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Abstract. In this study, we evaluate the use of height for biometric iden-
tification of residents, by mounting ultrasonic distance sensors above the
doorways in a home. Height sensors are cheap, are convenient for the
residents, are simple to install in an existing home, and are perceived to
be less invasive than cameras or microphones. Height is typically only a
weak biometric, but we show that it is well suited for identifying among a
few residents in the home, and can potentially be improved by using the
history of height measurements at multiple doorways in a tracking ap-
proach. We evaluate this approach using 20 people in a controlled labora-
tory environment and by installing in 3 natural, home environments. We
combine these results with public anthropometric data sets that contain
the heights of residents in 2077 elderly multi-resident homes to conclude
that height sensors could potentially achieve at least 95% identification
accuracy in 95% of elderly homes in the US.

1 Introduction

The ability to identify residents in a home is crucial for many smart home ap-
plications: in order to respond to activities in the home, the system must be
able to identify who is in a particular location or performing a particular action
such as cooking or exercising. Existing innovative implementations that perform
resident identification and tracking have several advantages, but also have draw-
backs. Some approaches are incovenient because they require the user to wear a
tag [13, 21], or to manually trigger a biometric sensor such as a thumbprint or
retina scanner [18]. Some systems require cameras for gait, form, or face recog-
nition [16], but cameras are often perceived as invasive because they can be used
to collect much more information than just the user’s identity [11]. Other imple-
mentations require structural changes to the home, such as instrumenting the
floor [6,9] with force plates, which can incur high cost and effort. Many practical
smart home applications such as in-home medical care for the elderly [2,17] and
occupant-based energy monitoring [8] cannot use solutions that inconvenience
the user, are intrusive, or require an expensive building retrofit. Our recent
discussions with a commercial peace of mind elderly monitoring enterprise [4]
reveal several interesting user requirements for accurate, long term elderly res-
ident identification and tracking in homes: (1) residents will not wear tags or
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manually identify themselves at every room for long periods of time, (2) resi-
dents will not allow perceived invasive devices such as cameras or microphones
in the home, and (3) residents want the sensors to be fairly invisible, similar
to existing motion sensor installations, and do not want an expensive building
retrofit. Since existing implementations have some drawbacks with respect to
the above requirements, commercial deployments by the elderly monitoring en-
terprise [4] today are limited to single-resident homes or do not fully monitor
information about multiple residents.

This study examines the use of biometric height sensors to satisfy the above
requirements for both the elderly monitoring enterprise [4], and a wide variety
of other smart home applications. Height sensors have several advantages over
existing approaches: they are cheap, convenient and minimally invasive for the
residents, and not very time consuming to install in an existing home. We use
ultrasonic distance sensors mounted above the doorways in a home to measure
the height of individuals that walk through the doorway. The inherent accuracy
of height sensing is too low for reliable biometric identification from a large
population of individuals: it requires a 7cm difference in height to differentiate
people with 99% accuracy, and most people have heights within a small range
from 160-180 cm. However, we make two key insights that allow height to be an
effective biometric sensor in the home. First, most homes have very few residents:
height may be a weak biometric for differentiating between 20 or more people,
but is likely to be very effective in homes that have only 2-4 residents. Second,
people move through a home in predictable ways, as determined by the floor
layout: if height sensors are placed above every doorway, then the history of
height measurements can be used to potentially surpass the inherent accuracy
of the sensor.

The main contribution of this work is to demonstrate that height can be
effective for biometric identification in the home. We evaluate the use of height
as a biometric in four ways: (1) We quantify the biometric error of our approach
using 20 subjects in a controlled laboratory environment, in which we vary the
direction, speed, and location of the person walking under the doorway. (2) We
measure the degree to which height sensors can identify room occupancy of
residents in 3 natural home environments for 5 days each. (3) We use public
anthropometric data containing the heights of elderly residents in 2077 multi-
resident homes from the 2006 health and retirement study to estimate that our
approach can potentially achieve at least 95% identification accuracy in 85%

of elderly US homes sampled in this study. (4) Through a simulation study, we
show that incorporating the history of height measurements at multiple door-
ways using a tracking approach can potentially increase the proportion of homes
where our solution is applicable with 95% accuracy from 85% to 95%, and also
reduce the height difference required for 99% identification accuracy from 7cm
to 3.25cm. We quantitatively compare our approach against two other state of
the art non-invasive resident identification implementations, namely anonymous
binary sensor and activity model based multi-resident tracking [20], and weight
sensing [9], and find that our approach achieves improvements in identification
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Fig. 1. Our study used the Go Motion ultrasonic range finder mounted above doorways
(a). As users walked beneath the sensor, the range measurements changed (b).

accuracy or installation effort and cost compared to existing implementations of
these approaches.

The rest of the paper is organized as follows. Section 2 discusses existing
resident identification solutions from the literature. Section 3 gives an overview
of our approach and describes our algorithm to sense height from ultrasonic dis-
tance measurements. Sections 4 and 5 describe the results of our controlled lab
experiments and natural, in-home experiments respectively. Section 6 analyzes
how our empirical results potentially extrapolate to a national level using pub-
lic anthropometric data. Section 7 evaluates the potential improvement in the
inherent identification accuracy of the height sensor by tracking the history of
height measurements at multiple locations in a home. Section 8 discusses the
application of height sensors for in-home room level tracking, and systemati-
cally lists the advantages and limitations of our current approach and study. We
conclude by summarizing our findings in section 9.

2 Existing Solutions for Resident Identification

Resident identification in smart homes is a long-standing problem with many
existing solutions. In this section, we discuss a representative sample of these
solutions, including their advantages and disadvantages, and their applicability
with respect to our user requirements.

Tag-and-track approaches operate by placing a uniquely identifiable de-
vice on each individual resident. This approach has been widely used since the
Active Badge system almost two decades ago [19], and in other systems since.
The pedestrian localization system proposed by Woodman et al [21] uses a foot
mounted inertial sensor to track pedestrians to within .7 meters 95% of the time
in a large office building with no additional infrastructure. More recently, inno-
vative tracking solutions that require a very low infrastructure cost [12, 15] are
emerging. Tag and track approaches have three important advantages: (a) High
location granularity with little or no infrastructure, (b) Selective preservation of
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location privacy by switching off device, and (c) Highly scalable with respect to
the number of residents in an indoor space: each user can be given a new device
with a uniquely identifying number. However, one drawback of this approach is
that it requires the user to actively carry the device at all times when location
information is desired. It can be an inconvenience to in-home residents for long-
term deployments. In our past experience with deployments, and while trying
to use MoteTrack [13] wireless tags to collect ground truth in this study, users
frequently forget to carry their tag, especially immediately after waking up or
showering. Automatically reminding residents to carry the device is an option,
but we believe such an approach is intrusive and inconveniences the user for
long-term applications such as elderly medical monitoring.

Several indoor resident identification systems use cameras for computer-
vision based face, shape, and gait recognition [16], or microphones and audio
signal processing. These approaches might require expensive on-board compu-
tation or high communication bandwidth to a central base station that executes
the vision algorithms, but are passive and highly accurate. However, user stud-
ies by researchers from Intel and companies like WellAware have found that a
large fraction of potential users have perceived privacy concerns about cameras
or microphone sensors [11]. Therefore, this class of approaches is most appropri-
ate for short-term situations in which rapid deployment, and/or high accuracy
are important, and where long-term privacy concerns of monitoring residents in
their own homes are not an issue.

Wilson et al, in 2005, propose using only resident usage models of anony-

mous motion sensors in rooms and switch sensors on daily-use objects,
and resident activity models to identify and track their activities and loca-
tions [20]. They propose using a particle filter that uses Markov state transition
and sensor use models learned from short term training data, obtained using a
tag and track approach or manual labeling. The main advantage of this approach
is that the simple single-pixel sensors are cheap and easy to install, and are not
perceived to be invasive or inconvenient. However, an important drawback of this
approach is low accuracy: this system was reported to have 70% accuracy when
tracking 3 residents over a week-long period, and in our own deployments in 3
multi-resident homes, we observed this approach to have accuracies of 65-75%.
These accuracy rates may be reasonable for some applications, but confusing
the identities of residents more than a third of the time could cause problems
for some smart home applications such as medical monitoring. To increase iden-
tification accuracy, additional biometric sensor data, as discussed in this paper,
can be included in the STAR particle filter.

Several systems including the Active Floor and the Smart Floor instrument

the floor to locate and identify individuals [6,9]. Jenkins et al, in 2007, studied
the effectiveness of using resident mass, derived using force plate signals, to iden-
tify multiple individuals in a large population [9]. Gait analysis can also be used
to differentiate individuals from instrumented floors. This type of single-pixel
mass-based identification approach has the advantage that it can be performed
without inconveniencing the user or violating resident privacy. Existing force
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plates and smart floors require careful installation to improve aesthetic appeal
and achieve user acceptance; accurate force plates are also very expensive. How-
ever, more compact, cheap designs of weight sensors that have the same form
factor as a floor mat can be explored for easier installation and better aesthetic
appeal in the home.

Height is a weak biometric that is often used on driver’s licenses or po-
lice reports, and it can not be used to definitively identify individuals from a
large population . Some existing systems use invasive video cameras to iden-
tify height [5]. Nishida et al [14] propose instrumenting the entire ceiling with
a dense set of ultrasonic devices to perform fine-grained location tracking with
an ultrasonic radar system. However, this system is not evaluated for its ability
to differentiate or identify individuals, and this approach would involve sub-
stantial deployment effort. In 2006, Jenkins et al [10] proposes placing infrared
or ultrasonic distance detectors on top of doorways for identification based on
height (in a poster), using an approach similar to that described in this paper.
However, height sensors are not experimentally evaluated for accuracy, multiple
readings are not combined as the user walks through the home to improve accu-
racy, and the poster does not analyze the wider ramifications of height sensing
on in-home resident identification. To the best of our knowledge, our work is the
first to analyze how height sensing can potentially be used to effectively address
the multi-resident room location and identification problem in homes with high
accuracy.

3 Overview: Sensing Height with Ultrasonic Sensors

To identify residents as they move throughout a home, we deploy an ultrasonic
distance sensor above every exit and entry into a room. We used an off-the-shelf
ultrasonic distance sensor [3] shown in figure 1a. This distance sensor sends out
ultrasonic pulses at 50KHz in a diverging cone 15 to 20◦ off the axis of the
beam. The device then measures the time taken for the echo to return, and
uses it to calculate the distance to any obstacle in front of it. Only the minimal
distance of any obstacle is reported. For example, when a resident stands under
the device, only the distance to the top of the head is reported, while distances
to the shoulder, ear etc are automatically filtered out.

Figure 1b shows the example data from the distance sensor as a subject walks
repeatedly under the ultrasonic sensor mounted on top of a typical doorway eight
times. The default distance reported is 2.1m, which is the distance when there
is no obstacle in front of the ultrasonic sensor. When a subject walks under the
sensor, we see minimal peaks that correspond to the ultrasonic beam making
contact with the subject’s head; the difference between this minimal distance
and the default distance of 2.1m returns the apparent height of the person as
she walks under the doorway. In our controlled experiments, described in the
next section, we observe that this apparent height measured while walking, is on
average less than the erect height measured while standing, by about 1-3cm.
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Our algorithm to extract height events and height values is as follows. We
first compute timestamps when the reported distance is below the default dis-
tance with no obstacles. We then cluster these timestamps using the DB-SCAN
clustering algorithm [7] to compute discrete height events, that correspond to
residents passing by or standing under the sensor. This clustering process elim-
inates most noise due to a single, spurious reading. Then, for each cluster of
low readings, we find the minimum distance reported (i.e. the maximum height
value measured). We subtract that measurement from the default height mea-
surement with no obstacles and use the result to be the height measurement for
that height event.

To identify residents based on measured height values, we use a Maximum
Likelihood Estimate (MLE) classifier to assign each height event to one of mul-
tiple candidate residents in a home. For each height event, the MLE classifier
simply computes the probability that each resident triggered it, based on the
height of that resident and the error distribution of the sensor, and assigns the
height event to the resident that maximizes the likelihood of the observed mea-
surements. In the next section, we collect height data from 20 test subjects using
controlled experiments in a lab to characterize the error distribution of height
measurements, under diverse scenarios of passing through a doorway.

4 Experiments in a Controlled Lab Environment

4.1 Experimental setup

We characterize the error distribution of height sensors in a controlled lab setting
by placing the ultrasonic sensor on top of a doorway about 90 cm wide and having
20 users with known heights pass beneath the sensor in a controlled manner.
We chose a doorway of this width because it matched the width of many of
the doorways seen in our real home deployments. We selected 20 subjects of
differing heights for our experiment. The distribution of heights among the 20
subjects can be inferred from any of the scatter plots in figure 2. The subjects
were randonly chosen from a pool of graduate students from 20-30 years of age;
16 of our subjects were male and 4 were female.

For each subject, we first manually measured the height while standing using
a tape measure. We then measured the height reported by the ultrasonic sensor
when the subject stands still exactly under the sensor. The subject then walked
under the sensor several times as we varied the configurations of our doorway
and requested changes in the direction and speed of walking. In particular, every
subject (1) Walked 20 times in a simulated narrow doorway measuring 75 cm
in width, (2) Walked 21 times under the full doorway 90 cm in width (7 times
perpendicular to the plane of the doorway, and 7 times on two perpendicular
planes at an angle of 45◦ to the plane of the doorway, for a total of 21 times).
We repeated the above experiments with and without shoes for each resident.
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Fig. 2. Controlled laboratory experiments indicate low measured error while standing.
Mean error while walking is higher due to a natural reduction in height compared to
standing erect, and different walking styles. Standard error while walking is very low.
The error distribution approximates a log normal distribution.

4.2 Evaluation results

Figure 2a illustrates that, when residents are standing erect beneath the sensor,
the average error across all 20 subjects is only 0.2cm, and the maximum height
error is 1.15 cm. Figures 2b and c show scatter plot of mean height measurement
error and standard deviation in error while walking. Error here refers to the
difference between the manually measured height and the height output by our
height based identification algorithm for each height event. The results shown
in figure 2 use the aggregated height data from all our walking experiments
without shoes. We do not include results with shoes here, but observe that the
mean measured height simply increased by the height of the shoe on average,
and changes to the standard deviation of errors were negligble with shoes on.

From figure 2b, walking height as measured by our sensors is lower than
erect, standing height by 3.31 cm on average across all subjects. This is possibly
due to the natural decrease in apparent height as a person walks. Also, differ-
ent walking styles such as bending and keeping heads down contribute to this
decrease compared to erect standing height. More important is the deviation in
residual error, the standard error, for each subject across different height events,
since this will be crucial in determining identification accuracy among multiple
residents in a home. We note that the mean deviation in error is only 1.45 cm.
This low deviation implies that 99% identification accuracy can be obtained as
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Empirical height data from 20 subjects
Extrapolation to the US elderly population

Fig. 3. Height measurements become less effective for biometric identification as the
pool of individuals increases. The heights in our study were easier to differentiate than
those of the general population.

long as the heights of two residents are 7cm apart. We explore this tradeoff more
fully in section 7, when we describe our history based tracking algorithm using
height.

In figure 2d, we show an example distribution of residual error from one test
subject. The distribution shown here suggests a log normal distribution rather
than a normal distribution for residual error. Thus, we ran hypotheses tests at
.03 significance level for all subjects to test two different hypotheses (a) distri-
bution of height values is normal (b) distribution of height values is log-normal.
The proportion of subjects for which the normal and log-normal hypotheses could

not be rejected are 75% and 85% respectively. The log-normal distribution, which
skews naturally to the right, appears to be a better fit for modeling measured
height. This is because the apparent height of a person very rarely increases

(perhaps due to thick shoes) while walking, but more often decreases in exper-
iments due to the ultrasonic beam making contact with the person’s side (e.g.)
shoulder or ear) instead of the head.

Using the empirical height data collected in the lab, we compute how well
height can differentiate among a fixed set of N residents in an indoor space.
In particular, we empirically calculate the accuracy with which height events
are assigned to their ground truth test subjects. In figure 3, we show how this
empirical identification accuracy using height decreases as we increase the num-
ber of residents under consideration in the indoor space; we randomly choose
residents from our pool of 20 subjects, and evaluate how accurately individual
height events generated by our subjects are labeled using a log normal MLE
classifier trained from the controlled experiment data. For each N value, we re-
peat the random sampling 100 times. Also shown in figure 3 is how this analysis
extrapolates to a national level. We model the mean and standard deviation in
residual height error as a function of height using two types of curve fit models:
simple linear curve fitting, and nearest neighbor interpolation. Thus, given the
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height of a resident, we can derive his/her mean and standard deviation, and use
this in turn to derive the mean and deviation of the corresponding log normal
distribution of measured height.

Fig. 4. Height sensors de-
ployed above doorways in a
home.

The 2006 health and retirement study [1]
(HRS 2006) contains height measures of 4154
elderly residents living in multi-resident house-
holds. We randomly sample a fixed number N

from this set of residents to be identified in an
indoor space. We then analytically calculate the
probability that any height event is assigned to
the correct resident among the N residents, as-
suming a MLE classifier that uses the log normal
distributions derived from our nearest neighbor
and linear fit models. In figure 3, we show how this
probability of correct event labeling degrades as
we increase the number of residents in the home,
randomly sampling 100 different sets of elderly
residents for each N value. We only show the re-
sults with the nearest neighbor curve fit model,
since only negligble differences were observed when the linear fit model was
used.

As we can see in figure 3, for indoor spaces strongly resembling 2 or 3-resident

elderly homes, height based identification has a mean accuracy of 87-92% using

both empirical data and extrapolation to the national level. In particular, we note
that 99% of the elderly multi-resident households with valid height measurements
in the national study were 2-resident households. We use this insight in the
next section to demonstrate the high accuracy of height based identification in
3 real multi-resident home deployments. For households with 4 residents, the
identification accuracy drops to 77%; in section 7, we show that by using the
history of height events at multiple doorways in a home, we can improve the
identification accuracy in even 4-resident homes to 90%.

5 Experiments in a Natural Home Environment

5.1 Deployment details

Our controlled experiments characterize the sensitivity of height measurements
to various conditions, including walking or standing residents, and the effect
of shoes. However, these experiments do not reveal the frequency with which
these conditions actually occur and affect the measurements in a natural home
environment. To evaluate the accuracy of height based identification in such
an environment, we deployed ultrasonic sensors in three homes for five days
each. The ultrasonic sensors were deployed on doorways of rooms similar to our
controlled experiments, and can be seen in figure 4. In addition to the ultrasonic
sensors, we deployed the motetrack indoor localization system [13] in all homes
to get ground truth locations of residents. Motetrack is a tag and track approach
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Fig. 5. Motetrack tags and beacons (left) were used to collect ground truth locations.
Motion and magnetic reed switch sensors (middle/right) were used to evaluate STAR.

to localization that requires each resident to carry a mote. It uses trained RSSI
signatures from beacon nodes, like the one shown in figure 5a, to localize the
mobile motes in the home.

The main goal of the natural home deployments is to evaluate the ability
of height sensors to label room visits of residents in the home, and compare
it to a state of the art non-invasive multi-resident tracking solution that only

relies on simple activity models derived from labeled binary sensor data [20].
In order to make this comparison, we also deployed anonymous X10 motion
sensors in every room, and X10 switch sensors on daily-use objects such as the
fridge, microwave, stove etc. Figures 5b and c show examples of the motion and
switch sensors used in the homes. In section 6, we also compare with another
well studied non-invasive resident identification solution [9] that uses resident
mass to differentiate between residents in a home.

Table 1 shows some of the deployment details for the 3 homes, including
number of rooms, and ground truth height values of the couple living in each
home. Given the large differences in height values in the three homes, we expect
our height based identification solution to perform with high accuracy.

5.2 Room occupancy identification in a natural home environment

We evaluate the accuracy with which biometric height sensors are able to identify
room visits of residents in a home. We compare the accuracy of our approach
with a state of the art passive identification technique based only on ’biometrics’
of simple activity models of residents, derived from labeled binary sensor data,
as evaluated by Wilson et al in their STAR approach [20].

First, we temporally cluster X10 motion sensor firings from the same room
using db-scan [7], to identify discrete room visits of residents in the home; we
assume here that these temporal clusters correspond reliably to ground truth
room visits of residents. Ground truth resident labels for the temporal clusters
are obtained from motetrack’s location trace. Our aim is to assign resident labels
to each of these clustered room visits, using either biometric height sensors, or
using the location trace for each resident computed in STAR using only activity
models of residents. To assign resident labels to room visits using only height
sensors, we run the log normal MLE classifier on each height event that occurred
during the temporal cluster. When the MLE classifier assigns a height event to
a resident, that resident is added to the list of labels for that temporal cluster.
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The STAR resident tracking system proposed by Wilson et al [20], uses in-
dividual Markov state transition and sensor observation models of residents to
track their activities and locations. The essence of their tracking approach is
that individual residents have different movement/activity patterns in the home,
and/or have unique sensor use patterns. Similiar to their original implementa-
tion [20], we simply restrict our state space to include current room location of
individual residents. The state transition and sensor observation probabibilities
are learned using counting from our ground truth training data obtained from
the motetrack location trace; we performed leave-one-out cross validation over
the 5 days of room occupancy data obtained from each home, i.e. for each day, we
tracked residents using Markov models trained from all the other days’ data. We
implemented a multi-hypotheses tracking solution to track room visits of multi-
ple residents in the home, similar to the particle filter solution implemented by
Wilson et al [20].

Home Number Height of Height of
of rooms resident A resident B

in m in m

1 7 1.88 1.77

2 4 1.68 1.55

3 5 1.75 1.63

Table 1. Details of the 3 homes used in deployments

Figure 5.2 compares the room labeling accuracy of our height sensor approach
and the existing approach based on activity and binary sensor use models. We
see that identification based on simple activity models and binary sensor use
models only achieves accuracy around 65-75% in 3 homes, while height based
identification achieves accuracies ranging from 98-100%. Clearly, the activity and
binary sensor use patterns of residents in these homes are not distinguishing
enough to assign room visits with high accuracy. We do not claim here that
our approach is better than STAR; instead, we simply compare with an existing
instantiation of the STAR framework using only ’biometric’ room transition
models and binary sensor use models. Certainly, as pointed out by Wilson et
al [20], by using more fine-grained sensing at a higher installation cost than our
approach, it is possible to better differentiate residents even using these simple
models; one could even incorporate height sensor data in the STAR particle
filter.

We also observe that our height sensor based approach does not require any
training phase, while any approach that depends mainly on activity or binary
sensor use models requires a long training phase where ground truth locations
of residents need to collected using wearable tags, to determine the probability
models used in tracking; such a training phase might also require the installation
of a separate infrastructure just for tracking, although recent advances in low
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cost tag and track solutions [15, 21] may negate the need for such a tracking
infrastructure.
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Fig. 6. Height sensors achieve higher accuracy than achieved by existing implementa-
tions of the STAR approach that use only activity models and binary sensor use models
of residents for identification.

6 Accuracy of Height Sensing in Homes Nationwide

We analyze the proportion of homes at a national level where our height solution
can potentially differentiate residents with high accuracy using the 2006 health
and retirement study (HRS 2006) [1], which contains height and weight measures
of elderly residents living together in the same household. Of the 2107 multi-
resident households with valid height and weight measures for every resident in
the home, we used the 2077 households that were two-person households. We do
not have currently have access to any anthropometric datasets that support our
claim for a wider population demographic. We also note here that wider, longer
term deployments in real homes are the best way to evaluate this technology, and
our results below are best effort extrapolations from our controlled experiments
in the lab.

For each home, using the height values of the residents in the home, we
first derive a log normal probability model for each resident in the home us-
ing his/her height and the curve fit models described in section 4.2. We then
analytically calculate the probability that any height event will be assigned to
the right resident, assuming that each resident is equally likely to generate a
height event. From now on, we refer to this probability as the probability of

correct resident identification in a home. For each home, HRS 2006 also
provides the weight measures of every resident. Jenkins et al [9] in 2007 observe
that weight based identification using force plates has a Gaussian error with a
mean of 0.67kg and standard deviation of 0.96. Assuming this Gaussian model
and mean parameters, we calculate the probability that any gait event will be
assigned to the right resident, assuming again that each resident is equally likely
to generate a gait event.

Given the probability of correct resident identification for each home in the
sample, we compute the proportion of homes where the probability of correct
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Fig. 7. Height sensors are potentially applicable with high accuracy to a large propor-
tion of US elderly households. Weight sensors have potentially higher applicability, but
require good sensor design to aesthetically install on the floor.

identification is above a fixed threshold; Figure 7 shows how this proportion
decreases as we increase the threshold for probability of correct resident identifi-
cation. Our height based identification solution is potentially applicable to 85%
elderly homes in the US with at least 95% identification accuracy. Using force
plates and weight based identification, up to 92% of the elderly homes can po-
tentially achieve least 95% identification accuracy. Given the high cost and effort
involved in retrofitting a home with force plates, height based identification is
preferable, even though it is slightly less accurate; however, alternative cheaper
sensing solutions for weight measurement or gait analysis can be explored for
preferential use over height sensors in some homes.

7 Improving Height Measurement Accuracy with History

We have shown in the previous sections that height based biometric identification
is potentially applicable to a significant proportion of elderly homes in the US
with high accuracy. However, from the analysis seen in figure 7, height sensors
achieve less than 95% identification accuracy in 15% of the homes. In this section,
we show how information such as the room topology of a home, and the past
history of height sensor events on multiple doorways in a home, can potentially
be used to improve the inherent accuracy of biometric identification using the
height sensor.

As an illustrative example, assume two residents A and B initially in the bed-
room. Assume that after some time, resident A leaves the bedroom, and goes
to the kitchen through the living room to get a snack. Even if a few individ-

ual height sensor events lead to incorrect results from the MLE classifier, the
sequence of height events generated by A will have a higher likelihood of being
classified as resident A; we use spatio-temporal continuity of motion through
the constrained floor layout of a home to improve identification accuracy. An
assumption in the in the example above, and in the analysis below, is that the
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Fig. 8. Our simulation study shows that the history of height measurements collected
over the track of a resident through the home potentially improves identification accu-
racy and applicability of height sensing in US elderly homes.

error at individual height sensors is independent; this assumption may be true
most of the time. However, there might occur cases where the error is more sys-
tematic, such as a person stooping over to carry a heavy object; in such cases,
the utility of using the sequence of height measurements could potentially be
reduced.

We use a simulation based study that is driven by the public-use height data
from HRS 2006 and our height error models derived in section 4.2, to estimate the
improvement in identification accuracy that can be achieved using the history
of height events in a home. We assume a 6 room home across all the elderly
households for consistency. We define the same HMM for each resident’s room
transitions, to indicate equal transition likelihood from one room to another; we
do this to ensure that differing room transition patterns of residents or specific
room topologies of homes do not unfairly improve the identification accuracy
possible by using the past history of height events alone. We generate 1000
height events for each home in HRS 2006, using our HMM to generate room
transitions, and using the height error models from section 4.2 to generate noisy
height events for each resident. We assume a height sensor at every entry/exit
into a room.

Given the simulation trace, we evaluate two approaches to identify resident
labels for height events in the home (1) A naive MLE classifier that only considers
data from individual height events (2) A probabilistic multi-hypotheses tracker
that uses past history and room topology embedded in a HMM. Figure 8 shows
the applicability of height based identification across elderly homes in the US
with and without history information, based on the results of our simulation
experiment. When our probabilistic multi-hypotheses tracker is used, we observe
that height based identification can potentially achieve at least 95% identification
accuracy in 95% of elderly homes in US, as opposed to only 85% of elderly homes
covered by the naive identification algorithm.
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Fig. 9. A history of readings could potentially decrease the height difference required
for accurate identification(a), and increase the number of residents that can be reliably
differentiated(b)

Figure 9(a) provides more insight into the scenarios where history informa-
tion might be most useful. When the height difference of the residents living in
the home is small, using the past history of height events greatly improves the
accuracy over naive MLE classification. Using tracking history can potentially
reduce the height difference required for 99% identification accuracy from 6.9cm
to 3.25 cm. Figure 9(b) demonstrates another important benefit of using history,
the ability to achieve higher accuracy in indoor spaces with more residents; the
heights of residents in the hypothetical multi-resident homes (100 sample homes
at each point) are randomly generated using height data from the 4154 elderly
residents from HRS 2006. By using the history of height events in a home, we
can potentially improve the identification accuracy in 4 person homes from 77%
to 90%.

8 Discussion

Height measurements can be used for accurate resident room level tracking if
height sensors are placed above every entrance and exit to a room, as proposed
in this paper. Of course, any biometric sensors including thumbprint or retina
scanners [18], could be placed at the entrance of any room to locate residents,
but violates our requirement of not requiring manual identification effort from
residents. In table 2, we compare the use of height sensors for resident tracking
to select existing resident tracking systems in term of four requirements: conve-
nience, deployment time, accuracy, and cost. Deployment time is qualitatively
shown for existing solutions we did not implement and is approximated from our
empirical deployments in real home environments for solutions we implemented.
Table 2 illustrates that, of a representative sample of four existing tracking im-
plementations, none meet all four requirements. Tag and Track systems such as
Pedestrian localization [21] and Motetrack [13] can be inconvenient to the user,
STAR [20] using activity models has low accuracy and requires an inconvenient
training phase, and weight sensing using force plates or smart floors [9] to track
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residents would require a costly installation. Of these existing implementations,
only our height sensors can meet all four requirements. Of course, exploring al-
ternative implementations of weight sensors using foor mats, or simply including
height sensor data in the STAR particle filter, are possible techniques to improve
existing implementations of these approaches.

Name Convenience Deployment time Accuracy Cost

Inconvenient Very low Very high Very cheap
Pedestrian (5 minutes) (99-100%)

Localization

Inconvenient Moderate High, Affordable
Motetrack (1 hour) (95-100%)

Inconvenient Moderate Low, Affordable
STAR training period (2 hours) (65-70%)

(activity models) (weeks/months)

Convenient Very high High Very high
Using Weight (> 95%)
(force plates)

Convenient Moderate High Affordable
Using Height (1.5 hours) (> 95%)

Table 2. Evaluation of spectrum of location solutions along four variables - (Conve-
nience, deployment time, Accuracy, Cost) assuming a five room home to deploy in

In this study, we have only explored the use of height sensors above doorways
to provide coarse-grained room-level accuracy. Some existing approaches such as
tag and track approaches, or invasive camera based approaches, can provide
meter-level accuracy; applications that require fine-grained location accuracy
would need to install height sensors inside rooms, such as above the stove or
the sink, at a higher installation cost. An interesting research question relates to
the optimal placement of height sensors inside rooms to help activity inference.
A new challenge when using too many height sensors close to each other is
multi-path interference affecting the ranging accuracy. Multi-path effects are
also an issue in (1) rooms with wide doorways that require several adjacent
height sensors to achieve sufficient coverage, and (2) adjacent doorways very
close to each other; this needs to be addressed using a distributed synchronization
algorithm, or careful placement of the sensors.

In our study, we use a data set which is restricted to elderly residents because
it is one of the few public data sets that has both height and weight information
for a large number of multi-resident homes. An interesting extension would be to
explore how our solution generalizes to a larger population, including young cou-
ples, small and large families, and multi-resident student homes, by conducting
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large scale surveys of anthropometric measures in these homes. Since our ap-
proach is based on a resident biometric, it cannot be applied in all homes with
high accuracy, unlike existing approaches such as tag and track. For applications
that require higher identification accuracy than offered by height sensing alone
in a given home, we propose to explore adding multiple non-invasive sensing
modalities including floor mat sensor implementations for weight measurement,
and color sensors above the doorway. There are also other breakdown scenarios
for height sensing that we have not fully explored in this paper. The presence
of guests in the home with similar height as the existing residents will reduce
identification accuracy. Also, a person who starts to use crutches or a wheelchair,
might reduce identification accuracy if her new height corresponds to that of an
existing resident in the home.

9 Conclusions

In this work, we demonstrate that ultrasonic range sensors placed above door-
ways in a home can be used to identify residents with high accuracy as they
walk throughout a home, and at the same time satisfy the user requirements of
smart home residents. Height is typically a weak biometric, but we make two
key insights that make it effective for in-home monitoring. First, height is highly
effective among small populations where the height differences among residents
are likely to be large enough for reliable differentiation. Second, residents walk
through the home in predictable, constrained patterns dictated by the floor lay-
out, and the multiple height measurements of the resident as they walk through
multiple doorways in the home can be potentially be used to improve the in-
herent accuracy of the height sensor. In this paper, we quantify the error with
which ultrasonic height sensors measure the heights of residents as they walk
under the doorway, using both controlled experiments in a lab with 20 subjects,
and in 3 real homes. Using publicly available height measures of residents from
multi-resident elderly homes and the height error distributions derived from our
controlled and in-situ experiments, we extrapolate that a resident identification
accuracy of at least 95% can potentially be achieved in 85% of elderly homes
using a naive classification algorithm and in 95% of elderly homes using our
probabilistic multi-hypotheses tracker.
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