changes its direction. We use Ran-
dom Walk to denote the target travel pattern, in which the
target randomly choose a new direction within [-7 /4, 7/4]
of its current direction, every 1 minute. As shown in Fig-
ure 9(c), even though the target changes its direction, our
analysis results are still very close to the simulation results,
with the maximum error of 2.4%. When the target changes
its direction, the probability of having less detection reports
increases, because the ARegion is inclined to be smaller
than that when the target travels in a straight line. For this
reason, the detection probability obtained from our analy-
sis, which is based on the straight target track, is expected
to be higher than the actual detection probability when the
target changes its direction.

It is worth pointing out that the analytical model can be
easily extended if a group based detection algorithm is de-
fined in a different way, such as: the system level detection
decision is made when the sensor network generates a se-
quence of at least k& detection reports from at least A nodes
within M periods, which can be mapped to a possible target
track. The main modification needed for the M-S-approach
is to increase the number of states in the original Markov
chain model from M Z + 1 to hMZ + 1. Except state 0,
which is the same as that in the original model, each state
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Figure 9. The results from our analytical model match the results from the simulations very well.

is labeled m : n, where 1 < m < MZ and1 < n < h.
When n < h, state m : n means that we have n nodes that
generate m reports in total. When n = h, it means that we
have at least i nodes that generate m reports.

5 Related Work

Research on performance analysis for wireless sensor
networks has been one central topic in the sensor network
community in recent years. Most of the detection perfor-
mance analysis works [13] [14] [15] [16] are based on node
scheduling and instantaneous detection. Node scheduling
[17] [18] [19] [20] aims to minimize the energy consump-
tion without severely sacrificing the system performance
given that the nodes have been deployed. When node
scheduling is applied, the field is only partially covered at
any time. These analysis works are valuable in understand-
ing the system performance, when the false alarm rate of
each node is negligible. However, when the false alarm rate
is high, many real systems [1] [2] use group based detection
algorithms [6], rather than instantaneous detection, to filter
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out the false alarms. In this case, the analysis works based
on instantaneous detection are no longer valid.

To the best of our knowledge, [9] [21] [22] are the only
works that focus on group based detection. [22] estimates
the influence fields of the target for classification and track-
ing. [9] assumes static sensors and mobile target, and ana-
lyzes the detection probability. In [21], the authors assume
mobile sensors and static target, and focus on the detection
latency. However, in all the analysis, the group based detec-
tion decision is made based on the detection reports from a
single sensing period. In reality, the system level detection
decision can be made based on detection reports from mul-
tiple sensing periods, rather than a single sensing period.

6 Conclusions and Future Work

In this paper, we focus on analyzing the detection perfor-
mance of group based detection in sparse sensor networks.
Sparse deployment is a key factor to reduce the total cost
of a system when it needs to cover a vast area. To filter out
the unavoidable false alarms generated by a single sensor in



a network, real sensor network systems tend to use group
based detection to reduce the system level false alarms. In
this paper, we successfully model the group based detection
in sparse sensor networks based on a Markov chain, which
is extremely accurate. The analytical model adopts the
novel M-S-approach, which resolves the significant com-
plexities involved in the conditional detection probability of
a target in each sensing period. The analysis helps a system
designer understand the impact of various system parame-
ters in an easy way, without running extensive simulations
or deploying real systems, which are costly.

In the future, we plan to study how to obtain the exact
lower bound of k based on a specified false alarm model.
This exact lower bound can provide statistical guarantee
that no possible sequencing of false alarms result in a sys-
tem level false alarm. We also plan to relax the assumption
to address the case when the target travels in varying speeds.
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